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A B S T R A C T   

Multi-criteria model calibration can lead to a better representation of hydrological processes and reduce 
parameter uncertainty compared to calibration on streamflow data alone. However, the additional data may be 
difficult to collect or aggregate into a representative catchment average value that can be used to calibrate a 
lumped model. Temporary streams are highly dynamic, and their flow state can be observed visually. However, 
data on the state of temporary streams are still uncommon and rarely used in hydrological catchment modelling. 
In this study, we used a unique dataset with discrete flow state observations for temporary streams in France and 
evaluated how informative these data are for calibrating a lumped, bucket-type hydrological model. We cali-
brated the HBV model for 92 catchments using discharge or stream-level data at different temporal resolutions 
(daily, one daily value per month, or one daily value per season) and used the observed flow states of temporary 
streams as a proxy of groundwater storage. Temporary stream data generally did not result in a better overall 
discharge simulation for the validation period. For catchments for which the model performance based on the 
calibration on only discharge or stream-level data was poor, it was more likely to lead to an improvement in 
model performance. The use of temporary stream data in combination with discharge data reduced the un-
certainties in the low-flow simulations for up to half of the catchments. This improvement was caused by a better- 
constrained storage coefficient for the slowest groundwater reservoir and the elimination of parameter sets that 
led to substantial variations in groundwater storage. However, the improvements in low-flow simulations or 
parameter uncertainty due to the inclusion of temporary stream data in model calibration were not related to 
catchment characteristics. Thus, it remains unclear for which catchments temporary stream data can help to 
improve low-flow simulations and reduce parameter uncertainty.   

1. Introduction 

Hydrological models are used for water management decisions, 
scenario analyses, and predictions. Lumped bucket-type models simu-
late the entire catchment as one unit. They require fewer data and pa-
rameters than physically based, fully distributed models, but the 
parameters cannot be measured directly and require calibration. The 
most common way to calibrate a lumped bucket-type hydrological 
model is to maximize the agreement between the simulated and 
observed discharge time series. However, for many streams, no or only 
limited discharge data are available for calibration (Oudin et al., 2008; 
Parajka et al., 2013; Sivapalan et al., 2003). Previous studies have found 
that a few discharge measurements can effectively constrain a hydro-
logical model (Melsen et al., 2014; Seibert and Beven, 2009), and that 

water level or water level class data are informative for calibration as 
well (Jian et al., 2017; Seibert and Vis, 2016; van Meerveld et al., 2017), 
even if they are irregular in time and uncertain (Avellaneda et al., 2020; 
Etter et al., 2020a; Weeser et al., 2019). 

Other data types can be used in model calibration as well, in 
particular to avoid overparameterization and reduce parameter uncer-
tainty (Beldring, 2002; Seibert et al., 2019a) or to identify inappropriate 
model structures (Schaefli and Huss, 2011). Time series of groundwater 
levels (Pelletier and Andréassian, 2022), soil moisture (Dimitrova-Pet-
rova et al., 2020; Parajka et al., 2006), remotely sensed water storage 
(Demirel et al., 2019), remotely sensed snow or glacier extent (Finger 
et al., 2015), hydrochemical data (Holmes et al., 2022), and isotope data 
(Nan et al., 2021) have all been used in combination with discharge data 
for multi-criteria (or multi-data) model calibration. ‘Soft-data’ based on 
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a general understanding of the functioning of a particular catchment can 
be used as well (Parajka et al., 2007; Seibert and McDonnell, 2002; 
Vaché et al., 2004). The inclusion of additional data sources in model 
calibration does not necessarily improve overall model performance and 
may lead to a slight deterioration of model performance in terms of the 
discharge simulations. However, the additional data are often still 
considered beneficial because the simulation of these variables 
improved (Finger et al., 2015; Mostafaie et al., 2018; Seibert, 2000) 
and/or parameter uncertainties were reduced (Beldring, 2002; Pelletier 
and Andréassian, 2022; Seibert, 2000). In other studies, the additional 
data led to a better simulation of specific parts of the hydrograph, e.g., 
flood events (Aubert et al., 2003) or low-flows (Seibert, 2000). 

However, using additional data to calibrate a lumped bucket-type 
model is not straightforward because the field measurements are usu-
ally not directly comparable to the simulated variables. This means that 
the measured values need to be standardized, normalized, or trans-
formed before they can be used in model calibration (Pelletier and 
Andréassian, 2022; Seibert, 2000; Széles et al., 2020). These adjust-
ments can lead to a loss of information content or require additional 
model parameters (Pelletier and Andréassian, 2022; Seibert, 2000). For 
example, groundwater levels measured in wells across a catchment 
cannot be directly compared with the simulated groundwater storage in 
a lumped model and require the computation of an average water level 
time series. This averaging can be challenging because the groundwater 
level dynamics often differ for wells in the riparian zone and on the 
hillslopes (e.g., Detty and McGuire, 2010; van Meerveld et al., 2015). 
Furthermore, groundwater wells are more likely to be installed in ri-
parian zones than hillslopes (Seibert et al., 2019a; Széles et al., 2020), 
which limits the representativeness of the individual measurements for 
the catchment average. Because groundwater level dynamics in the ri-
parian zone are generally well correlated with the discharge (Seibert 
et al., 2003), these data may also not provide independent information 
beyond the observed discharge. Similarly, for soil moisture, the mean 
value of multiple soil moisture observations may not represent the 
actual catchment average soil moisture storage as soil moisture mea-
surements are only representative of small areas (Martínez-Fernández 
and Ceballos, 2005). The average groundwater levels or soil moisture 
values can also not be used directly in model calibration because the 
measured values often do not correspond to the conceptual groundwater 
level or soil moisture storage in the model. Remotely sensed data (e.g., 
water storage, surface water extent, soil moisture, snow cover) was 
found to be more or less beneficial for the simulation of otherwise 
ungauged catchments (Kundu et al., 2017; Li et al., 2018; Mostafaie 
et al., 2018; Parajka et al., 2007; Revilla-Romero et al., 2015). However, 
they also come with high uncertainties, especially when aggregated to 
the catchment scale for use with a lumped model (Bennett et al., 2014; 
Samain and Pauwels, 2013). Remotely sensed data may, furthermore, 
not be available for small headwater catchments. 

One less explored potential source of additional information for 
model calibration is the flow state of temporary (i.e., non-perennial) 
streams in headwater catchments. These streams are highly dynamic 
(Wohl, 2017) and common. More than half of the global river network is 
non-perennial (Datry et al., 2014; Larned et al., 2010; Messager et al., 
2021). However, data about the flow state of these streams are limited. 
Only recently, approaches such as low-cost sensors (Assendelft and van 
Meerveld, 2019; Zanetti et al., 2022) and visual approaches (Beaufort 
et al., 2018; Datry et al., 2016; Durighetto et al., 2020; Godsey and 
Kirchner, 2014; Stubbington et al., 2017) have been developed and 
tested. 

A few studies have looked at the value of temporary stream obser-
vations for calibrating spatially explicit models. Mahoney et al. (2023), 
for instance, investigated the dynamics of headwater stream drying with 
a process-based semi-distributed hydrological model and suggested that 
observations of the state of temporary streams can be useful for cali-
bration. Similarly, Stoll and Weiler (2010) showed that information on 
the flowing stream network improved the calibration of the process- 

based Hill-Vi model. Several other modelling studies have focussed on 
temporary streams to assess the impacts of climate change on temporary 
stream dynamics (Beaufort et al., 2018; Beaufort et al., 2019; Botter and 
Durighetto, 2020; Gutiérrez-Jurado et al., 2019; Hammond et al., 2021; 
Jaeger et al., 2019; Sauquet et al., 2021). The effects of climate change 
on the regional probabilities of drying were, for example, simulated with 
the help of a lumped process-based model and different types of re-
gressions using groundwater level, discharge, and data on the flow state 
of temporary streams (Beaufort et al., 2018; Sauquet et al., 2021). Vir-
tual experiments with a fully integrated surface–subsurface hydrological 
model by Gutiérrez-Jurado et al. (2019) aimed to identify the factors 
that determine where and when a stream may dry up or start flowing 
again. 

It has been suggested that data on the flow state of temporary 
streams can also be informative for the calibration of lumped hydro-
logical models (van Meerveld et al., 2020), but this has so far not been 
tested in detail. Because temporary stream data can be obtained over 
large areas with citizen science approaches, evaluating the value of flow 
state observations for model calibration is interesting and useful. In this 
study, we take advantage of the ONDE (Observatoire National des Eti-
ages Network, https://onde.eaufrance.fr/) dataset, which contains 
discrete observations of the state of temporary streams throughout 
France, to test if temporary stream data can improve the calibration of a 
lumped hydrological model. More specifically, we used the ONDE 
temporary stream data in combination with discharge or (synthetic) 
stream-level data to calibrate the HBV model, a typical lumped con-
ceptual model. We assumed that the temporary stream observations are 
an indicator of catchment storage (i.e., that storage is low when the 
temporary streams in the headwater catchments are dry, and that stor-
age is high when all temporary streams are flowing). We assessed the 
value of the temporary stream observations as indicators of catchment 
storage for model calibration in terms of overall discharge simulation 
performance, low-flow simulation performance, and parameter uncer-
tainty. Because discharge data are lacking for many streams, we evalu-
ated the value of temporary stream data in combination with different 
amounts of discharge or stream-level data (i.e., different temporal res-
olutions: daily data, one measurement per month, and one measurement 
per season). Finally, we tested for what kind of catchments, temporary 
stream data are useful for model calibration. 

2. Methods 

We calibrated the lumped process-based HBV model (Seibert, 2000) 
for 92 catchments throughout France with discharge or stream-level 
data of different temporal resolutions (daily, one daily value per 
month, or one daily value per season), either alone or in combination 
with temporary stream observations as indicators of catchment storage. 
Thus, in total, we compared 12 data scenarios for model calibration for 
each catchment. 

2.1. Datasets and selection of catchments 

We used daily discharge data from the French river discharge 
monitoring network (HYDRO, https://www.hydro.eaufrance.fr/). This 
dataset includes 632 catchments with limited human influences (Bri-
gode et al., 2020; Caillouet et al., 2017). The catchment average daily 
precipitation and air temperature for the catchments were extracted 
from the gridded Safran dataset, which is based on a combination of 
measurements at meteorological stations and analyses from numerical 
weather prediction models and has an 8-km and up to an hourly reso-
lution (Quintana-Seguí et al., 2008; Vidal et al., 2010). Daily reference 
evapotranspiration was determined using the Penman-Monteith formula 
(Allen et al., 1998). 

In addition, we used the observations of the flow state of headwater 
streams from the Observatoire National des Etiages Network (ONDE, 
https://www.onde.eaufrance.fr/) of the French Office for Biodiversity. 
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This dataset contains monthly observations between April and 
September of the flow state of headwater streams since 2012. The state 
of the temporary streams is classified by trained staff as either dry, 
standing, or flowing (Beaufort et al., 2018; Sauquet et al., 2021). The 
fourth state (trickling) was not used consistently across the network, and 
these observations were, therefore, merged with the flowing state. The 
3351 ONDE sites are evenly distributed throughout France, except that 
there are fewer sites in the French Alps (Beaufort et al., 2018). 

Of the 632 catchments with limited human influence, 199 catch-
ments had three or more ONDE sites, and were therefore considered for 
this study. We excluded catchments with an unreasonable water balance 
(P>(Q + PET)) or >10% missing data, and very large catchments 
(>5000 km2). This reduced the dataset to 92 catchments (Fig. 1 and 
Table S1). Only a few of these catchments are influenced by snowmelt 
(median mean catchment elevation: 277 m.a.s.l.; 7, 3, and 2 of the 92 
catchments have a mean elevation above 1000, 1500, and 2000 m.a.s.l;, 
respectively, Table 1). 

The median number of ONDE sites per catchment for the 92 catch-
ments was five (average: 6; maximum: 21). The median catchment size 
for these ONDE sites was 21 km2. For 87 % of the 445 ONDE sites in the 
92 catchments, the local drainage area was less than 100 km2, and for 
46 %, it was less than 20 km2. The ratio of the median drainage area of 
the ONDE sites and the total catchment area varied between 0.003 and 
0.68 (median: 0.03; average: 0.06; 90th percentile: 0.18). 

For 32 % of the 445 ONDE sites, the streams were always flowing 
when the observations were made. For only 5 % of the sites, the stream 
was flowing for less than 20 % of the observations. For 51 % of the sites, 
there was at least one observation of a dry stream between 2012 and 
2020, and for 60 % at least one observation of standing water. For 8 % 
and 17 % of the sites there were no observations of standing water or a 
dry streambed, respectively. Based on these flow statistics, we assume 
that the ONDE sites are (mainly) located on intermittent streams that are 
connected to the groundwater table (i.e., no or few ephemeral streams), 
and that a change in the flow state for these streams implies a change in 
groundwater storage. 

2.2. Flowiness definition 

We used a lumped model and thus considered each catchment as one 
unit (i.e., we did not consider the spatial variability in catchment stor-
age). Therefore, we derived a measure that represents the average flow 
state for all ONDE sites in a catchment. First, we converted the observed 
flow states to numeric values: dry: 0, standing: 0.5, and flowing: 1) and 
then calculated the average flow state for all ONDE sites in a catchment. 
We refer to this average value of the flow state as the flowiness. Since this 
flowiness was based on ordinal data, it provides only an indicator of 
catchment wetness but allows for a ranking of catchment storage states. 
Observations at the different ONDE sites in a catchment were not made 
on the same day and, therefore, we used a buffer of five days around the 
observations to calculate the flowiness. If at least 60 % of the ONDE sites 
were observed within this time window, the mean value of the flow state 
was calculated (see example in Fig. 2c and Fig. S1). 

The range of flowiness values (i.e., the difference between the min-
imum and maximum flowiness) for each catchment varied between 0.1 
and 1.0 (10th percentile: 0.20, median: 0.58, 90th percentile: 0.89, 
average: 0.55). Given the nature of the data, there were a lot of similar 
values of flowiness. On average, slightly more than half of the data 
points for a catchment were tied. 

We also tested different approaches to determine the flowiness time 
series. We used a different value for the standing water class to indicate 
its closer proximity to a dry streambed (0.15), and merged the standing 
water and dry streambed class into a no-flow class. We also weighted the 
ONDE sites by their corresponding drainage area. For all of these 
methods, the resulting flowiness time series were highly correlated to 
the original flowiness data (Spearman rank correlation (rs) > 0.9, except 
for two catchments) and the effects on the model results were minimal 
(Table S2). We, therefore, do not discuss these results in the main text. 

2.3. Catchment characteristics 

Several catchment characteristics were calculated for the 92 selected 
catchments (Table 1; Fig. S2). The mean catchment elevation was 

Fig. 1. Map showing the boundaries of the 92 selected catchments colour coded by the number of ONDE sites within each catchment (see Table S1 for a description 
of the catchments). The three selected catchments (C1, C2 and C3) for which the results are described in more detail in the text and shown in Figs. 2, 4, 5, and 7, are 
indicated with blue labels. The grey background shading represents the elevation (in m.a.s.l.). 
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derived from a 25 m resolution Digital Elevation Model (Copernicus 
Land Monitoring Service, EU-DEM v1.1. https://land.copernicus.eu 
/imagery-in-situ/eu-dem/eu-dem-v1.1). The stream density was based 
on the ratio of the stream length (European Environment Agency, 2012) 
and the catchment area. For each catchment, we also determined several 
hydrological characteristics for the entire study period (2001–2020). 
The aridity index was calculated as the ratio of the mean annual pre-
cipitation and mean annual potential evaporation (P/Epot). The base 
flow index (BFI) was used as a measure of the importance of ground-
water flow and was calculated according to the method of the Institute 
of Hydrology (1980). The Richards-Baker Flashiness Index (Baker et al., 
2004) was used as a measure of the responsiveness of the catchment to 
precipitation. A catchment with a high flashiness index responds rapidly 
to rainfall, while a catchment with a low flashiness index has more stable 
streamflow. A low flashiness index corresponds to a high baseflow index 

(rs = -0.90, Fig. S3). Finally, the discharge that was exceeded for 5 and 
95 percent of the time during the 2001–2020 period, were used to 
characterize the high and low flows, respectively. 

2.4. Model 

2.4.1. The HBV Model 
The HBV model (Hydrologiska Byråns Vattenbalansavdelning; 

Bergström (1992), Lindström et al. (1997)) is a lumped bucket-type 
model. Discharge is simulated based on the observed precipitation, air 
temperature, and estimates of the long-term monthly mean potential 
evaporation. The model consists of different routines representing snow- 
, soil-, and groundwater storage and stream routing. The groundwater 
storage is subdivided into an upper (SUZ) and lower zone (SLZ), rep-
resenting a faster- and a slower-draining reservoir. In this study, we used 
the model implementation HBV-light (Seibert and Vis, 2012), version 
4.0.0.25, with the standard model structure with 13 parameters 
(Table 2) and a daily time step. 

2.4.2. Model setup 
The catchments were divided into 100 m elevation zones. For model 

calibration, we used a genetic optimization algorithm GAP (Seibert, 
2000) consisting of 5,000 model runs that were repeated in 100 inde-
pendent calibration trials, each resulting in one optimized parameter 
set. The calibration period lasted from 01.10.2010 to 30.09.2019, with a 
one-year (hydrological year 2010) warm-up period. The validation 
period lasted from 01.10.1999 to 30.09.2010, with also a one-year 
warm-up period. The calibration and validation periods were chosen 
based on the availability of the ONDE data to calculate the flowiness 
data for the calibration. The ONDE data were not available before the 
summer of 2012, and therefore the model was calibrated on the later 
period and validated on the earlier period. 

2.4.3. Data sets used for model calibration 
From the daily discharge time series, we created a dataset with 

monthly (i.e., one daily value per month) and seasonal (i.e., one daily 
value per season) discharge data to determine if the value of the flow-
iness data for model calibration depends on the amount of streamflow 
data that are available for calibration, i.e., if flowiness data are more 
useful in situations where there are only limited streamflow data. To 
obtain a realistic monthly time series of discharge, the discharge on the 
first day of each month was selected. For the seasonal time series, only 
the discharge on the first day of March, June, September, and December 
were selected. The model was calibrated for each of these three datasets, 
with and without the inclusion of the flowiness data (see section 2.4.4). 
We performed all model calibrations also with streamflow data for the 
15th day of the month but did not find an apparent influence of the 

Table 1 
Main characteristics of the 92 selected catchments. For additional information, see Table S1 and Fig. S2. The short name is the label used in Fig. 9. The last column 
indicates if this catchment characteristic was used in the Principal Component Analysis (PCA) of the catchment characteristics.  

Category Catchment characteristic Short name Min Median Mean Max Used in PCA 

Catchment Catchment area [km2] Area 128 815 979 4166 Yes  
Mean catchment elevation [m.a.s.l.] Elevation 77 277 393 2104 Yes  
Mean slope [◦] Slope 0.42 2.39 4.76 18.44 No  
Stream density [km− 1] – 0.14 0.29 0.33 0.68 Yes  
Aridity Index (P/PET) [-] Aridity 0.92 1.44 1.49 2.79 Yes 

Response Low flow [mm/d] Q95 0.0004 0.10 0.16 1.14 No  
High flow [mm/d] Q5 0.59 2.8 3.3 15.7 No  
Flashiness Index [-] Flashiness 0.03 0.21 0.22 0.45 Yes  
Base Flow Index [-] BFI 0.25 0.55 0.58 0.95 Yes 

ONDE data set Number of ONDE sites per catchment [-] #ONDE 3 5 6 21 Yes  
Mean ONDE drainage area per catchment [km2] Amean 3 21 43 818 Yes  
Mean ONDE drainage area as fraction of catchment area [-] – 0.003 0.031 0.057 0.679 No  
Maximum fraction of ties [-] – 0.20 0.61 0.62 0.98 No  
Coefficient of variation of flowiness (standard deviation/mean) [-] COV Fl 0.01 0.18 0.19 0.28 Yes  
Spearman rank correlation between flowiness and discharge [-] rs 0.00 0.73 0.65 0.91 Yes  

Fig. 2. Time series of a) precipitation, b) discharge, and c) flowiness based on 
observations at eight ONDE sites in catchment C2 (ID: K7312610). The pie 
charts show the distribution of flow states for each flowiness value. The 
Spearman rank correlation (rs) between flowiness and discharge for this 
catchment is 0.87. 
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selection of the day on the overall model results. Therefore, only the 
results for the calibration with the discharge on the first day of the 
month are shown in the manuscript. 

To test the value of temporary stream data for cases where only 
stream-level data but no discharge data are available, we followed the 
approach of Etter et al., (2020a) and Seibert and Vis (2016). We did not 
convert the streamflow time series into a stream-level time series (nor 
did we have any stream-level data). Instead, we used a different objec-
tive function for model calibration (i.e., the Spearman rank correlation 
(rs); see section 2.4.4). This approach assumes that discharge and 
stream-level are strictly monotonic related to each other (i.e., when 
discharge is high, the stream-level is also high). The advantage of this 
approach is that it does not require any information on the rating curve 
to convert discharge to stream-level (or vice versa). For the monthly and 
seasonal stream-level data, we used the same measurement dates as for 

the discharge. 

2.4.4. Model calibration 
For each catchment, the model was calibrated for each of the six 

discharge or stream-level data sets, with and without the flowiness data 
(Table 3). Additionally, a lower benchmark was created with 10,000 
Monte Carlo runs of randomly selected parameters within the parameter 
ranges (Table 2). 

For the calibrations without flowiness data, the model was calibrated 
by optimizing the fit between the observed and simulated streamflow. 
For the three discharge scenarios (daily, one daily value per month, or 
one daily value per season), we used the Kling-Gupta efficiency (KGE; 
Gupta et al., 2009). For the three stream-level scenarios, we maximized 
the Spearman rank correlation coefficient (rs) between the observed and 
simulated streamflow (Table 3). Note that the observed streamflow can 
be used for the observed stream-level due to using the Spearman rank 
correlation as objective function (see section 2.4.3). 

For the calibrations with flowiness data, we used a multi-criteria 
calibration. Again, the simulated discharge was compared to the 
observed discharge using the KGE or rs (for the discharge or stream-level 
scenario, respectively). In addition, the time series of the sum of the 
simulated storage in the upper and lower groundwater reservoir (named 
total groundwater storage from hereon) was compared to the time series of 
the flowiness using rs (Table 3). The objective functions for the discharge 
and the storage were weighted equally. 

Initial tests indicated that the calibration results were more plausible 
when the flowiness was compared with the total groundwater storage 
than when it was compared to only one of the two individual ground-
water reservoirs. When the fit between the flowiness and storage in only 
one of the two groundwater reservoirs was optimized, we obtained 
unrealistic results because the storage in the other groundwater reser-
voir would become very large and no longer change seasonally. Initial 
tests where we calibrated the model only with flowiness data (i.e., no 
discharge or stream-level data) led to a poor model performance 
(Fig. S4), regardless of which measure was used to describe the model 
fit. Tests with model calibration based on minimizing the mean absolute 
relative error (MARE) did not provide any additional insights beyond 
those obtained for model calibration based on the KGE (and the results 
are, therefore, not shown). 

2.4.5. Evaluation of the value of flowiness data for model calibration 
The performance of the different calibrations was assessed based on 

the simulated discharge for the validation period. We simulated the 
discharge for the 100 calibrated parameter sets for the validation period 
and determined the mean discharge for each day to obtain the time 
series of the ensemble mean discharge for the validation period. This 
was done for each data scenario and catchment. We compared the time 
series of this ensemble mean discharge to the observed discharge and 

Table 2 
HBV model parameters and parameter ranges used for the calibration (modified 
from Seibert and Vis (2012)).  

Routine Parameter Description Unit Lower 
value 

Upper 
value 

Snow 
Routine 

TT Threshold 
temperature 

◦C − 2.0 2.5 

CFMAX Degree-day factor mm/ 
(◦C*d) 

0.5 10 

SFCF Snowfall correction 
factor 

– 0.5 1.2 

CFR Refreezing 
coefficient 

– 0 0.1 

CWH Water holding 
capacity 

– 0 0.2 

Soil 
Moisture 
Routine 

FC Maximum soil 
moisture storage 

mm 100 550 

LP Relative threshold 
for reduction of 
evaporation 

– 0.3 1.0 

BETA Shape coefficient 
for the computation 
of recharge 

– 1.0 5.0 

Response 
Routine 

PERC Maximum flow 
from upper to lower 
groundwater box 

mm/d 0 4.0 

Alpha Non-linearity 
coefficient 

– 0 5.0 

K1 Recession 
coefficient (upper 
groudwater box) 

1/d 0.01 0.2 

K2 Recession 
coefficient (lower 
groundwater box) 

1/d 0.001 0.1 

Routing 
Routine 

MAXBAS Length of triangular 
weighting function 

d 1.0 5.0  

Table 3 
Overview of the model scenarios and calibration criteria (KGE = Kling-Gupta Efficiency, rs = Spearman rank correlation coefficient). The model was calibrated by 
maximizing the sum of the two objective functions. The lower benchmark, based on 10,000 Monte Carlo simulations, is not included in the table. Note that monthly 
refers to one value per month and seasonal to one value per season (and thus not the monthly or seasonal average discharge).   

Data scenario Objective function 1 Objective function 2 

1 Daily discharge - KGE - 
2 Daily discharge Irregular flowiness KGE rs 

3 Monthly discharge – KGE – 
4 Monthly discharge Irregular flowiness KGE rs 

5 Seasonal discharge – KGE – 
6 Seasonal discharge Irregular flowiness KGE rs 

7 Daily stream-level – rs – 
8 Daily stream-level Irregular flowiness rs rs 

9 Monthly stream-level – rs – 
10 Monthly stream-level Irregular flowiness rs rs 

11 Seasonal stream-level – rs – 
12 Seasonal stream-level Irregular flowiness rs rs  
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used the KGE to determine the overall model performance. To compare 
this overall model performance for the different catchments, we scaled 
the KGE values for the validation period by an upper and lower 
benchmark (cf. Seibert et al., 2018). For the upper benchmark, we used 
the KGE value for the calibration period when the model was calibrated 
with daily discharge data (i.e., we used the KGE value for the best 
possible fit). For the lower benchmark, we used the KGE value for the 
ensemble mean discharge calculated from 10,000 Monte Carlo runs with 
randomly selected parameters within the parameter ranges (Table 2). 
We refer to this scaled model performance as the relative model perfor-
mance Erel. A simulation with a relative model performance (Erel) of one 
is as good as the simulation of the streamflow for the calibration period 
when it is calibrated with daily discharge data. A value of zero indicates 
a model performance similar to the uncalibrated (i.e., uninformed) 
model for the validation period. A value less than zero indicates a model 
fit that is worse than the uncalibrated model for the validation period. 

To assess the model performance for the low-flow simulations, we 
used the root mean squared error of the simulated minimum seven-day 
mean discharge for each hydrological year (RQ7_min). We specifically 
looked at the model performance for the low-flow period because the 
ONDE data were collected during the summer low-flow period. We ex-
pected the flowiness data to affect the simulated groundwater storage 
mainly during this period and, thus, the low-flow simulations during this 
period (Beaufort et al., 2018). We did not scale RQ7_min, because it was 
not used as an objective function in the model calibration. 

We determined the difference in Erel and RQ7_min for the calibrations 
with and without the flowiness data (ΔErel and ΔRQ7_min) for each of the 
discharge and stream-level scenarios. Positive values of ΔErel and 
negative values of ΔRQ7_min indicate an improvement in model perfor-
mance when flowiness data are included in model calibration (i.e., a 
higher value for the KGE or a lower value for the RQ7_min). In the 
following, we multiplied ΔRQ7_min by minus one for easier comparisons. 
We used the Wilcoxon matched-pairs signed-rank test (stats package; R 
Studio Version 4.2.2) to assess if the effect of the flowiness data on 
model performance (Erel and RQ7_min) was statistically significant. 

We also analysed the effect of including flowiness data in model 
calibration on the range of the low-flow simulations. We calculated the 
range in RQ7_min for the 100 simulations per catchment. Again, we used 
the Wilcoxon matched-pairs signed-rank test to assess if the effect was 
statistically significant. 

Finally, we analysed the effect of including the flowiness data in the 
calibration on parameter uncertainty. First, the calibrated parameter 
values were scaled by the upper and lower boundary values (Table 2), 
ranging between zero and one. Then, we determined the difference 
between the 5th and the 95th-percentile of the 100 calibrated parameter 
values for each catchment and data scenario. We used the Wilcoxon 
matched-pairs signed-rank test to determine if the inclusion of the 
flowiness data in model calibration affected the spread of the parameter 
values. The Wilcoxon test was used instead of a t-test for all significance 
tests because neither the values of the model performance nor the 
parameter ranges were normally distributed. 

2.5. Evaluation of the characteristics of the catchments for which 
flowiness data improved model performance 

We calculated the spatial autocorrelation of the changes in model 
performance (ΔErel and ΔRQ7_min) and range in parameter values with 
the Moran’s I test (Bivand and Wong, 2018). The catchment centroid 
was used to select three, four, five, six, and seven neighbouring catch-
ments weighted by distance. Afterwards, the correlation of the changes 
in model performance for the neighbouring catchments was determined. 

To further assess the influence of catchment characteristics on the 
value of flowiness data for calibration, we related the change in model 
performance to catchment characteristics using Spearman rank corre-
lation. The change in model performance (ΔErel, ΔRQ7_min, parameter 
range) was also related to the first two principal components for ten 

characteristics that describe the catchment itself, its hydrological 
response, and the ONDE dataset (Table 1; Fig. S5) (stats package, R 
Studio Version 4.2.2). We related the change in model performance to 
the principal components because we did not expect that the value of 
temporary stream data for model calculation depends on only one 
catchment characteristic. Furthermore, many of the catchment charac-
teristics are correlated (see Table 1 and Fig. S3). 

3. Results 

3.1. Model calibration with discharge data only 

The calibration with daily discharge data resulted in good model fits. 
The median KGE for the ensemble mean for the calibration period was 
0.92 (range: 0.67 to 0.98, Fig. S6). For 15 of the 92 catchments (16 %) 
the KGE was less than 0.85 and for 12 catchments (13 %) it was less than 
0.70. The results for the validation period were slightly lower (median 
KGE for the ensemble mean discharge: 0.85, range: 0.35 to 0.96). The 
Erel values varied between − 2.44 and 1.20 (median: 0.76) (Fig. 3a). The 
median KGE of the lower benchmark was 0.60 (range: 0.02 to 0.88). The 
difference between the lower and upper benchmark varied between 0.05 
and 0.71 (median: 0.28). 

Calibration with only one discharge measurement per month 
(monthly data) led to lower but still reasonable model fits. The median 
KGE for the ensemble means for the validation period was 0.76 (range: 
0.01 to 0.96; Fig. S6). For 24 of the 92 catchments (26 %) the KGE was 
less than 0.70. The median Erel for the validation period was 0.61 (range: 
− 2.85 to 1.09). Only for 10 of the 92 catchments (11 %) was Erel less 
than zero, i.e., the validation results were worse than the lower bench-
mark (Fig. 3a). 

The decrease in model performance was larger when using only one 
discharge measurement per season (seasonal data). The median KGE of 
the ensemble mean for the validation period did not change much 
compared to the results for the monthly data (0.74; range: − 0.22 to 0.92; 
Fig. S6). For 44 catchments (48 %) was the KGE less than 0.70. The 
median Erel was 0.31 (range: − 5.16 to 0.94). For 28 of the 92 catchments 
(30 %) was Erel less than zero (Fig. 3a). 

3.2. Model calibration if only stream-level data were available 

As expected, calibration for the stream-level scenario resulted in 
poorer model fits than calibration with discharge data (Fig. 3a). The 
median KGE for the validation period was 0.69, 0.67, and 0.66 (range: 
− 0.08 to 0.94, 0.05 to 0.93, − 0.27 to 0.93) for the calibration for the 
daily, monthly, and seasonal stream-level data scenarios, respectively 
(Fig. S6). For 46, 46, and 56 catchments, was the median KGE for the 
validation period less than 0.70 for the calibration with the daily, 
monthly, and seasonal stream-level data scenarios, respectively. The 
median Erel values were 0.33, 0.26, and 0.12 (range: − 2.02 to 1.41, 
− 2.05 to 0.92, − 5.56 to 0.77), respectively. For 18 (20 %), 20 (22 %), 
and 43 (46 %) of the 92 catchments, the calibration for the daily, 
monthly, and seasonal stream-level scenarios resulted in a model per-
formance for the validation period that was worse than the lower 
benchmark (Erel < 0; Fig. 3a). 

3.3. Model calibration results when also using flowiness data 

3.3.1. Ensemble mean streamflow 
Using the flowiness data in model calibration had a minimal effect on 

the overall model performance (Fig. 3). The change in the model per-
formance for the ensemble mean discharge for the validation period was 
statistically significant only for the scenarios with daily discharge and 
seasonal stream-level data (p-values: 0.003 and 0.039, respectively) but 
the differences were so small (median ΔErel: − 0.01; range: − 0.50 to 
0.10) that they are in practice not important. For all other scenarios, the 
change in Erel due to the use of the flowiness data in model calibration 
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(ΔErel) was not statistically significant (p = 0.06 for the scenarios with 
seasonal discharge data, p > 0.25 for all other scenarios). 

Using flowiness data in the calibration could improve or worsen 
overall model performance for the validation period, with the differ-
ences being larger for the stream-level scenarios (Fig. 3b; Fig. S8a-b). Of 
the 552 comparisons (92 catchments times six data scenarios), model 
performance improved (ΔErel > 0.01) 261 times, worsened (ΔErel <

-0.01) 241 times, and did not change (-0.01 < ΔErel > 0.01) 50 times due 
to the inclusion of flowiness data in the calibration. 

When the model performance was worse than the lower benchmark 
(Erel < 0), adding flowiness data in the calibration was more likely to 
improve model performance than when the initial model performance 
was already good. The Spearman rank correlation between ΔErel and Erel 
for the calibrations without flowiness data was − 0.39. Adding flowiness 
data in the calibration improved the model performance (ΔErel > 0.01) 
for 91 of the 123 comparisons (74 %), for which the calibration without 
the flowiness data was worse than the lower benchmark (Erel < 0). On 
the contrary, for 213 out of 429 comparisons (50 %) for which the 
calibration without the flowiness data was better than the lower 
benchmark (Erel > 0), model performance decreased when using flow-
iness data in the calibration (ΔErel < -0.01) (median ΔErel: − 0.10; range: 
− 4.66 to − 0.01). 

3.3.2. Example time series for three catchments 
To better show the effects of the inclusion of flowiness data in model 

calibration on the simulated discharge, we present the observed and 
simulated discharge for the driest hydrological year of the validation 
period for three catchments: Catchments C1 (station ID: A3832010; 
catchment area: 204 km2), C2 (K7312610; 1706 km2), and C3 
(M1034020; 267 km2). The addition of flowiness data did not noticeably 
affect the simulations with daily discharge for C1 and C2 (Fig. 4a-d). For 
catchment C3, it reduced the uncertainty in the low-flow simulations 
(Fig. 4e-f). 

The effect of including the flowiness data in the calibration was 
larger for the seasonal stream-level scenario. For catchment C1, the use 
of flowiness data in the calibration led to a poorer overall simulation 
(ΔErel = -0.36) (Fig. 3b) and poorer low-flow simulations during the 
validation period (i.e., the RQ7_min for the ensemble mean increased from 
0.21 to 0.34 mm/d) (Fig. 5a-b). For catchment C2, the overall simulation 
performance improved (ΔErel = 0.16): the simulation of the highest peak 
flow deteriorated, but the other high flow events were simulated better 
(Fig. 5c). Using flowiness data in the calibration also eliminated the 
underestimation of the low flows, but caused an overestimation of the 
minimum discharge (Fig. 5c-d), resulting in an increase in the RQ7_min 
from 0.02 to 0.16 mm/d. For catchment C3, the overall model perfor-
mance improved (ΔErel = 0.25) and the lowest flows were under-
estimated less when flowiness data were used in the calibration. The 

Fig.3. Boxplots of a) the relative performance (Erel) of the ensemble mean discharge for the validation period for the discharge and stream-level scenarios with 
different temporal resolutions, with and without flowiness (Fl) data, and b) the difference in the relative model performance (ΔErel) for the models calibrated with 
and without flowiness data, where positive values indicate an improvement in model performance when flowiness data are used for model calibration. The box 
represents the interquartile range, and the thick line the median. The whiskers extend to 1.5 times the interquartile range. The numbers above and below the boxplots 
show the number of outliers outside the displayed y-axis range. The grey square, triangle, and star represent the values for catchments C1, C2, and C3, respectively. 
The grey shading in (a) indicates a model performance between the upper and lower benchmark. The different temporal resolutions are: daily, monthly (a daily value 
on the first day of the month) and seasonal (a daily value on the first of March, June, September, and December). For the results of the calibration with data taken on 
the 15th day of the month, see Fig. S7. 

M. Scheller et al.                                                                                                                                                                                                                                



Journal of Hydrology 632 (2024) 130686

8

discharge in fall was also less overestimated, but the small responses 
between May and September were overestimated (Fig. 5e-f). As a result, 
the RQ7_min of the ensemble mean discharge increased from 0.02 to 0.08 
mm/d when flowiness data were used in the calibration. 

3.3.3. Low-flow simulations and uncertainty 
As suggested by the time series for the selected catchments (Fig. 4 

and Fig. 5), the low-flow simulations did not necessarily improve by 
including flowiness data in the calibration (Fig. S10). The difference in 
the RQ7_min of the ensemble means for the calibrations with and without 
flowiness data for the 92 catchments was not significant for any of the 
data scenarios (Fig. 6a: p > 0.10). However, the addition of the flowiness 
data in the calibration with discharge data reduced the uncertainty of 
the low-flow simulations (Fig. 6b). For 21 of the 92 catchments (23 %) 
the range in the RQ7_min for the 100 parameter sets decreased by more 
than 0.01 mm/d when flowiness data were used in addition to the daily 
discharge data. For the monthly and seasonal discharge data scenarios, 
this was the case for 27 (29 %) and 48 (52 %) catchments, respectively. 
However, the difference in the median values of the ranges of RQ7_min 
was only significant for the seasonal discharge data scenario (p < 0.01). 

For the stream-level data scenarios, the use of flowiness data did not 
have an apparent effect on the range of the RQ7_min (p > 0.08) (Fig. 6b; 
Fig. S8d). 

3.3.4. Parameter uncertainty 
The median values of the scaled parameter ranges (5th – 95th 

percentile) for all 92 catchments are given for each of the twelve cali-
bration scenarios in Fig. 7. The parameters of the snow routine were 
most uncertain, but this is not surprising as few catchments are influ-
enced by snowmelt. The FC and Alpha parameters were the least un-
certain. We expected that the inclusion of the flowiness data would 
mainly affect the parameters of the response routine (PERC, Alpha, K1 
and K2) and the routing routine (MAXBAS) because the flowiness was 
compared to the groundwater storage (cf. Demirel et al., 2019). How-
ever, the parameter ranges of FC, LP, K2 and MAXBAS changed signif-
icantly for all discharge scenarios when flowiness data were included. 
For FC, LP and K2 the median parameter range decreased, and these 
parameters thus became more certain when flowiness data were used in 
the calibration. According to the Wilcoxon test, these differences were 
significant (p < 0.04 for FC, and p < 0.01 for LP, K2 and MAXBAS). 

Fig.4. Time series of the observed and simulated discharge (left) and flow duration curves (right) when the model was calibrated with daily discharge data or daily 
discharge data and flowiness (Fl) data for the driest year of the validation period for three selected catchments (C1: top; C2: middle; C3: bottom). The shaded area 
shows the uncertainty bands (5th to 95th percentile) for the 100 model calibrations; the thick dashed lines indicate the ensemble means. Note that the y-axis shows 
the discharge on a square-root scale to better visualize the low flows. For catchments C1 and C2, the uncertainty bands are very narrow and partly overlap. For the 
time series of the flowiness data and groundwater simulations for the driest year of the calibration and validation period, see Fig. S9. 
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For the 21 times that the parameter ranges changed significantly by 
including flowiness data for the stream-level scenarios, they became 
more uncertain 17 times (Fig. 7). In particular, the parameter ranges of 
BETA and PERC were affected by including flowiness data. For the daily 
and monthly stream-level scenarios, the change was significant for nine 
out of the thirteen parameters. For the seasonal stream-level scenario, 
including the flowiness data in model calibration affected the parameter 
range for only three parameters (LP, BETA, PERC). 

3.3.5. Uncertainty of the recession coefficient K2 parameter 
Because the use of flowiness data in model calibration decreased the 

uncertainty for parameter K2 the most for all discharge data scenarios 
(Fig. 7), we looked more closely at the effect of including flowiness data 
in the calibration on the calibrated K2 parameter values. Parameter K2 
determines the outflow of the (s)lower groundwater reservoir (SLZ) as a 
function of the storage in this reservoir. This parameter mainly affects 
the simulation of low-flow conditions. For 72 of the 92 catchments, the 
parameter range (5th − 95th percentile) was reduced when flowiness 
data were used in addition to daily discharge data (Fig. S8e). It increased 
for 12 catchments. For eight catchments, the range of the K2 parameter 
values did not change. 

For the three exemplarily catchments discussed earlier, the cali-
brated parameter range for K2 decreased differently (Fig. 8). For 
catchment C1, the range became smaller, but the calibrated values were 
at the upper edge of the predefined parameter range. However, the 
median simulated water level in the (s)lower groundwater reservoir and 
the overall- and low-flow model performance (KGE and RQ7_min) were 
not considerably influenced by this change in the calibrated value of the 
K2 parameter (Fig. 8a,d,g). The calibrated parameter value was at the 
upper edge of the predefined parameter range for 16 of the 92 catch-
ments when flowiness data were used together with daily discharge data 
for the calibration. This was also the case for two catchments when only 
daily discharge data were used. 

For catchment C2, the parameter range of K2 was smaller when 
flowiness data were included in model calibration. Including flowiness 
data in the calibration avoided parameter sets with small values for K2 
that lead to very large (median) water levels in the (s)lower ground-
water reservoir. The very small K2 values and very high median water 
levels (i.e., SLZ values) were even more pronounced for catchment C3. 
The changes in the calibrated values for the K2 parameters for catch-
ments C2 and C3 affected the total simulated storage, as well as the 
dynamic storage (Fig. S9). The uncertainty (5th – 95th percentile) of the 

Fig. 5. Time series of the observed and simulated discharge (left) and flow duration curves (right) for the seasonal stream-level scenario (one measurement per 
season, on the 1st of March, June, September, and December), with and without the flowiness (Fl) data for the driest year of the validation period for the three 
selected catchments (C1: top; C2: middle; C3: bottom). The shading shows the uncertainty bands (5th to 95th percentile) for the 100 model calibrations; the dashed 
lines indicate the ensemble means. Note that the y-axis shows the discharge on a square-root scale to visualize the low flows better. 
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average dynamic storage for the validation period was reduced from 17 
mm to 7 mm for catchment C3 when flowiness data was used in the 
calibration with daily discharge data. For catchment C1, it remained 
unchanged at 7 mm, and for catchment C2 it reduced only slightly (from 
6 mm to 5 mm). For catchment C3 the value of the objective function 
(KGE) increased slightly when very small values for parameter K2 were 
chosen (Fig. 8c), but this led to a very poor model performance for low 
flows (Fig. 8i). Not surprisingly, the Spearman rank correlation coeffi-
cient between flowiness data and groundwater level (SUZ + SLZ) in the 
calibration period increased for all data scenarios when flowiness data 
were used in the calibration (Fig. S11-Fig. S13). 

When using only discharge data for calibration, there was at least one 
parameter set with K2 values at the lower edge of the parameter range 
for 40 of the 92 catchments. This was solved when flowiness data were 
used in the calibration for 34 catchments. For only five catchments were 
there more calibrated parameter sets with small K2 values when flowi-
ness data were used in model calibration than for the calibration without 
flowiness data. In other words, for eleven catchments the calibrated 
parameter sets still included small, optimized values for the K2 

parameter when flowiness data were included in model calibration. 
Although the inclusion of flowiness data in calibration also changed 

the uncertainty of the FC and LP parameters, there was no clear pattern, 
and the parameter values became smaller or bigger when including 
flowiness data in the calibration. The calibrated parameter values 
mainly were far away from the parameter bounds, except for 13 
catchments for FC and 20 catchments for LP. Adding flowiness data to 
the calibration did not lead to any changes regarding parameter values 
near these boundaries. The parameters FC and LP are highly dependent 
on each other. It is, thus, difficult to unravel the effects of the flowiness 
data on these parameters. 

3.4. Influence of catchment characteristics on the value of flowiness data 

The change in overall model performance due to the inclusion of 
flowiness data in the calibration (ΔErel) was spatially autocorrelated 
only for the daily discharge scenario (p < 0.002, for all tests with three 
to seven neighbours), but these changes were very small (see Fig. 3). The 
change in model performance for the low-flow simulations (ΔRQ7_min) 

Fig. 6. Boxplots of the a) root mean squared error of the seven-day minimum average flow (RQ7_min) for the ensemble mean for the validation period when the model 
was calibrated with the different datasets and b) the 5th to 95th percentile range of RQ7_min (for the 100 calibration runs) for each of the 92 catchments. For 
comparison, the median RQ7_min for the lower benchmark was 0.14 mm/d (range: 0.03 to 0.97 mm/d) and the median RQ7_min of the upper benchmark was 0.07 mm/ 
d (range: 0.00 to 0.38 mm/d). The grey square, triangle and star represent the values for catchments C1, C2, and C3, respectively. The numbers above the boxplots 
represent the number of outliers outside the displayed y-axis range. The differences between the RQ7_min for the ensemble mean for the model calibrated with and 
without flowiness data are shown in Fig. S10. 
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and the change in the range for parameter K2 were not spatially auto-
correlated (p > 0.18) (Fig. S8c-d). 

For a couple of catchments with high stream densities and small 
mean ONDE drainage areas, the low-flow predictions worsened by using 
flowiness data for the calibration (ΔRQ7_min < 0), but the overall cor-
relations with catchment characteristics were poor. The change in 
overall model performance (ΔErel), the performance for the low-flow 
simulations (ΔRQ7_min), and the range for parameter K2 were not well 
correlated with any of the catchment characteristics (|rs| < 0.36; 
Table S3). The changes were also not well correlated to the principal 
components of the catchment characteristics (|rs| <0.29; Table S3). 
There was no clear pattern in the improvement or decline in model 
performance across the principal component space either (Fig. 9), except 
that the low-flow simulations became worse by adding flowiness data 
for the seasonal stream-level scenario for catchments with negative 
values for the two dimensions of the principal component analysis (PCA) 
(Fig. 9c-d). The first dimension describes the dynamics of the catch-
ments and their size, and the second dimension describes the topog-
raphy and climate (Fig. S5). 

4. Discussion 

4.1. Effect of flowiness data on the discharge simulations 

Multi-criteria (or multi-data) model calibration leads to a (slightly) 
worse overall model fit for the calibration period than calibration on the 
discharge data alone because the model is no longer optimized to only fit 
the discharge data (cf. Beldring, 2002; Finger et al., 2015; Mostafaie 
et al., 2018; Parajka et al., 2007; Pelletier and Andréassian, 2022; 
Schaefli and Huss, 2011; Seibert, 2000). However, multi-criteria cali-
bration is expected to lead to a more robust model that better represents 

the hydrological processes in the catchment. Therefore, the model fit for 
the validation period can be lower, higher, or nearly the same as for the 
calibration based on discharge data alone. It was, thus, not surprising 
that there was no clear improvement in the overall model performance 
for the ensemble mean when flowiness data were used in the calibration 
of the HBV model together with the daily discharge data. This was, for 
example, also reported by Pelletier and Andréassian (2022), who found 
that the combined use of monthly groundwater level data and daily 
discharge data in the calibration of the GR6J model for a set of catch-
ments in France (partly overlapping with the ones in this study) did not 
improve the overall discharge simulation. 

However, if the discharge simulation for the validation period was 
poor when only discharge or stream-level data were used in model 
calibration, the model performance often improved when flowiness data 
were used in the calibration as well. Thus, it seems that flowiness data 
can help to avoid poor model fits but not improve an already good 
model. This suggests that for most catchments discharge data or water 
level data are already so informative for model calibration that even if 
there is only one value per month or season (cf. Etter et al., 2020a; Jian 
et al., 2017; Seibert and Vis, 2016; van Meerveld et al., 2017; Weeser 
et al., 2019) the use of additional data, such as temporary stream ob-
servations, does not improve the overall model performance any further. 
Possible other reasons for the lack of a clear improvement in model 
performance for the majority of the catchments could be the choice of 
the model or a bias in the observed data. 

Adding flowiness data to the calibration did affect the low-flow 
simulations. For 57 % of the catchments, the use of flowiness data in 
combination with daily discharge data improved the simulation of the 
minimum seven-day average flow. For 51 % of the catchments, the 
uncertainty of low-flow predictions decreased. The changes in low-flow 
uncertainties were mainly caused by a more well-defined value of 

Fig. 7. The median value of the 5th to 95th percentile range of the calibrated model parameters for all data scenarios. A darker green shading indicates a smaller 
range (i.e., less parameter uncertainty). The parameters for which the use of flowiness (Fl) data in the calibration led to a statistically significant change in the 
parameter range are printed in bold. The parameters for which the median range became smaller when including flowiness data are highlighted with a black 
rectangle. For a description of the parameter values, see Table 2. The different temporal resolutions are: daily, monthly (one value per month) and seasonal (one 
value per season). 
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parameter K2 (see also discussion section 4.2). Seibert (2000) similarly 
showed that multi-data calibration with discharge and groundwater 
level data can better constrain the parameters that influence low-flow 
simulations. The fact that the additional data improved low-flow sim-
ulations is helpful because most objective functions for model calibra-
tion give relatively little weight to the low-flow simulations (Oudin 
et al., 2006). 

There was no clear pattern for which type of catchments, the addi-
tion of flowiness data improved the overall discharge or low-flow sim-
ulations. Thus, we cannot predict for which catchments observations of 
the flow state of temporary streams will be useful for model calibration. 
A similar result was found by Pelletier and Andréassian (2022), who also 
did not find a spatial pattern in the improvement of model performance 
when groundwater level data were used in model calibration. Rakovec 
et al. (2016) calibrated a model for 83 catchments throughout Europe 
and did not find a pattern in the change in model performance when 
including satellite-based estimates of total water storage in model cali-
bration either. 

4.2. Effects of flowiness data on parameter uncertainty 

Using flowiness data in the model calibration helped to constrain 
parameter K2. This is useful as the parameters that influence the low- 
flow simulations are often not well-constrained (Seibert, 2000). Thus, 
adding flowiness data to the calibration of the model can be useful, even 
if it does not visibly improve the overall mean model performance. A 
similar result was found for studies that included groundwater level data 
in model calibration (Pelletier and Andréassian, 2022; Seibert, 2000). 

Abebe et al. (2010) and Karimi et al. (2022) reported that small 
values for the K2 parameter (approximately < 0.01 d-1) can lead to a 
good model fit and a small improvement in the model’s objective 

function compared to more typical values for parameter K2, but unre-
alistically high groundwater storage, with small or no seasonal fluctu-
ations. They also showed that this leads to a worse, almost constant low- 
flow or baseflow simulation. For catchments in the southeastern USA, 
this occurred when the K2 parameter values ranged between 0.001 and 
0.015 d-1 (Abebe et al., 2010). Karimi et al. (2022), therefore, suggested 
to change the minimum value of the K2 parameter to 0.02 d-1. We set the 
minimum value of K2 to 0.001 d-1 (Table 2) to be consistent with the 
parameter ranges used by Seibert (2000), Seibert and Vis (2012), and 
Etter et al., (2020a). Including temporary stream data in the calibration 
with daily discharge solved the issue of unrealistically high water levels 
in the (s)lower groundwater storage for most catchments. However, the 

Fig. 8. Relation between the calibrated value of the K2 parameter and a-c) the 
median storage in the (s)lower groundwater reservoir (SLZ), d-f) the Kling- 
Gupta efficiency for the validation period (KGE), and g-i) the root mean 
squared error for the minimum seven-day mean discharge per hydrological year 
(RQ7_min) for the 100 calibrated model parameter sets for the three selected 
catchments (C1, C2, C3). The model was calibrated with either daily discharge 
data (crosses) or daily discharge data and flowiness (FI) data (circles). Note that 
the Y-axis for RQ7_min is reversed as smaller errors indicate a better simulation of 
low flows. The grey shaded areas for KGE and RQ7_min indicate the range be-
tween the upper and lower benchmarks. 

Fig. 9. The differences in model performance when flowiness data are used in 
model calibration for the daily discharge (left) and seasonal stream-level (one 
value per season) (right) scenarios for the 92 catchments plotted in the prin-
cipal component space: the difference in the relative Kling-Gupta efficiency 
(ΔErel; a-b), the difference in the root mean squared error for the minimum 
seven-day mean discharge per hydrological year (ΔRQ7_min; c-d), and the dif-
ference in the scaled range for parameter K2 (e-f). Green circles imply an 
improvement in model performance when flowiness data were included in 
model calibration, and pink circles a deterioration in model performance. Small 
differences (±0.01) are shown in grey. The size of the circles represents the 
absolute change in model performance, with the biggest circles representing a 
value of 1.5 for ΔErel, 0.33 mm/d for ΔRQ7_min and 1.0 for the difference in the 
scaled range for K2. The first component of the PCA was mainly influenced by 
the flashiness index (24 %, negative correlation), catchment area (22 %, posi-
tive correlation), base flow index (22 %, positive correlation), and number of 
ONDE sites per catchment (17 %, positive correlation). The second component 
was mainly affected by the mean elevation (34 %, negative correlation), stream 
density (33 %, negative correlation), and aridity index (19 %, negative corre-
lation) (see Fig. S5). 
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optimized K2 values were sometimes still smaller than 0.02 d-1 (Fig. 8e, 
f, i). Therefore, we do not recommend changing the minimum value for 
the K2 parameter to an arbitrary value but rather to use additional in-
formation in the model calibration. Otherwise, the “real” optimum 
model parameter value may be missed. 

Other studies have also reported a reduction in parameter uncer-
tainty when using multi-data calibration (e.g., Beldring, 2002; Oudin 
et al., 2003; Riboust et al., 2019). The uncertainty decreased especially 
for the parameters that describe the processes to which the additional 
data were compared (Nan et al., 2021; Parajka et al., 2007; Pelletier and 
Andréassian, 2022; Rajib et al., 2016). For example, Seibert (2000) 
showed that the use of groundwater level data in the calibration of the 
HBV model reduced the uncertainties of the parameters in the response 
routine (e.g., PERC, Alpha, K1, and K2). However, it increased the un-
certainty of the parameters outside this routine (e.g., MAXBAS). In our 
case, we did not find a consistent and significant change in the uncer-
tainty for the other parameters of the response routine (other than K2) 
when flowiness data were used for calibration. This was somewhat 
surprising as parameters K2 and PERC are known to be very dependent 
(Abebe et al., 2010). However, the uncertainties of the parameters FC 
and LP, both used in the soil moisture routine, tended to decrease when 
flowiness data was used together with discharge data in model 
calibration. 

4.3. Advantages and disadvantages of flowiness as a metric for 
groundwater storage 

In previous studies (e.g., Finger et al., 2015; Mostafaie et al., 2018; 
Seibert, 2000), the additional variable used in model calibration (e.g., 
groundwater levels or soil moisture) could be compared to a simulated 
variable. For example, Pelletier and Andréassian (2022) showed that the 
use of groundwater level data in model calibration improved the simu-
lation of groundwater levels for a variety of catchments across France. 
Remotely sensed soil moisture and groundwater data improved the 
simulation of soil moisture and groundwater storage of the HBV model 
for the Moselle River Basin (Demirel et al., 2019). We could not do this 
because the additional data (flowiness) are only a proxy of the simulated 
variable (groundwater storage). The advantage of visual observations of 
the state of temporary streams over actual groundwater data is that they 
are much easier to collect. A disadvantage is that the relation between 
flowiness and storage reaches a plateau when all streams flow. This is 
also the case for the relation between flowiness and discharge (see 
example in Fig. S1). Thus, flowiness data may only provide information 
on the storage during relatively low flow periods, whereas groundwater 
level data will provide information at times of higher catchment wetness 
(and discharge) as well. 

Furthermore, flowiness was based on only three different, discrete 
flow states. Thus, the number of potential values for flowiness is limited 
if the flow state is only observed for a few temporary streams. This 
resulted in many ties in the flowiness time series. Etter et al., (2020a) 
showed that discrete observations of the water level in a stream (i.e., 
water level class data) were still informative for the calibration of a 
lumped model, even when there were only three different classes and 
thus many ties, as long as the observations had a weekly resolution. An 
increase in the observation frequency for temporary streams could be 
achieved by citizen science. Citizen scientists have, for example, 
observed the water level in streams at a high frequency (e.g., 271 ob-
servations in one year in Kenya (Weeser et al., 2019); 505 observations 
in one year and nine months for a stream in Austria (Etter et al., 2020b)). 
However, data of ‘higher’ frequency and quality does not necessarily 
lead to an improvement in model simulations for multi-data calibration. 
The value of higher resolution flowiness data for model calibration still 
needs to be tested. These data are rare, but several projects are currently 
collecting this type of data (e.g., Datry et al., 2016; Kampf et al., 2018; 
Seibert et al., 2019b). Therefore, tests with higher-resolution temporary 
stream data may be possible in a few years from now. 

Finally, aggregating the spatially distributed observations of stream 
states into a time series of flowiness leads to a loss of information. This 
aggregation would not be necessary for a semi- or fully-distributed 
model. Previous studies that used semi- or fully-distributed models for 
multi-data calibration had a similar number of observation points rela-
tive to the catchment size (e.g., Holmes et al. (2022) (semi-distributed), 
Madsen (2003) (fully-distributed)). As a next step, the value of tempo-
rary stream observations (such as those in the ONDE data set) could be 
assessed for distributed models. The ONDE data could, for instance, be 
useful for stream network modelling in ungauged headwater catchments 
(Stoll and Weiler, 2010). 

5. Conclusions 

We studied the value of observations of the flow state of temporary 
(i.e., non-perennial) headwater streams as a proxy for groundwater 
storage for calibrating a lumped hydrological model. The temporary 
stream observations for the 92 catchments in France did not affect the 
overall performance of the discharge simulation. For 25 % of the 
catchments, the overall model performance for the validation period 
improved (ΔEref > 0.01) and for 47 % it worsened (ΔEref < -0.01) when 
flowiness data were used in the calibration with daily discharge data. If 
only seasonal stream-level data had been available, the simulations 
improved for 25 % of the catchments and became worse for another 25 
% of the catchments. For the other 50 % of the catchments, the change in 
model performance was negligible (i.e., ΔEref changed by less than ±
0.01). However, including temporary stream observations in model 
calibration was more likely to improve the overall model performance if 
calibration based on only discharge or stream-level data led to a poor 
model fit for the validation period. In other words, calibration with 
flowiness data could avoid poor model fits but not improve already good 
model fits. Using the temporary stream observations in model calibra-
tion mainly affected the low-flow simulations and the uncertainty of the 
parameter that influences low flows. However, there was no spatial 
pattern in the improvement in the simulation of the low flows or 
parameter uncertainty, nor any correlation to catchment characteristics. 
Thus, it remains difficult to predict for which types of catchments ob-
servations of the flow state of temporary streams are useful for model 
calibration. 
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Demirel, M.C., Özen, A., Orta, S., Toker, E., Demir, H.K., Ekmekcioğlu, Ö., Tayşi, H., 
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Pelletier, A., Andréassian, V., 2022. On constraining a lumped hydrological model with 
both piezometry and streamflow: results of a large sample evaluation. Hydrol. Earth 
Syst. Sci. 26 (10), 2733–2758. https://hess.copernicus.org/articles/26/2733/2022/. 

Quintana-Seguí, P., Le Moigne, P., Durand, Y., Martin, E., Habets, F., Baillon, M., 
Canellas, C., Franchisteguy, L., Morel, S., 2008. Analysis of near-surface atmospheric 
variables: Validation of the SAFRAN analysis over france. J. Appl. Meteorol. 
Climatol. 47 (1), 92–107. https://journals.ametsoc.org/view/journals/apme/47/1 
/2007jamc1636.1.xml. 

Rajib, M.A., Merwade, V., Yu, Z., 2016. Multi-objective calibration of a hydrologic model 
using spatially distributed remotely sensed/in-situ soil moisture. J. Hydrol. 536, 
192–207. https://www.sciencedirect.com/science/article/pii/S0022169 
416300713. 

Rakovec, O., Kumar, R., Attinger, S., Samaniego, L., 2016. Improving the realism of 
hydrologic model functioning through multivariate parameter estimation. Water 
Resour. Res. 52 (10), 7779–7792. 

Revilla-Romero, B., Beck, H.E., Burek, P., Salamon, P., de Roo, A., Thielen, J., 2015. 
Filling the gaps: Calibrating a rainfall-runoff model using satellite-derived surface 
water extent. Remote Sens. Environ. 171, 118–131. 

Riboust, P., Thirel, G., Le Moine, N., Ribstein, P., 2019. Revisiting a Simple Degree-Day 
Model for Integrating Satellite Data: Implementation of Swe-Sca Hystereses. Journal 
of Hydrology and Hydromechanics 67 (1), 70–81. 

Samain, B., Pauwels, V.R.N., 2013. Impact of potential and (scintillometer-based) actual 
evapotranspiration estimates on the performance of a lumped rainfall–runoff model. 
Hydrol. Earth Syst. Sci. 17 (11), 4525–4540. 

Sauquet, E., Beaufort, A., Sarremejane, R., Thirel, G., 2021. Predicting flow intermittence 
in France under climate change. Hydrol. Sci. J. 66 (14), 2046–2059. 

Schaefli, B., Huss, M., 2011. Integrating point glacier mass balance observations into 
hydrologic model identification. Hydrol. Earth Syst. Sci. 15 (4), 1227–1241. https 
://hess.copernicus.org/articles/15/1227/2011/. 

Seibert, J., 2000. Multi-criteria calibration of a conceptual runoff model using a genetic 
algorithm. Hydrol. Earth Syst. Sci. 4 (2), 215–224. https://hess.copernicus.org/a 
rticles/4/215/2000/. 

Seibert, J., Beven, K.J., 2009. Gauging the ungauged basin: how many discharge 
measurements are needed? Hydrol. Earth Syst. Sci. 13 (6), 883–892. 

Seibert, J., Bishop, K., Rodhe, A., McDonnell, J.J., 2003. Groundwater dynamics along a 
hillslope: A test of the steady state hypothesis. Water Resour. Res. 39 (1). 

Seibert, J., McDonnell, J.J., 2002. On the dialog between experimentalist and modeler in 
catchment hydrology: Use of soft data for multicriteria model calibration. Water 
Resour. Res. 38 (11), 23-1-23-14. 

Seibert, J., Staudinger, M., van Meerveld, H.J.I., 2019a. Validation and Over- 
Parameterization–Experiences from Hydrological Modeling. In: Beisbart, C., 
Saam, N.J. (Eds.), Computer Simulation Validation: Fundamental Concepts, 
Methodological Frameworks, and Philosophical Perspectives. Springer International 
Publishing, Cham, pp. 811–834. 

Seibert, J., van Meerveld, H.J., Etter, S., Strobl, B., Assendelft, R., Hummer, P., 2019b. 
Wasserdaten sammeln mit dem Smartphone – Wie können Menschen messen, was 
hydrologische Modelle brauchen? Bundesanstalt fuer Gewaesserkunde, Accessed.  

Seibert, J., Vis, M.J.P., 2012. Teaching hydrological modeling with a user-friendly 
catchment-runoff-model software package. Hydrol. Earth Syst. Sci. 16 (9), 
3315–3325. https://hess.copernicus.org/articles/16/3315/2012/. 

Seibert, J., Vis, M.J.P., 2016. How informative are stream level observations in different 
geographic regions? Hydrol. Process. 30 (14), 2498–2508. 

Seibert, J., Vis, M.J.P., Lewis, E., van Meerveld, H.J., 2018. Upper and lower benchmarks 
in hydrological modelling. Hydrol. Process. 32 (8), 1120–1125. 

Sivapalan, M., Takeuchi, K., Franks, S.W., Gupta, V.K., Karambiri, H., Lakshmi, V., 
Liang, X., McDonnell, J.J., Mendiondo, E.M., O’Connell, P.E., Oki, T., Pomeroy, J.W., 
Schertzer, D., Uhlenbrook, S., Zehe, E., 2003. IAHS Decade on Predictions in 
Ungauged Basins (PUB), 2003–2012: Shaping an exciting future for the hydrological 
sciences. Hydrol. Sci. J. 48 (6), 857–880. 

Stoll, S., Weiler, M., 2010. Explicit simulations of stream networks to guide hydrological 
modelling in ungauged basins. Hydrol. Earth Syst. Sci. 14 (8), 1435–1448. https 
://hess.copernicus.org/articles/14/1435/2010/. 

Stubbington, R., England, J., Wood, P.J., Sefton, C.E., 2017. Temporary streams in 
temperate zones: recognizing, monitoring and restoring transitional aquatic- 
terrestrial ecosystems. WIREs Water 4 (4), e1223. 
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