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Quantitative pathogenicity and host
adaptation in a fungal plant pathogen
revealed by whole-genome sequencing
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Anais Pitarch1, Laetitia Dupont1, Johann Confais1, Henriette Goyeau1,
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Knowledge of genetic determinism and evolutionary dynamics mediating
host-pathogen interactions is essential to manage fungal plant diseases. Stu-
dies on the genetic architecture of fungal pathogenicity often focus on large-
effect effector genes triggering strong, qualitative resistance. It is not clear
how this translates to predominately quantitative interactions. Here, we use
the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of
quantitative pathogenicity andmechanismsmediating host adaptation.With a
multi-host genome-wide association study, we identify 19 high-confidence
candidate genes associated with quantitative pathogenicity. Analysis of
genetic diversity reveals that sequence polymorphism is themain evolutionary
process mediating differences in quantitative pathogenicity, a process that is
likely facilitated by genetic recombination and transposable element dynam-
ics. Finally, we use functional approaches to confirm the role of an effector-like
gene and a methyltransferase in phenotypic variation. This study highlights
the complex genetic architecture of quantitative pathogenicity, extensive
diversifying selection and plausible mechanisms facilitating pathogen
adaptation.

Fungal diseases cause major damage to crop production and threaten
food security worldwide1. Understanding the molecular dialogue
between pathogens and their hosts is essential to design durable and
effective control strategies. Major molecular factors in the ability of
fungal pathogens to cause disease are effectors. Those are proteins
delivered into the host apoplast or translocated inside cells to
manipulate host physiology or suppress its immunity to favor
infection2. In turn, plants respond to pathogen invasion by activating
defence mechanisms based on recognition of pathogen-associated
molecular patterns and effectors by cell surface and intracellular
receptors. The discovery of resistance genes (R) that encode receptors

has provided potential means to control fungal diseases through
resistance breeding3. However, pathogens have repeatedly overcome
host resistance by evading recognition or by suppression of host
immunity. These rapid adaptations are mainly driven by genetic var-
iation at pathogenicity genes and genome evolution4. Gene diversifi-
cation, deletions or horizontal acquisitions have generated adaptive
variants at loci encoding effectors. Transposable elements (TEs), high
mutation and recombination rates are thought to contribute con-
siderably to the extensive genome variation in many fungal species5–8.

In the case of antagonistic host-pathogen interactions, the fate of
genetic variation is determined partly by the selection pressure
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exerted by host R proteins. This is especially true when R genes and
effectors are involved in a gene-for-gene (GFG) relationship9–12. More-
over, the diversity of host genotypes in R-gene content exerts het-
erogeneous selection pressure on pathogen populations, giving rise to
the co-maintenance of multiple pathogen variants better adapted to
specific subsets of hosts3,13. Hence, in addition to the identification of
effector genes, elucidating the mechanisms contributing to gene
diversification provides critical information about their evolvability.
This knowledge has tremendous applications for the durability of crop
protection strategies14.

The first fungal effectors to be identified were small secreted
proteins (SSP). SSPs trigger strong resistance (i.e. encoded by aviru-
lence genes) as a result of their recognition by plant immune receptors
following a typical GFG relationship15. The increasing availability of
fungal genomes over the past decade allowed significant advances in
investigating molecular plant–fungal interactions and facilitated effec-
tor discovery. However, effector biology has focused almost exclusively
on SSPs despite the growing evidence that other genetic factors are also
involved in host colonization16. For instance, small noncoding RNAs and
fungal secondarymetabolites play similar effector roles in various plant
pathogenic fungi17. Other fungal proteins were shown to interact with
the host immune systemor act to promote pathogenicity; these include
for example cell wall–degrading enzymes18, protease inhibitors19 or
disruptors of the hormone-signaling pathway20.

Effector discovery also led to the systematic search for host genes
conferring resistance15. Resistance to many fungal diseases can be
divided into two categories: (1) qualitative (or race-specific) resistance,
which is usually controlledby large-effectgenes and is effective against
avirulent strains; and (2) quantitative (or non–race-specific) resistance,
usually controlled by genes with small-to-moderate effects and is
thought to be less specific. While cloning plant immune receptors
remains challenging, the discovery of the interacting fungal effectors is
considered more straightforward14. However, fungal pathogenicity
studies often focus on large-effect genes, whose interaction with
genetic factors from the host trigger a strong immune response,
leading to qualitative resistance. It remains unclear how these findings
translate to quantitative models, where the interaction of quantitative
components of pathogenicity (also called aggressiveness in the plant
pathology literature) and plant resistance, trigger a partial/incomplete
immune response. While the quantitative components of pathogeni-
city are frequently measured in various plant-pathogen interactions21,
there have been only few reports on the genetic basis of quantitative
pathogenicity in pathogens and the process of adaptation to quanti-
tative host resistance22,23. Thus, elucidating the biology of quantitative
pathogenicity factors and their evolutionary dynamics is timely and
may require the adoption of complementary experimental approa-
ches. To address this, we used the Zymoseptoria tritici—wheat patho-
system, which is known to be largely quantitative in natura.

Zymoseptoria tritici is an ascomycete filamentous fungus that
causes the Septoria tritici blotch (STB) disease onwheat. STB is amajor
threat to wheat crops in Europe and in temperate regions around the
world24. Z. tritici is hemibiotrophic and remains exclusively apoplastic
through its infection cycle, which is characterized by an asymptomatic
phase of 7 to 14 days, followed by an induction of leaf necrosis25. This
stage is accompanied by the development of pycnidia containing
asexual spores that further spread the disease26,27. To date, three Z.
tritici pathogenicity genes that encode avirulence factors have been
cloned. These includeAvrStb6 andAvrStb9 that are recognizedby theR
genes Stb6 and Stb9, respectively, and lead to a strong qualitative
resistance response12,28,29, and Avr3D1 which triggers quantitative
resistance on cultivars harboring Stb7 or Stb1210. In addition to the
above-mentioned R genes, 18 other race-specific Stb resistance genes
and numerous quantitative resistance loci have been genetically
mapped in wheat30, but only Stb6 and Stb16q have been cloned to
date31,32. An ideal approach to identify genetic determinants of

complex traits is through Genome-Wide Association Studies (GWAS).
GWAS aims to associate sequence polymorphisms to phenotypic var-
iation, and relies on linkage disequilibrium (LD)—the non-random
association of alleles at different loci—to identify causal variants. The
approach has been used extensively in plants but remains at its infancy
on fungal populations33,34.

The aim of the present work was to characterize the genetic
determinants underlying quantitative pathogenicity in Z. tritici and to
investigate the evolutionary processes that could facilitate pathogen
adaptation to host resistances. We hypothesized that quantitative
pathogenicity reliesmostly on gene-for-gene interactions between host
andpathogen, and that the genes involved are not all encoding SSPs but
also genetic factors from the non-secretory pathway. To test our
hypotheses, we performed an extensive genomewide association study
combined with transcriptomics and population genomics. We identi-
fied candidate genes putatively mediating quantitative pathogenicity
and confirmed the role of two of these genes using functional approa-
ches. Together, our results generate a comprehensive view on the
complex genetic architecture of quantitative pathogenicity and patho-
genadaptation tohost resistances. Beyond thismodel, ourfindingsmay
have broad implications for sustainable disease management.

Results
Characterization of the fungal collection
To efficiently perform GWAS and reduce confounding effects, it is
important to select a population that is genetically and phenotypically
diversewith little stratification. Following these guidelines, we focused
on a subset of 103 French Z. tritici isolates selected from a larger
population for their genetic diversity. We sequenced their genomes
and generated a total of 247Gb of sequence data with an average
depth of 61x. After quality assessment, we obtained a total of 1,463,638
Single Nucleotide Polymorphisms (SNPs) that we further filtered for
Minor Allele Frequency (MAF) andmissing rates, resulting in a final set
of 718,810 SNPs. Analysis of functional variant effect revealed that
59,318 SNPs (8.25%) induced missense mutations and 2493 (0.3%)
resulted in a loss of function such as premature stop codons, loss of
stop or start codons (Table 1). As expected, principal component
analysis (PCA) using full polymorphism data did not show any genetic
structure; the first three PCs explained less than 4% of the total var-
iance (Supplementary Fig. 1). We further confirmed this with STUC-
TUREusing a subset of evenlydistributedSNPs (1 SNPper 5 kb) and like
the PCA analysis, Bayesian clustering failed to infer sub-populations
(Fig. 1a). Similarly, individual isolates showed very low genetic relat-
edness (Supplementary Fig. 2). Genome-wide LD decayed (r2 < 0.2)
over physical distance at ~0.5 kb (Fig. 1b). Given our high SNPdensity (1
SNP every 55bp) we expected marker-trait associations to be resolved
to the individual gene level. When pathotyped on wheat differential
cultivars, isolates showed awide virulence spectrumdepending on the
host cultivar, and strong isolate × cultivar interactions (Supplementary

Table 1 | Functional variants identified in apopulationof 103Z.
tritici isolates

Functional variant effect Count Percent

5’ UTR 10,431 1.45

Gain of start codon 1084 0.15

Loss of start codon 127 0.02

Synonymous coding 162,938 22.67

Non-synonymous coding 59,318 8.25

Intron 58,217 8.10

Gain of stop codon 1109 0.15

Loss of stop codon 173 0.02

3’ UTR 8794 1.22
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Tables 1 and 2). Overall, strains isolated from the cultivar “Premio”
weremore aggressive compared to those isolated fromthe susceptible
cultivar “Apache”, even when tested on the cultivar “Apache” (Sup-
plementary Fig. 3).

A complex genetic architecture and host-specificity underlies
pathogenicity
To elucidate the genetic basis of the observed pathogenicity differ-
ences, we investigated two key quantitative phenotypes (PLACN and
PLACP) using mixed linear models for marker-trait association tests,
performed independently on each of the studied cultivars. Collec-
tively, we identified94genome-wide significant SNPs and an additional
53 at the 10% FalseDiscoveryRate (FDR) threshold, defining 58 distinct
genes (Fig. 2 and Supplementary Data 1). The strongest associations
were at the AvrStb6 and AvrStb9 loci and were detected in all Stb6- and
Stb9- containing cultivars, respectively. Initially not thought to harbor
Stb9, PLACNon cultivar “Cadenza”was highly associated (p = 3.57e−13)
with polymorphisms in AvrStb9, suggesting that the cultivar possesses
the corresponding R gene. The presence of Stb9 in “Cadenza” was
recently confirmed by its tightly linked genetic markers. Interestingly,
the single-locus model failed to detect AvrStb9 and demonstrates the
usefulness of themulti-locusmixedmodel in detecting loci with larger
effects. However, if multiple SNPs were in strong LD, biases may be
created while estimating the genetic variance. Nevertheless, the multi-
locus approach in our study generally outperformed the traditional
single-locus tests (Supplementary Fig. 4). Candidate pathogenicity loci
were identified in the thirteen Z. tritici core chromosomes. Despite
recent suggestions of accessory chromosomes being enriched in
putative effectors35, we could not map any gene residing on accessory
chromosomes in this multi-host GWAS (Fig. 2 and Supplementary
Data 1). Only eleven genes were shared among PLACP and PLACN
(Fig. 2 and Supplementary Data 1), which was expected, since necrosis
coverage and pycnidia production levels were highly variable (Sup-
plementary Fig. 3). Hence, considering both traits in association ana-
lyses could reveal genetic determinants influencing both, the conidial
production and host susceptibility. The phenotypic variance explained
by the identified loci associated with pathogenicity traits on each
cultivar ranged from 9.1% to 65.7% (Supplementary Data 1). With the
exception of AvrStb6 and AvrStb9, all of the detected genes accounted
for small-to-moderate effects (R2 < 30%) and similarly, analysis of
virulent/avirulent alleles showed quantitative differences (Supple-
mentary Data 1 and Fig. 3b). Further, the number of associated genes
varied greatly between cultivars (three candidates for “Bulgaria-88”
and “Toisondor” vs. ten for “Israel-493”) and ~76% were specific to a
single host cultivar (Supplementary Data 1 and Fig. 3a). This weak

overlap observed between genes is a strong indication of host-speci-
ficity, in consistence with the different Stb genes or Stb combinations
harbored by the cultivar set used here.

In planta gene expression and functional annotation
To reveal the expression profile of the identified candidate patho-
genicity genes using GWAS, we calculated the relative abundance of Z.
tritici transcripts, using RNAseq data generated during different Z.
tritici infection time courses25. Of the 58 GWAS candidates, ten genes
exhibited no expression (FPKM=0) or very low expression (FPKM< 5)
throughout the infection cycle, while another ten genes were found to
be highly expressed (FPKM above the 95th percentile of the mean
expression value) either at specific time points or throughout the
infection cycle (Fig. 3c and Supplementary Data 2). Interestingly,
AvrStb6, Zt_6_00224 and Zt_3_00467 were among the most highly
expressed Z. tritici genes at the disease transitional phase (9 dpi;
Supplementary Data 2). Differentially expressed genes in planta were
identified by examining the ratio of expression between the Czapek-
Dox broth (CDB) culture medium and the five time points of wheat
infection. In our set of candidate genes, sixteen were differentially
expressedwith a FDRbelow0.10 and a log2-fold change greater than 2.
Among them, 11 were up-regulated at specific time points of the
infection (Fig. 3c and Supplementary Data 2). For subsequent investi-
gations, we considered a set of nineteen genes as high-confidence
candidates,whose expression profiles supported their potential role in
pathogenicity; this included the 16 differentially expressed genes and
three additional ones that were highly expressed during the infection
(Fig. 3 and Supplementary Data 2).

Eleven protein products out of the nineteen retained as best
candidates were predicted to be secreted (Supplementary Table 4).
These secreted proteins could be effectors promoting disease or
interacting with the cognate Stb resistance genes analyzed in this
study. We also found three proteins with predicted transmembrane
helices (THMs), a class that is systematically discarded in effector
discovery studies. EffectorPpredicted seven as putative effectors, with
five (excluding AvrStb6) lacking homology with other fungal species
and might be considered as Z. tritici-specific candidate effectors
(Supplementary Table 4). The identified conserved protein domains
included functions such as hydrolase (e.g., Glycosyl hydrolase), oxi-
doreductase (e.g., Thioredoxin reductase) or transferase activities
(e.g., Methyltransferase; Supplementary Table 4). Using PHIB-Blast, we
found that seven candidates shared homology with known patho-
genicity factors from other pathogenic fungi and therefore constitute
promising candidates mediating quantitative pathogenicity in Z. tritici
(Supplementary Table 4).

Fig. 1 | Population structure and linkage disequilibrium (LD) in the Z. tritici
population (n = 103). a Admixture plot of the fungal population. Each vertical bar
represents a single isolate and is colored according to the membership coefficient
(Qi) to the three sub-population (K) clusters identified by STRUCTURE. b LD decay

over physical distance. The r2 values were calculated between pairs of SNPs up to a
physical distanceof 20 kb andfitted against the physical distanceusing a non-linear
model. Thedottedorange line shows thedistance (0.5 kb) atwhichLDdecays at the
r2 < 0.2 level.
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Factors of genetic diversity in pathogenicity genes
Gain in virulence and/or escape from host recognition is often medi-
ated by polymorphisms in pathogenicity genes. We investigated
sequence variation and diversity in the identified genes and detailed
results are summarized in Supplementary Table 5. In particular, we
compared patterns of nucleotide diversity in candidate pathogenicity
genes with the genome-wide levels. We observed higher genetic
diversity in pathogenicity genes compared to other protein-coding
genes (median πPathogenicity = 0.0212 vs. πGenome-wide = 0.0079; p<0.01;
Fig. 4a).We found no significant impact of loss of functionmutations or
presence/absence polymorphisms, except for Mycgr3G110052. In
addition, we wanted to examine which mechanisms were likely to
contribute to the high sequence diversity in our candidates. As TE
dynamics have been observed to contribute to fungal genomeplasticity
and diversity, we calculated the proximity of candidate pathogenicity
genes to the nearest TEs. 52.6% of these genes were flanked by or
adjacent to TEs (i.e. at less than 5 kb distance; Supplementary Table 5).
Comparison with genome-wide genes with regards to TE proximity
revealed that candidate pathogenicity genes were significantly closer to
TEs (p<0.05; Fig. 4b). Gene diversification is also accelerated by
meiotic recombination, which influences both natural population
dynamics and selection. We used a combination of algorithms in two
independent software (RDP4 and GARD) to detect signatures of
recombination. We found signatures of recombination supported by
both detection methods in a significant proportion (63.2%) of the

putative pathogenicity genes (Supplementary Table 6). Interestingly,
genes with low or no signatures of recombination were in close proxi-
mity to TEs, whereas those with higher recombination events were
found at greater distances from TEs (Fig. 4c). We hypothesize that
recombination in particular and proximity to TEs promotes allelic
diversity in genes that are putatively involved in quantitative
pathogenicity.

Pathogenicity genes are hotspots of positive diversifying
selection
We assumed that candidate pathogenicity genes may have
evolved under R-genes selective pressure on pathogen popula-
tions to escape recognition. Therefore, we searched for episodes
of positive diversifying selection on protein-coding sequences by
using the ω (dN/dS) parameter. Codon sites under positive selec-
tion are defined as those with elevated nonsynonymous/synon-
ymous substitution ratios (ω > 1) compared to the expectation
under neutral evolution, ω = 1. The proportion of positively-
selected sites (ω > 1) varied greatly among genes and ranged
from 0.42% in the case of Zt_1_01987 to 10.97% for AvrStb6 (Sup-
plementary Table 5). We also found four genes with a dN/dS > 1
(Zt_3_00467, ω = 7.03; AvrStb6, ω = 2.84; Mycgr3G106276, ω = 1.18
and AvrStb9, ω = 1.04), that could be considered as genes under
strong selection pressure. Since ω averaged across all gene-tree
branches rarely surpasses 1, and as the selective pressure could

Number of candidate pathogenicity genes
c
ba

d

e

Fig. 2 | Overview of the identified candidate pathogenicity genes from the
multi-host GWAS. a Number of identified genes per cultivar. b Gene IDs and their
significant associations. Black dots correspond to PLACP (percentage of leaf area
covered by pycnidia) and red dots to PLACN (percentage of leaf area covered by
necrosis) marker-trait associations. The larger the dot the stronger the association
(p value). Radial lines connect dots to the cultivar where it was detected and to the

gene ID. c Nucleotide diversity (π) estimates in a 50 kb sliding window with a step
size of 25 kb. Genomic positions are displayed on the x-axis and π values are dis-
played on the y-axis. The y-axis ranges from 0 to 0.045. d Tajima’s D estimates in
50kb sliding windowswith a step size of 25 kb. Genomic positions are displayed on
the x-axis. Tajima’sD values are displayed on the y-axis. The y-axis ranges from −2.5
to 2. e The number of associations for each gene (PLACN/PLACP per cultivar).
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affect codon sites differently, we tested different codeML models
to detect positively-selected codons. For all model comparisons,
we found signatures of positive diversifying selection in 68.4% of
candidate genes using both, the more conservative M1a vs. M2a

and the M7 vs. M8 model pairs (Supplementary Table 5). Toge-
ther, this shows that pathogenicity genes are hotspots of positive
diversifying selection, likely as a result of a selection pressure
exerted by host R genes.

1dpi

21dpi
14dpi
9dpi
4dpi

-4 >40

log2-fold change

a

b

c

Virulence 
allele

Fig. 3 | The quantitative nature and host-specificity of Z. tritici pathogenicity.
a An upset plot of candidate pathogenicity genes across host cultivars. b Boxplots
showing variation in quantitative pathogenicity (PLACP) of the isolates (n = 103
isolates) carrying different lead SNP alleles of the candidate pathogenicity genes
(center line at the median, upper bound at 75th percentile, lower bound at 25th

percentile, with whiskers chosen to show the 1.5 of the interquartile range).
c Differential gene expression shown as log2-fold change compared to the culture
medium. Red shades indicate up-regulated genes and blue shades indicate down-
regulated genes during the infection cycle.

Fig. 4 | Genetic diversity of quantitative pathogenicity genes in Z. tritici and
factors contributing to gene diversification. a Distribution of nucleotide diver-
sity (π) among candidate pathogenicity genes (n = 58) and the rest of the protein-
coding genes (n = 10,993). Statistical significance was determined using a permu-
tation test with 1000 iterations; p =0.001818**. b TE distance compared between
pathogenicity genes (n = 58) and the rest of the protein-coding genes in Z. tritici

(n = 12,012). Statistical significance was determined using a permutation test with
1000 iterations; p =0.04683*. In (a) and (b) data are presented as box plots (center
line at themedian, upper bound at 75th percentile, lower bound at 25th percentile)
with whiskers chosen to show the 1.5 of the interquartile range. c The relationship
between TE distance and recombination events in candidate pathogenicity genes.
The error band indicates the 95% confidence interval.
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Two functionally distinct genes mediate quantitative
pathogenicity
To determine the role of the candidate genes in quantitative patho-
genicity, we selected two distinct genes for functional validation:
Zt_3_00467 (Fig. 5a), which encodes a SSP that is highly expressed in
planta, with a peak at the disease transition phase (Fig. 5b); and
Zt_6_00682 (Fig. 6a), which encodes a S-adenosylmethionine-
dependent methyltransferase (SAM-MTase) that is differentially
expressed during the disease asymptomatic phase (Fig. 6b). For
Zt_3_00467, we ectopically expressed the avirulent (IPO10273) and
virulent (3D7) alleles in the 3D7 strain background and assessed
quantitative pathogenicity traits on the host cultivars “Arina” and
“Riband”. Overall, Mutants expressing the avirulent allele
(3D7 + Zt_3_00467IPO10273) showed a slight reduction of PLACP levels
compared to those expressing the virulent allele (3D7 + Zt_3_004673D7;
Fig. 5c). When compared individually, one mutant expressing the
avirulent allele showed a phenotype similar to the wild-type, while
another expressing the virulent allele had higher PLACP compared to
the wild-type (Supplementary Fig. 7). The difference in phenotypic
responses between ectopicmutants is a well-known phenomenon that
may be caused by distinct allele integration sites in the different
mutant lines. Testing transformants expressing the avirulent allele on
the cultivar “Riband” led to lower development of pycnidia compared
to the virulent and thewild-type strains (Supplementary Fig. 8). “Arina”
and “Riband” share a common resistance gene known as Stb15. These

phenotypic observations suggest that Zt_3_00467 recognition leads to
quantitative resistancewhich couldbe attributed to Stb15. Comparison
of the avirulent and virulent protein sequences showed seven amino
acid substitutions, all positively selected (Fig. 5d). Analysis of
Zt_3_00467 in the global Z. tritici collection showed that the gene was
conserved and thatmost protein variants were population specific and
segregating by geographical origin (Supplementary Fig. 9).

For Zt_6_00682, we generated knockout (KO)mutants of the 3D7
strain by targeted gene disruption and ectopic transformants with
the virulent (3D7) and avirulent (3D1) alleles in the KO background.
This allowed us to assess allele-dependent effects of Zt_6_00682.
Three independent KO and ectopic transformants for each allele
were tested on the cultivar “Shafir”, where the association was
detected. Compared to the wild-type, KO transformants resulted in
unexpectedly high PLACP values ranging from 67% to 100% (Fig. 6c).
Ectopic transformation of the 3D1 allele in the KO background
(3D7ΔZt_ 6_00682 + Zt_ 6_006823D1) resulted in reduced levels of
PLACP, while ectopic lines transformed with the 3D7 allele (3D7ΔZt_
6_00682 + Zt_ 6_006823D7) showed a slightly higher PLACP than the
wild-type (Fig. 6c). Besides “Shafir”, the deletion mutants were
aggressive on another four cultivars, but phenotypic differences
between ectopic transformants and wild-type were not significant
(Supplementary Fig. 6). Five amino acid differences were found
between the avirulent and virulent protein sequences, of which three
were under positive selection (Fig. 6d). Like Zt_3_00467, Zt_ 6_00682

Fig. 5 | An effectorgene encoding apositively-selected small secretedprotein is
involved in quantitative pathogenicity of Z. tritici. a Regional association plot of
a candidate effector protein detected on cultivar “Arina”. X and Y axes indicate
positions on chromosome 3 and −log10 (p value) for associations with PLACP,
respectively. Annotations on the reference genome are shown at the bottom with
the candidate gene represented by a green box, other genes by blue boxes and
transposable elements by gray boxes. A linkage disequilibrium plot is shown below
the annotation bar.b log2-fold expression changes of Zt_3_00467 based onRNAseq
data collected throughout the time course of Z. tritici infection on wheat.
c Percentage of leaf area covered by pycnidia (PLACP) produced by the wild-type

strain 3D7 (n = 6 leaves) and the ectopic transformants expressing the virulent
(3D7) and avirulent (IPO10273) alleles (n = 18 leaves each). Data are presented as
box plots (center line at the median, upper bound at 75th percentile, lower bound
at 25th percentile) with whiskers chosen to show the 1.5 of the interquartile range.
Significant difference between group means are represented with different letters
above the boxplots after a Tukey’s HSD test. d Alignment of the virulent and
avirulent protein sequences. Residues in yellow constitute the predicted signal
peptide, gray residues show protein mutations and red asterisks show positively
selected sites with a Bayes Empirical Bayes posterior probability >0.95.
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was conserved in the global population but was highly polymorphic
(Supplementary Fig. 9).

Discussion
Our results point to a complex genetic architecture of pathogenicity in
Z. tritici, involving many genes with variable additive effects, resulting
in quantitative phenotypes on the host cultivar. These findings are
consistent with previous studies36,37 and provide further evidence that
pathogenicity in this pathosystem is complex and results from the
contribution of both large- and small-effect genes. We highlighted
nineteen differentially and highly expressed genes in planta and
focused on their features for subsequent investigations. Most of these
genes had a peak expression in the phases corresponding to the
colonization and the pre-pycnidia formation before the appearance of
symptoms. During colonization, hyphae penetrate host tissue via
stomata and colonize the substomatal cavity but remain exclusively in
the intercellular space. This is followed by hyphal invasion of the
apoplast leading to pre-pycnidia formation in substomatal cavities26. It
was shown that these are the key phases of effector gene deployment
byplant pathogens38. Thesegenerally encode small, secreted, cysteine-
rich proteins with no sequence homology in other species and play a
vital role in successful pathogen invasion, suppression of host immune
perception and manipulation of its physiology39. Here, we mapped a

set of diverse secreted proteins. While effector-like proteins may
initiate an effector-triggered immune response, as was shown for the
gene Zt_3_00467, which triggered quantitative resistance in cultivars
“Riband” and “Arina”, secreted molecules with a known functional
domain could also promote disease.

Of the functionally annotated secreted proteins, we identified
domains associated with macromolecule degradation, fungal meta-
bolism, or stress response, among others. Some genes encoded pro-
teins that show strong homology with functionally characterized
virulence factors fromother pathogenic fungi. For instance, Zt_1_01674
encodes a Thioredoxin reductase (Trr), a flavoenzyme that plays a
central role in the thioredoxin oxidative stress resistance pathway and
is involved in regulating gene transcription, cell growth and
apoptosis40. Deletion of the Trr ortholog resulted in reduced hyphal
growth, sexual reproduction, and virulence in Fusariumgraminearum41

and profoundly affected pathogenicity of the entomopathogenic
fungus Beauveria bassiana42. We hypothesize that Zt_1_01674may play
similar roles and could be an important factor in Z. tritici development
and pathogenicity. We also identified a cell-wall degrading enzyme
(Zt_2_00163) belonging to the Glycoside Hydrolase protein family.
Glycoside hydrolases are known to play important roles in fungal
invasion and nutrition acquisition via the degradation or modification
of plant cell wall components, such as cellulose or hemicellulose43.

Fig. 6 | A gene encoding a methyltransferase mediates quantitative patho-
genicity inZ. tritici. aRegional associationplot of the pathogenicity gene detected
on cultivar “Shafir”. X and Y axes indicate positions on chromosome6 and −log10 (p
value) for associations with PLACP, respectively. Annotations on the reference
genome are shown at the bottom with the candidate gene represented by a green
box, other genes by blue boxes and transposable elements by gray boxes. A linkage
disequilibrium plot is shown below the annotation bar. b log2-fold expression
changes of Zt_6_00682 based on RNAseq transcription data collected throughout
the time course of Z. tritici infection on wheat. c Percentage of leaf area covered by
pycnidia (PLACP) produced by the wild-type strain 3D7 (n = 6 leaves), knockout

mutants (n = 18 leaves) and the complementation mutants carrying the virulent
(3D7) and avirulent (3D1) alleles (n = 18 leaves each). Significant difference between
group means are represented with different letters above the boxplots after a
Tukey’s HSD test. Data are presented as box plots (center line at themedian, upper
bound at 75th percentile, lower bound at 25th percentile) with whiskers chosen to
show the 1.5 of the interquartile range. d Alignment of the virulent and avirulent
protein sequences. Residues in orange constitute the methyltransferase domain,
gray residues show protein mutations and red asterisks show positively selected
sites with a Bayes Empirical Bayes posterior probability >0.95.
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Genes encoding proteins predicted to be non-secreted were
common in our candidate list, highlighting not only the polygenic
nature of pathogenicity, but also the potential role of the non-
secretory pathway in fungal pathogenicity. This was demonstrated by
the functional studies of Zt_6_00682, which encodes a SAM-dependent
Methyltransferase (SAM-MTase). SAM-MTases catalyze the transfer of
methyl groups from SAM to a large variety of substrates, ranging from
metabolites to macromolecules, including proteins44. They are
involved in epigenetic regulation with functions ranging from the
control of gene expression, silencing or activation of transposon
control45. Zt_6_00682 shares some sequence similarities with the
putative SAM-MTase gene LaeA, a component of the velvet transcrip-
tion factor complex that functions as a global regulator of fungal
secondary metabolism and development for a handful of fungi46.
Recent work showed that mutants lacking the velvet gene velB in Z.
tritici have defects in vegetative growth and asexual reproduction47,
while the loss of LaeA attenuates pathogenicity in a variety of fila-
mentous fungi48. However, the inactivation of Zt_6_00682 promoted
pycnidia formation, suggesting that it functions differently from LaeA
and may negatively regulate the transcriptional activity of genes or
metabolites associated with host colonization. However, how this
SAM-MTase affects the regulation of pathogenicity factors needs to be
investigated as a key step toward understanding the evolutionary
mechanisms associated with the emergence of highly aggressive
strains.

In addition, we identified three genes with predicted transmem-
brane domains. For instance, the DPM2 ortholog (Zt_1_01325) was
highly expressed throughout the infection cycle, highlighting its
potential role in Z. triticipathogenicity.DPM2 is a regulatory subunit of
the dolichol-phosphate mannose synthase complex, key enzymes for
GPI anchor biosynthesis49. The alteration of theDPM complex affected
cell wall integrity, fungal growth and increased chitin levels inCandida
albicans49. Traditionally, transmembrane proteins are systematically
discarded in effector gene prediction studies. There is however
growing evidence that they could play key roles in pathogenicity of
filamentous fungi and our results support this hypothesis50,51.

We found substantial evidence for host specificity demonstrated
by a highly significant isolate × cultivar interaction and few shared
associations between host cultivars. It is also probable that the weak
overlap in candidate pathogenicity genes among host cultivars is
partly due to a lack of statistical power to detect variants of small
effect52. However, besides Stb6- and Stb9-carrying cultivars, there was
no meaningful correlation among phenotypes on different hosts,
which further supports host specificity. In several well studied host-
pathogen systems, specificity is determinedmainly by thematching of
resistance or susceptibility genes and their corresponding
effectors53–55, following a GFG relationship (or inverse GFG in the case
of necrotrophic fungal pathogens).

In Z. tritici, pathogenicity can be both qualitative29,56,57 and
quantitative10,58. Here, we showed that pathogenicity is predominantly
quantitative based on multiple genes of small-to-moderate effects.
This was demonstrated with the allele analysis of candidate genes and
functional studies of Zt_3_00467 and Zt_6_00682. In contrast to what
has been shown for most GFG interactions, the recognition of the
Zt_3_00467 and Zt_6_00682 avirulent alleles does not trigger strong
resistance, but rather a reduction at the onset of disease symptoms.
Furthermore, the fact that avirulent alleles are only recognized by
certain wheat cultivars suggests that the interaction also follows a GFG
model and demonstrates that Zt_3_00467 and Zt_6_00682 are likely
quantitative avirulence factors interactingwith specific host resistance
genes. This is further supported by recent work in Z. tritici as shown for
Avr3D1 and a recently reported effector gene (G_07189) that triggers
quantitative Stb20q resistance11,59. This is not uncommon in other
filamentous fungi. For instance, the late effector LmSTEE98 from
Leptosphaeria maculans triggers quantitative resistance following a

GFG model60, similarly, silencing three Blumeria graminis f sp. tritici
effectors lead to quantitative gain of resistance61. Since Zt_3_00467
encodes a typical effector protein and is recognized by hosts harbor-
ing the Stb15 resistance gene, we suggest that Zt_3_00467 could be
AvrStb15 and trigger an effector-induced defence.We hypothesize that
Stb15 resistance is not strong enough to block pathogen infection,
although we cannot completely rule out the existence of a Zt_3_00467
haplotype that triggers qualitative resistance. However, additional
genetic factors might also contribute to differences in pathogenicity
between avirulent and virulent strains. On the other hand, Zt_6_00682
encodes an atypical avirulence factor and may interact indirectly with
the host immune system. The fact that Zt_6_00682 resembles genes
involved in transcriptional regulation and that its deletionmutants are
more aggressive on some cultivars, suggests that Zt_6_00682 nega-
tively regulates pathogenicity factors that are specifically recognized
by one or more (unknown) host quantitative resistance gene(s).
Complementation mutants further support host specificity, where
recognition of the avirulent allele leads to a dramatic reduction in
pycnidia formation. Unlike deletion mutants, this was only observed
on the cultivar where the gene was detected initially (“Shafir”). How-
ever, the resistance gene involved and the underlying mechanisms
through which the avirulent allele is recognized remain unknown.

In addition toAvrStb6 andAvrStb9, we found the SSPZt_2_01230 to
be significantly associated with variation in quantitative pathogenicity
on two cultivars, suggesting a common yet unknown Stb resistance
gene. We also identified a number of secreted and species-specific
proteins. Since canonical fungal effectors are generally thought to be
secreted, species-specific andwithout conserved protein domain62, we
propose that the ones identified here constitute a set of candidate
effectors interacting with their cognate host Stb resistance products
and should be a priority target for functional studies. Unlocking the
molecular basis underpinning these interactions and how it could
impact host defencewould lead to a better exploitation of quantitative
resistance, which is thought to be more durable63.

Evolution and diversification of pathogenicity genes enables
adaptation to new host cultivars and, in response to host population
changes, they undergo changes in rapid allele frequency64. We
observed high levels of genetic diversity in our candidate pathogeni-
city genes when compared to the genome-wide gene content. We
found a single case of genedeletion andno significant impact of loss of
function. Because of the intact and functional coding sequences for
nearly all of the identified genes, we suggest that sequence poly-
morphism is the primarymechanism behind the rapid adaptation of Z.
tritici to host populations, permitting the pathogen to circumvent host
resistance while conserving the presumable function of the patho-
genicity protein. However, it is important to note that the utilization of
short-read sequencing technology imposes limitations on our ability
to identify structural variants that may play a role in pathogenicity.
Genes exhibiting presence/absence polymorphism could be under-
represented in our final set of candidate pathogenicity genes. We next
investigated what could contribute to this extensive genetic diversity.
Recombination is a central source of diversity in sexual fungal
pathogens65. Here, we detected recombination events for a significant
number of candidates, which suggests a role in the observed genetic
diversity of pathogenicity genes. In Z. tritici, it was reported that
recombination is a major driver of its evolution and is highly hetero-
geneous, concentrated in narrow genomic regions that are enriched in
putative effector genes8,66. TEs are also thought to contribute to gene
diversification by creating fast-evolving genomic regions through non-
homologous recombination or repeat-induced point mutations67.
Here, we found that candidate pathogenicity genes are indeed at clo-
ser distances to TEs, suggesting their potential role in sequence
diversity. We also observed that TE distance was correlated with
recombination events in putative pathogenicity genes, and that the
levels of genetic diversity were high for genes with the highest
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recombination events, regardless of their distances to TEs. We hypo-
thesize that recombination is likely the major driver underlying the
diversification of pathogenicity genes. A recent study supports this
hypothesis where, unlike distance to TEs, the recombination rate was
strongly associated with adaptive substitutions in Z. tritici genomes4.

A key determinant of genetic diversity at pathogenicity genes is
selection pressure. Understanding the evolution of pathogenicity in
fungal populations with respect to the selection pressure imposed by
host populations is necessary for the sustainable management of R
genes in the field. This can be achieved by searching for signatures of
positive diversifying selection at the risk of recovering some false
positive signals. In this study, we used conservative maximum like-
lihood models and models that have been shown to be robust to
recombination and significantly reduce false positives68. More than
two thirds of candidate genes harbor signatures of positive selection
acting on specific codons, suggesting that the diversifying selection is
likely the primary evolutionary force maintaining non-synonymous
substitutions relevant for Z. tritici-wheat quantitative interactions. For
instance, the vast majority of different mutations between the aviru-
lent and virulent versions of Zt_3_00467 and Zt_6_00682 have been
identified as positively selected. Such selection pressure could be the
result of host R gene recognition, andmay have greatly contributed to
the accumulation of beneficial mutations. This agrees with a previous
study, which demonstrated that rapidly evolving genes play a promi-
nent role in host-specific disease development69. Together, these
results suggest that host–pathogen coevolution drives the emergence
and maintenance of allelic diversity at loci likely involved in direct (or
indirect) interactions with host R genes. Future surveys of the diversity
and structure of R genes in wheat populations will provide a deeper
insight into reciprocal patterns of selection, coevolution, and the
maintenance of diversity in resistance and pathogenicity in natural
populations.

Methods
Fungal material
We analyzed 103 Z. tritici isolates in this study deriving predominantly
from a large collection of French isolates collected in 2009 and 2010.
This genetically diverse sample was mainly isolated from the French
cultivars “Apache” (n = 44) and “Premio” (n = 42). The remaining were
isolated from cultivars “Soissons” (n = 9), “Caphorn” (n = 3), “Alixan”
(n = 1), “Bermude” (n = 1), “Dinosor” (n = 1), and “Garcia” (n = 1). One
isolate was collected in the United Kingdom in 2009 on cultivar
“Humbert”. All strains are monospore non-clonal isolates that were
originally isolated either at the Plant Research International in the
Netherlands or at INRAE UR BIOGER in France. For the functional
validation of candidate pathogenicity genes, we used the two strains
3D1 (i.e., ST99CH3D1) and 3D7 (i.e., ST99CH3D7) collected in 1999
from a Swiss wheat field and previously used for the functional vali-
dation of Avr3D110.

Plant material
The pathogenicity of the 103 isolates was initially evaluated on 29
wheat cultivars, including 15 carrying known Stb resistance genes. After
the first replicate, only cultivars on which we observed phenotypic
variability were kept for second and third replicates. These were the
cultivars “Bulgaria-88” (Stb1 and Stb6), “Israel-493” (Stb3 and Stb6),
“Tadinia” (Stb4 and Stb6), “Shafir” and “Cadenza” (Stb6), “Estanzuela
Federal” (Stb7), “Courtot” (Stb9), “Apache” (Stb4/5 and Stb11), “Sala-
mouni” (Stb13, Stb14 and StbSm3) and “Arina” (Stb6 and Stb15); the
resistance background of cultivars “Premio” and “Toisondor” was not
known. Details on the differential lines are available in Supplementary
Table 3. This genetic material is available from the INRAE Small grain
cereals Biological Resources Centre in Clermont-Ferrand (https://
www6.clermont.inrae.fr/umr1095_eng/Organisation).

Quantitative pathogenicity assays
For inoculum preparation, blastospores of Z. tritici stored at −80 °C
were used to inoculate a liquid growthmedium (Difco™YPDBrothCat.
No. 242820) agitated at 140 rpm in a 17 °C climate cell for 144 h and
transferred to agar growthmedium (Difco™YPDAgarCat. No. 242720)
for 96 h. Fresh blastospores were recovered with loops, resuspended
in sterile water, and the inoculum was adjusted to a concentration of
106 sporesml−1, to which one drop of Tween®20 (Sigma-Aldrich® Cat.
No. 9005-64-5) was added per 15ml before inoculation. Five seeds
from each cultivar were sown in 90*90*95mm pots containing Flor-
adur B soil (80%blondpeat/20%blackpeat, with 1.2 kgm−3 fertilizer 18/
10/20). One day before inoculation, we kept three homogeneous
seedlings on which a 75-mm-length portion was delimited on the first
true leaf using a black marker. Sixteen days old seedlings were
inoculated by applying the inoculum six times on the marked leaves
with a flat tipped paintbrush (synthetic bristles, 12mm width),
depositing ~30,000 spores cm−2 on the leaf surface. After inoculation,
plants were watered and enclosed in transparent polyethylene high-
density bags for 72 h to initiate the infection. Ten days post-inocula-
tion, leaves were removed keeping only themarked leaf to ensure light
homogeneity and longevity of the inoculated leaf. From sowing to
disease scoring, plants were kept in growth chambers regulated at 80%
relative humidity, 16 h of light per 24 h at a photon flux of
300 µmolm−2 s−1, 22 °C temperature under light and 18 °C in the dark-
ness. Quantitative pathogenicity was assessed as percentages of leaf
area covered by pycnidia (PLACP) and by necrosis (PLACN) at 21 days
post inoculation, averaged over three leaves and three replicates (nine
leaves per interaction). Phenotypic characterization of the generated
deletion and ectopic transformants was done following the same
procedure described above in two replicates.

Whole-genome resequencing
Blastospores were harvested after 7 days growth in liquid cultures on
yeast extract-peptone-dextrose Broth (Difco™ YPD Broth), and then
lyophilized for 24 h. Highmolecular weight DNA was extracted using a
phenol-chloroform-based procedure70. Illumina paired-end libraries
were prepared for each sample andDNA fragmentswere re-sequenced
with 2 × 100 bp reads on a HiSeq-2000 sequencing system at Genewiz,
Inc. (formerly Beckman Coulter Genomics). Depth of sequence cov-
erage was variable depending on the isolate, ranging from 16 to 303
genome equivalents with an average of 61 genome equivalents.

SNP calling and quality filtering
For each isolate, reads were trimmed using trimmomatic v0.3271 and
then mapped to the reference genome IPO32372 using the mem algo-
rithm from BWA v0.7.7 with default settings73. Samtools v0.1.19 and
Picard tools v1.106 were used to filter reads74 (http://broadinstitute.
github.io/picard/); to remove optical duplicates, secondary align-
ments, readswith amapping quality below 30 and to keep only pairs in
which both reads met quality checks. SNP calling was done with
Freebayes v0.9 using the option --report-monomorphic75 and all
positions detected as low complexity regions or TEs were excluded.
Low-complexity regions and TEs were detected using RepeatMasker
with default settings (RepeatMasker Open-4.0 http://www.
repeatmasker.org) and REPET v.2.576, respectively. Quality filters
were applied to VCF files using in-house scripts. Depth of coverage
(DP) calculated at each position followed a normal distribution around
the depth main peak. Hence, a DP filter was set at twice the standard
deviation of the mean. All VCFs were stored as a matrix reduced to
keep only positions where at least one isolate carries an alternative
allele at a non-filtered position. The SNP matrix was parsed as a.tped
format, converted to.ped/.map. The final matrix was filtered for less
than 50% missing data and more than 10% Minor Allele Frequency
(MAF) using PLINK v.1.977 (https://cog-genomics.org/plink/).
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Linkage disequilibrium (LD)
To assess the mapping power and resolution of GWAS, we estimated
genome-wide LD decay using PopLDdecay v.3.4078. The average
squared Pearson’s correlation coefficient (r2) was computed between
pairs of SNPs up to 20 kb andplotted over physical distanceby fitting a
nonlinear regression model.

Population structure analyses
Two approaches were used to investigate the fungal population
structure: (1) we performed a principal component analysis (PCA)
using independent SNPs (r2 <0.2) with the --pca command PLINK v.1.9
and (2) the admixture model in STRUCTURE v.2.2 software79 with a 105

burn-in period, 5 × 105 MCMC steps and 5 iterations for each k value
from 1 to 10. The optimal number of sub-populations was determined
with the Evanno method80.

GWAS
For each quantitative trait, we conducted GWAS using single- and
multi-locus linear mixed models based on the EMMA algorithm
implemented in GAPIT v.3.081–83. We used a VanRaden derived kinship
matrix as a random effect, and set the PCA option to “true” to deter-
mine the optimum number of PCs to be included in the model, fol-
lowing the Bayesian Information Criterion (BIC). The most robust
model was chosen by visualizing Quantile-Quantile plots that illustrate
the observed vs. expected p values. A uniform threshold of p = 1/n (n
being the effective number of independent SNPs) was used as the
genome-wide significance threshold. The effective number of inde-
pendent SNPs was calculated using the Genetic type 1 Error Calculator;
http://grass.cgs.hku.hk/gec/download.php. The suggestive genome-
wide threshold for the 718,810 SNPs was 3.96 × 10−6 and the significant
p value was 1.98 × 10−7. We also adjusted SNP p values to account for
multiple testing correction using the false discovery rate (FDR) pro-
cedure. SNPs with an FDR-adjusted p value < 0.10 were deemed sig-
nificant. For LD analysis, we first calculated the pairwise LD with the
lead SNP in a window size of 1Mb using the --r2 command in PLINK
v.1.9. We set a cut-off of r2 >0.5 to determine candidate genomic
regions and assigned predicted genes using a custom Perl script. In
case more than one gene is assigned to the candidate region, we
picked the closest one from the lead SNP having pathogenicity-like
properties (e.g., secretion signal, differential expression in planta). If
no gene fell in the LD region, we selected the closest gene to the lead
SNP. LD heatmaps were constructed using Haploview v4.284.

Functional annotation
We inferred genemodels from the ab initio Z. tritici annotation85 in the
candidate genomic regions identified by GWAS. We used RNAseq
datasets of the reference isolate IPO32325 to check formissing genes or
manually refine gene models (e.g., splice junctions, missing exons).
N-terminal secretion signals were predicted using the Hidden Markov
Model (HMM) scoring method implemented in SignalP 3.086. Trans-
membrane domains were identified with TMHMM 2.087. Effector
probabilities were predicted through EffectorP 3.088. Conserved pro-
tein domains were assigned using HMM scan against the PFAM 35.0
database andblastpwas used to search for homologs fromother fungi.
Finally, we used PHIB-BLAST, a blast server for PHI-base (Pathogen-
Host Interactions), to search for homologs against functionally char-
acterized pathogenicity factors.

Gene expression analysis
RNAseq data from in vitro and in planta (1-, 4-, 9-, 14- and 21-days post
infection; dpi) were obtained from a previous study25. We computed
gene expression quantified as fragments per kilobase of exon per
million fragments mapped (FPKM) using the improved gene models
with Cuffdiff v.2.2.189. We inferred pairwise log2-fold expression
changes and p value adjustment for in planta RNAseq samples

compared to theCzapek-Doxbroth (CDB) culturemedium. Geneswith
an FDR-adjusted p value < 0.10 and a log2|fold change| > 2 were con-
sidered as differentially expressed during the infection.

De novo assembly and sequence diversity
Weused SPAdes v.3.14.1 to produce draft assemblies for each isolate90.
We ran the toolwith the following settings: -k 21,33,55,75,95 --careful to
reduce mismatches and indel errors. We performed blastn91 searches
using ~1000bp of the target locus as a query to retrieve matching
contig segments in each assembly. High-confidencematches were first
extracted from the contig set using Samtools v.1.10 and subsequently
aligned with MAFFT v7.464 using the --auto option and 1000 iterative
refinement cycles92. Alignments were inspected using JalView v.2.11.193

and ambiguous regions were removed with trimAL v1.294 with less
stringent parameters. We used the batch mode of DNAsp v.695 to cal-
culate summary statistics of population genetic parameters associated
with candidate genes such as nucleotide diversities (π)96 and Tajima’s
D97. TE locations for Z. triticiwere retrieved fromaprevious study85 and
we parsed gene distances to TEs using the command “closest” from
bedtools v.2.29.298.

Evolutionary analysis
Before testing for positive diversifying selection, we checked for evi-
dence of recombination, as this can cause false positives. We used the
software packages RDP4.10199 and GARD100 for recombination detec-
tion.Weconsideredgeneswith recombination events if bothdetection
methods found evidence of recombination. We then constructed non-
recombinant phylogenetic trees of gene coding sequences using the
RAxML algorithm101 implemented in RDP4. Statistical support for the
nodes was obtained after 100 bootstrap replicates. We used codeml of
the PAML v.4.9 package102 to estimate the evolutionary rates of can-
didate genes, based on Markov models of codon evolution. Branch
lengths of the inferredML treeswere estimated by using themodelM0
and then fixed in further analyses. The model M0 assumes constant
selective pressure across codon sites and over time. The selective
pressure at the coding-sequence level was measured by ω, the ratio of
non-synonymous to synonymous rates (dN/dS). A dN/dS ratio of 1 (ω = 1)
indicates neutrality, whereas ω < 1 and ω > 1 suggests purifying and
diversifying selection, respectively. Models M1a, M2a, M7 and M8 of
variable selective pressure across codon sites were used to estimate
selective pressure and test for positive selection103,104. For each candi-
date gene, we performed pairwise likelihood ratio tests (LRTs) for
positive selection, comparing models that allow sites with ω > 1 (M2a
and M8) with models that do not (M1a and M7). We considered genes
under positive diversifying selection if bothmodel comparisons in LRT
were significant. Finally, positively selected sites were inferred with a
Bayes Empirical Bayes (BEB) probability104 and codons with ω > 1 at a
probability >0.95 were considered positively-selected.

Functional validation of candidate pathogenicity genes
For Zt_6_00682, we generated knockoutmutants in the 3D7 isolate and
ectopic transformants expressing the virulent and avirulent alleles in
the knock-out background. To create plasmid constructs for gene
disruption, flanking regions (~1 kb before start and stop codons) of
Zt_6_00682 were amplified from gDNA using primers listed in Sup-
plementary Table 7. The hygromycin resistance gene cassette was
amplified from the plasmid pNOV2114_HygR_attP1_attP2 and cloned
into a pNOV2214 vector. The vector was then digested with HindIII
restriction enzyme (New England Biolabs), amplified, and used for the
cloning of PCR fragments with a Gibson Assembly cloning kit (New
EnglandBiolabs) following themanufacturer’s instructions.Constructs
were transformed into Escherichia coli NEB 5-α using a heat shock
transformation, screened by PCR and verified by Sanger sequencing
using primers listed in Supplementary Table 7. Confirmed plasmids
were transformed into Agrobacterium tumefaciens cells by heat shock
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and validated by PCR. The vector was used to transform Z. tritici via A.
tumefaciens-mediated transformation (ATMT) following a procedure
adapted from Zwiers and de Waard105. Transformed Z. tritici colonies
growing in the presence of hygromycin were tested by PCR to confirm
the successful deletion of the gene. To validate the allele-dependent
effect of Zt_6_00682, we generated and validated ectopic transfor-
mants by placing both the virulent (3D7) and the avirulent (3D1) alleles
into the 3D7 KO background, following the same procedure described
above with the following modifications: (1) we used the vector
pNOV_3Gate_SUL with sulfonylurea as a resistance marker and the
digestion was achieved with HindIII and KpnI restriction enzymes. The
resulting vectors, pNOV_sulf_3D7g.7232 and pNOV_sulf_3D1g.7155,
were used to transform Z. tritici via ATMT following the procedure
described above. Primers used to verify gene disruptions and ectopic
integrations are listed in Supplementary Table 7. Finally, three inde-
pendent transformants carrying the different virulence alleles and
three knock-out mutants were used for phenotypic characterization in
planta. For Zt_3_00467, weectopically expressed the virulent (3D7) and
avirulent (IPO10273) alleles in the 3D7 background. A fragment con-
taining the Zt_3_00467 gene, including 1800 bp upstream of the start
codon and 463 bp downstream of the stop codon was amplified using
Phusion DNA polymerase (NEB) and the primers included in Supple-
mentary Table 7. This fragment was cloned into a pCGEN vector106

previously digested with KpnI (New England Biolabs), using the In-
Fusion HD Cloning Kit (Takara Bio) and following the manufacturer’s
instructions. Vectors were transformed using heat-shocked E. coli
Stellar cells and verified using Sanger sequencing. Transformation via
ATMTwas performed as described above and selection for the Z. tritici
mutants was performed on geneticin (150μgml−1)-containing plates.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The sequence and annotation of Zymoseptoria tritici IPO323 reference
genome are available from DOE Joint Genome Institute website:
https://mycocosm.jgi.doe.gov/Zymtr1/Zymtr1.home.html. The
sequencedata generated in this study have beendeposited in theNCBI
Sequence Read Archive under the accession number PRJNA777581.
Sequence data for the global isolates are available at the NCBI
Sequence Read Archive under the accession number PRJNA327615.
The processed summaryGWAS and gene expression data are provided
in Supplementary Data files 1 and 2.
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