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Introduction

The supporting information includes mathematical details concerning the complete for-

ward model M = Mrr ( . , ϕ (.)) presented in the main article (Text S1 to S3), informa-

tion regarding the model setup and watershed study (Text S4, Figures S1 and S2), and

supplementary results on the learning performance (Figures S3 to S6).
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Text S1. Notations

• Surface discharge: Q(x, t) ∈ RN , where N = Nx ×Nt with Nx the number of cells in

the 2D spatial domain Ω ∈ R2 and Nt the number of simulation time steps in ]0, T ];

• Internal states: h = (h1(x, t), ..., hNh
(x, t)) ∈ RN×Nh with Nh the number of distinct

state variables;

• Internal fluxes: q =
(
q1(x, t), ..., qNq(x, t)

)
∈ RN×Nq with Nq the number of distinct

flux variables;

• Atmospheric forcings: I = (I1(x, t), ..., INI
(x, t)) ∈ RN×NI with NI the number of

distinct forcings;

• Physical descriptors: D = (D1(x), ..., DND
(x)) ∈ RNx×ND with ND the number of

distinct descriptors;

• Model parameters: θ = (θ1(x), ..., θNθ
(x)) ∈ RNx×Nθ with Nθ the number of distinct

model parameters;

• Model initial states: h0 = h(x, t = 0).

In this study, we investigate a hydrological model structure comprising the following model

parameters and internal states:

• ci: capacity of interception reservoir [mm];

• cp: capacity of production reservoir [mm];

• ct: capacity of transfer reservoir [mm];

• kexc: non-conservative water exchange flux [mm/h];

• akw: first kinematic wave routing parameter;

• bkw: second kinematic wave routing parameter;



: X - 3

• hi: interception reservoir state [mm];

• hp: production reservoir state [mm];

• ht: transfer reservoir state [mm].

Text S2. Learnable Parameterization-Regionalization operator ϕ

The LPR operator ϕ is composed of two neural networks, which are the parameterization

network ϕ1 and regionalization network ϕ2.

The first one seeks to determine a spatio-temporal correction f q for the internal fluxes

q using neutralized rainfall and evapotranspiration In = (Pn, En), along with production

and transfer sates at previous time step h = (hp, ht):

f q(x, t) = ϕ1([Pn, En] (x, t), [hp, ht] (x, t− 1);ρ1)

where ρ1 is the parameter vector to be optimized for ϕ1.

The output f q(x, t) = (fq,1(x, t), fq,2(x, t), fq,3(x, t), fq,4(x, t))
T will be applied as multi-

plicative factors to the GR operators internal fluxes as detailed in S3.

Here, the neural network ϕ1 is configured as a multilayer perceptron with two hidden layers

(consisting of 32 and 16 neurons, respectively), a Leaky ReLU activation function between

hidden layers, and a modified Softmax function in the output layer that is bounded from

0 to 2. The modified Softmax function is used to constrain the fluxes corrector. The total

number of trainable parameters of ϕ1 is Nρ1 = 756.

The second estimates the spatially distributed model parameters θ from physical de-

scriptors D = (di,i=1..7)
T (refer to Figure S2 for information on input descriptors):

θ(x) = ϕ2([d1, ..., d7] (x);ρ2)

where ρ2 is the parameter vector to be optimized for ϕ2.
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The output θ(x) = (cp(x), ct(x), kexc(x), akw(x), bkw(x))
T is composed of conceptual model

parameters as detailed in S3.

Here, the neural network ϕ2 is a multilayer perceptron with three hidden layers consisting

of 96, 48 and 16 neurons, respectively. ReLU activation functions are used between hidden

layers, while the Sigmoid function is applied in the output layer and followed by a scaling

function to constrain the model parameters in accordance with their boundary conditions.

The total number of trainable parameters of ϕ2 is Nρ2 = 6276.

Text S3. Differentiable, gridded rainfall-runoff operator Mrr

For a given cell x ∈ Ω and time step t > 0, P (t) and E(t) represent the local precipitation

and potential evapotranspiration, respectively. The fluxes and states are computed as

follows.

Interception (from Ficch̀ı, Perrin, and Andréassian (2019)):

• Evapotranspiration from the interception reservoir: Ei (t) = min [E (t) , P (t) + hi (t− 1)];

• Remaining rainfall: Pn (t) = max [0, P (t) + hi (t− 1)− ci − Ei (t)];

• Remaining evapotranspiration: En(t) = E(t)− Ei(t);

• Update of interception reservoir state: hi (t) = hi (t− 1) + P (t)− Ei (t)− Pn (t).

Production (refined from Perrin, Michel, and Andrèassian (2003) with neural network

flux correction). The first order ordinary differential equation (ODE) describing the GR

production store without percolation is:

dhp

dt
=

(
1−

(
hp

cp

)2
)
pn −

hp

cp

(
2− hp

cp

)
en
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Assuming that instantaneous rainfall pn and evaporation en are constant over a constant

integration time step, one can obtain an analytical solution of infiltrating rainfall and

actual evapotranspiration fluxes as follows.

• Infiltrating rainfall flux: Ps (t) = cp

(
1−

(
hp(t−1)

cp

)2) tanh
(

Pn(t)
cp

)
1+

(
hp(t−1)

cp

)
tanh

(
Pn(t)
cp

) (analytical

solution from stepwise approximation of Pn);

• Actual evapotranspiration flux: Es (t) = hp (t− 1)
(
2− hp(t−1)

cp

)
tanh

(
En(t)
cp

)
1+

(
1−hp(t−1)

cp

)
tanh

(
En(t)
cp

)
(analytical solution from stepwise approximation of En);

• Direct runoff flux: Pr(t) = Pn(t)− fq,1 × Ps(t);

• Update of production reservoir state: hp (t) = hp (t− 1)+ fq,1 ×Ps (t)− fq,2 ×Es (t).

Transfer (adapted and refined from Perrin et al. (2003) with neural network flux

correction).

• Non-conservative exchange flux: F (t) = kexc ×
(

ht(t−1)
ct

)7/2
;

• Initial transfer reservoir state: ht(t
∗) = max [ϵ, ht (t− 1) + 0.9fq,3 × Pr(t) + fq,4 × F (t)]

with ϵ > 0, a fixed small constant;

The transfer reservoir is described with a first order ODE with a power law leakage

source term:

dht

dt
+ cth

5
t =

(
hp

cp

)2

pn

Again, assuming that instantaneous rainfall pn is constant over a constant integration time

step, one can obtain an analytical solution of outflow flux from this transfer reservoir.

• Outflow flux from transfer reservoir: Qft (t) = ht (t
∗)−

(
ht (t

∗)−4 + ct
−4
)−1/4

;

• Update of transfer reservoir state: ht(t) = ht(t
∗)−Qft(t);

• Outflow from direct runoff: Qd(t) = max [0, 0.1fq,3 × Pr(t) + fq,4 × F (t)];
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• Total outflow: Qlat(t) = Qft(t) +Qd(t).

Kinematic wave routing (adapted from Te Chow, Maidment, and Mays (1988)):

This routing module is based on a conceptual 1D kinematic wave model that is nu-

merically solved with a linearized implicit numerical scheme (Te Chow et al., 1988). The

discharge routing problem is classically reduced to a 1D problem by considering a 8 direc-

tion (”D8”) drainage plan DΩ (x), obtained by terrain digital elevation model processing

with the condition that a unique pixel has the highest drained area.

The kinematic wave model is obtained by simplifying the 1D Saint-Venant equations

assuming that the momentum reduces to flow friction slope equal bottom slope. Using

a conceptual parameterization of the momentum A = akwQ
bkw , with A the flow cross

sectional area, Q the discharge, akw and bkw two constants to be estimated, and injecting

it into the mass equation ∂tA + ∂xQ = Qlat, with Qlat the lateral discharge (total runoff

produced at a pixel from GR operators presented above), a one equation model is obtained:

∂Q

∂t
+

1

akwbkw
Q(1−bkw)∂Q

∂x
=

1

akwbkw
QlatQ

(1−bkw)

This model is expressed as follows in order to be discretized with a finite difference ap-

proach (Te Chow et al., 1988):

∂xQ+ akwbkwQ
(bkw−1)∂tQ = Qlat

Given Nu adjacent upstream cells within Ω flowing into cell x as imposed by flow

direction map DΩ, the upstream runoff is:

Qu (x, t) =
Nu∑
k=1

Q (k, t)
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Then, the numerical solution of the simplified mass equation by a finite difference ap-

proach, using a linearized implicit scheme (Te Chow et al., 1988), is:

Q(t) =

∆t
∆x

Qu(t) + akwbkwQ(t− 1)
(

Q(t−1)+Qu(t)
2

)bkw−1

+∆tQlat(t−1)+Qlat(t)
2

∆t
∆x

+ akwbkwQ(t− 1)
(

Q(t−1)+Qu(t)
2

)bkw−1

Text S4. Model setup

The study zone in the Eastern Mediterranean region features 9 gauged catchments that

are used for calibration while 6 others are considered as pseudo-ungauged for validation of

spatial extrapolation capabilities (regionalization) (Figure S1). The SMASH model is run

on a dx = 1 km spatial grid at dt = 1 h time step, i.e., at the same resolution as rainfall

data. The model is forced by: (i) observed rainfall grids based on hourly ANTILOPE

J+1 radar-gauge rainfall reanalysis from Météo-France (Champeaux et al., 2009); (ii)

potential evapotranspiration (PET) estimated using the formula of (Oudin et al., 2005);

and (iii) temperature data from SAFRAN reanalysis produced by Météo-France on a

8 × 8 km2 spatial grid (Quintana-Segúı et al., 2008) downscaled to a 1 × 1 km2 spatial

grid. The model initial state h0 is not calibrated here and simply set such that relative

saturation of production and transfer reservoir is 0.5. Discharge data at gauges over the

calibration period P1 (August 2009 to July 2013) and the validation period P2 (August

2013 to July 2016) are obtained from preprocessed data sourced from SCHAPI-DGPR.

Seven spatially distributed physical descriptors (Figure S2), resampled at dx = 1 km on

the model grid, are considered as input for the regionalization algorithm, i.e., as input of

the neural network ϕ2.
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Figure S1. Study zone located in the Southeast region of France, comprising multiple

gauges downstream of both nested and independent catchments. The gauged catchments

(highlighted in red) are used for multi-site calibration, whereas the pseudo-ungauged

catchments (highlighted in blue) serve for spatial validation. The selection of catch-

ments is based on the availability of extensive time series with high-quality observed

flow and minimal anthropogenic impacts. Nine gauged catchments are employed for cal-

ibration, with an additional six considered pseudo-ungauged for spatial validation. This

area presents a challenging modeling case due to diverse hydrological properties, such as

steep topography and highly heterogeneous soils and bedrock. The region is susceptible

to intense rainfall, leading to nonlinear flash flood responses, and is characterized by a

significant proportion of karstic zones.
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Figure S2. Maps of physical descriptors in the study area, including various types

such as topography, morphology, land use, and hydrogeology. A set of seven descriptors

at 0.01◦ in the WGS 84 projection is used as inputs for the regionalization mapping ϕ2,

consisting of: d1 the local slope (in degrees) from the Copernicus database (version of

2016) and preprocessed by Odry (2017); d2 the drainage density from Organde et al.

(2013); d3 the percentage of basin area in karst zone from Caruso et al. (2013); d4 the

forest cover rate and d5 the urban cover rate both from the Corine Land Cover database

(version of 2012); d6 the potential available water reserve (in mm) from Poncelet (2016);

d7 the high storage capacity basin rate from Finke et al. (1998). Before the optimization

process, all descriptors are standardized between 0 and 1 using min-max scaling.
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Figure S3. Boxplot of KGE scores computed over the full time series across gauged and

pseudo-ungauged catchments in calibration (number of catchments in parenthesis), spatial

validation, and temporal validation for four regionalization methods (reg), alongside a

reference obtained from two locally calibrated methods (loc). The comparison assesses

the performance in simulating discharges of different methods, hybrid models with process

parameterization pipeline ϕ1 in darker colors (S-GRNN), with regionalization pipeline ϕ2

in different shades of pink (reg.NN).
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Figure S4. Distribution over 161 flood events of relative error, with an optimal value of

0, for four flood event signatures (Ebf - base flow, Eff - flood flow, Erc - runoff coefficient,

Epf - peak flow). The median, mean, and standard deviation errors are respectively

denoted m, µ, σ. The evaluation takes place in gauged catchments during P1 (2009-2013)

for calibration.
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Figure S5. Distribution over 93 flood events of relative error, with an optimal value of

0, for four flood event signatures (Ebf - base flow, Eff - flood flow, Erc - runoff coefficient,

Epf - peak flow). The median, mean, and standard deviation errors are respectively

denoted m, µ, σ. The evaluation takes place in pseudo-ungauged catchments during P1

(2009-2013) for spatial validation.
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Figure S6. Distribution over 95 flood events of relative error, with an optimal value of

0, for four flood event signatures (Ebf - base flow, Eff - flood flow, Erc - runoff coefficient,

Epf - peak flow). The median, mean, and standard deviation errors are respectively

denoted m, µ, σ. The evaluation takes place in gauged catchments during P2 (2013-2016)

for temporal validation.
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