
HAL Id: hal-04505641
https://hal.inrae.fr/hal-04505641

Submitted on 15 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Climate change and the biodiversity of alpine ponds:
Challenges and perspectives

Marie Lamouille-hébert, Florent Arthaud, Thibault Datry

To cite this version:
Marie Lamouille-hébert, Florent Arthaud, Thibault Datry. Climate change and the biodiversity
of alpine ponds: Challenges and perspectives. Ecology and Evolution, 2024, 14 (2), pp.e10883.
�10.1002/ece3.10883�. �hal-04505641�

https://hal.inrae.fr/hal-04505641
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Ecology and Evolution. 2024;14:e10883.	 		 	 | 1 of 14
https://doi.org/10.1002/ece3.10883

www.ecolevol.org

1  |  INTRODUC TION

Inland waters are among the most threatened biodiversity hotspots 
(Reid et al., 2019; Tickner et al., 2020). In addition to containing ~13% 
of all described species while representing less than 2% of the globe 
surface, they provide key ecosystem services to people and soci-
ety, including provision of drinking water, regulation of climate, and 
food production (Reid et al., 2019; Tickner et al., 2020). However, 
climate change threatens the biodiversity of inland waters (Fenoglio 

et al., 2010; Strayer, 2010; Woodward et al., 2010). Increasing air 
temperature and the alteration of precipitation patterns increase 
the frequency and severity of extreme weather events, such as 
droughts and floods (Barnett et al., 2005; Gobiet et al., 2014; Milly 
et al., 2005). These changes impose constraints on inland freshwater 
biodiversity with documented effects on species extinction (Pounds 
et al., 2006) and geographical distribution (Comte et al., 2013; 
Hickling et al., 2005, 2006) and phenology (Gibbs & Breisch, 2001; 
Winder & Schindler, 2004).
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Abstract
Inland waters are among the most threatened biodiversity hotspots. Ponds located in 
alpine areas are experiencing more rapid and dramatic water temperature increases 
than any other biome. Despite their prevalence, alpine ponds and their biodiversity 
responses to climate change have been poorly explored, reflecting their small size and 
difficult access. To understand the effects of climate change on alpine pond biodiver-
sity, we performed a comprehensive literature review for papers published since 1955. 
Through analysis of their geographic distribution, environmental features, and biodi-
versity values, we identified which environmental factors related to climate change 
would have direct or indirect effects on alpine pond biodiversity. We then synthe-
sized this information to produce a conceptual model of the effects of climate change 
on alpine pond biodiversity. Increased water temperature, reduced hydroperiod, and 
loss of connectivity between alpine ponds were the main drivers of biodiversity geo-
graphic distribution, leading to predictable changes in spatial patterns of biodiversity. 
We identified three major research gaps that, if addressed, can guide conservation 
and restoration strategies for alpine ponds biodiversity in an uncertain future.
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Alpine	 ecosystems,	 which	 represent	 2.64%	 of	 land	 outside	
Antarctica	 (Testolin	 et	 al.,	 2020), experience more rapid climate 
effects than any other biome (Beniston, 2005; Duan & Xiao, 2015; 
Pepin et al., 2015). Moreover, alpine areas constitute highly diverse 
terrestrial and aquatic habitats (Haslett, 1997), with high degrees 
of endemism (Dirnböck et al., 2011; Körner, 2004; Steinbauer 
et al., 2016).	Alpine	areas	are	thus	sentinels	of	the	on-	going	and	fu-
ture effects of climate change on biodiversity (Hauer et al., 1997; 
Williamson et al., 2009). For example, while the global increase in air 
temperature is 0.25°C/decade (O'Reilly et al., 2015),	the	European	
Alps	 (1000–2700 m asl)	 experienced	an	 increase	 in	0.36°C/decade	
(Gobiet et al., 2014; Thuiller et al., 2005). This alpine temperature 
effect is compounded by changes in precipitation, radiation, and 
relative humidity that have led to decreases in snow cover, glaciers 
volume and extent, and increased drying of freshwater habitats 
(Chatterjee et al., 2010; Gobiet et al., 2014; Paillex et al., 2020). 
These changes have measurable effects on the biodiversity of al-
pine ecosystems.

Alpine	 biodiversity	 is	 already	 constrained	 by	 high-	altitude	 ex-
treme conditions, such as radiation exposure and high winds. For 
example, many alpine species require pigmentation or aquatic life-
styles	 to	 protect	 them	 from	 high-	altitude	 UV-	B	 radiation,	 which	
increases	by	19%	per	1000 m	of	elevation	(Blumthaler	et	al.,	1992; 
Redmond, 2018). Likewise, flying species need to generate the re-
quired power and wing size to adapt to approximately 5% increase 
of	 airspeed	 per	 1000 m	 increase	 in	 altitude	 and	 low	 air	 density	
(Hedenström et al., 2002).

The effects of climate change on alpine biodiversity are well- 
documented across ecosystem types, including terrestrial (Dirnböck 
et al., 2011; Hoffmann et al., 2019; Weil et al., 2021) and aquatic 
(Bruno et al., 2019; Green et al., 2022; Niedrist & Füreder, 2023). For 
example, glacier- runoff reduction can lead to an increase of algal and 
herbivore biomass in streams (Cauvy- Fraunié et al., 2016). In addi-
tion, after the loss of hydrological connectivity to a glacier, stopping 
the influx of “glacier dust,” turbid lakes can turn clear with subse-
quent effects on community structure due to increased ultraviolet 
radiation (Kammerlander et al., 2016; Tiberti et al., 2020).

Alpine	ponds	are	one	of	the	most	biodiverse	alpine	ecosystem,	
hosting endangered and endemic species around the world (Khan & 
Baig, 2017; Yang et al., 2017). Still, the fate of alpine ponds and their 
biota is uncertain under climate change, as melting glaciers may re-
veal new ephemeral habitats at high altitudes, while simultaneously, 
habitats at lower altitudes may dry up due to reduced hydroperiod 
(Diaz et al., 2020; Matthews & Vater, 2015; Salerno et al., 2014). 
Specifically, ponds, natural, or man- made are defined as being <5 ha	
in surface area with a water depth of <5 m,	and	can	exhibit	perma-
nent or intermittent hydroperiods (Biggs et al., 2005; Richardson 
et al., 2022). Thus, due to their small size and limited accessibility, al-
pine ponds and their biodiversity response to climate change remain 
a major research gap (Khan & Baig, 2017).

In contrast to alpine ponds, the biodiversity response of lowland 
ponds to climate change is well- studied (Biggs et al., 2005; Herstoff 

&	Urban,	2014; Thompson & Shurin, 2012), providing an important 
theoretical framework for predicting effects at higher altitudes. For 
example, it is predicted that alpine pond biodiversity is at high risk 
to climate change due to the high sensitivity of their species to tem-
perature increases, hydroperiod alteration, and the gradual isolation 
of alpine ponds (Carlson et al., 2020). These general predictions 
still need to be tested and synthesized; however, as species are un-
equally vulnerable to climate change and because alpine ponds have 
unique temperature and hydrologic regimes.

Climate change will not affect all species equally, challenging our 
ability to predict overall biodiversity responses across alpine ponds. 
Indeed, certain species may even be favored under climate change 
due to the disappearance of ice barriers and competitors, or perhaps 
due to preferable changes in food webs (Cauvy- Fraunié et al., 2016; 
Redmond, 2018; Seimon et al., 2007). Broadly however, warmer tem-
peratures lead to expected changes in species phenology (e.g., early 
emergence), size and fecundity (Harper & Peckarsky, 2006), and geo-
graphical distribution (Lindholm et al., 2015; Pallarés et al., 2020). 
Furthermore, water temperature increase is both a direct (via ther-
mal sensitivity) and indirect (e.g., via hypoxia) physiological stress on 
many aquatic species (Diamond et al., 2023; Pörtner, 2001). These 
water temperature effects are exacerbated by reductions in water 
availability due to drying (Diamond et al., 2023).

Annual	 hydroperiod—the	 timing	 and	 the	 length	 of	 time	 that	
there is standing water at a location (Convertino et al., 2013)—
is among the strongest filters for species persistence in alpine 
ponds (Ryan et al., 2014), and in ponds more generally (Wellborn 
et al., 1996). Hydroperiod decrease due to drying can affect species' 
size, phenology (Denoël, 2003; Galatowitsch & McIntosh, 2016), 
and geographical distribution (Sandvik & Odland, 2014; Thurman 
& Garcia, 2019). In addition to shrinking ecosystem surface area, 
drying reduces water volume and thermal inertia so that daily water 
temperature in shallow alpine ponds can fluctuate up to 30°C (Lund 
et al., 2016; Wissinger et al., 2016). These changes propagate to 
organismal interactions, especially in the differing responses of res-
ident versus range- shifting species (Shepard et al., 2022). The grad-
ual geographic isolation of suitable habitat under drying increases 
the	distance	among	alpine	ponds	(Ashrafzadeh	et	al.,	2019; Simaika 
& Samways, 2015),	reducing	their	connectivity.	As	possibilities	for	
alpine pond species adaptation to climate change are limited, this 
loss of connectivity reduces the accessibility of suitable niches. 
Some species may thus shift their ranges to higher elevation (Baur 
& Baur, 2013; Kelly & Goulden, 2008; Parmesan & Yohe, 2003), but 
if those ranges exceed peak altitudes, there is an absence of suit-
able habitat.

In this review, we explored the main drivers and effects of cli-
mate change on the biodiversity of alpine ponds. We first conducted 
a systematic review of the literature to address: (1) the geographic 
distribution of studied alpine ponds, (2) their biodiversity, and (3) 
environmental controls on this biodiversity. We then synthesized 
this information to develop a conceptual model of climate change 
effects on alpine pond biodiversity. Finally, we used this model to 
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identify research gaps and possible mitigation actions to protect al-
pine ponds prone to an uncertain future.

2  |  METHODS

We performed a comprehensive literature review using the search 
engine in Clarivate Web of Science (WoS; Core Collection) for pa-
pers	published	between	January	1,	1955,	and	December	14,	2021.	
We created a research query including at least the terms “biodi-
versity” and “climate change”. The query also included two word 
groups associated with our specific topic of interest: (1) topogra-
phy (“mountain”, “alpine”, “high- elevation”), (2) and pond habitat 
(“ponds”, “waterbody(ies)”, “standing water”, “tarns”, “kettleholes”, 
“wetland”, “bog”, “peatland”, “fen”, “bofedale(s)”). This search led to 
316	results,	all	of	which	were	written	since	1997,	with	48%	of	them	
written	after	2018.	From	these	papers,	we	found	that	73	of	those	
referred to ponds' biodiversity and climate change within alpine 
regions.

We organized the information from each paper in a database 
(see	Appendix	S1) according to the following: (1) study location (e.g., 
country, altitude), (2) study biological group (e.g., macroinverte-
brates,	flora),	(3)	“essential	biodiversity	description	variables”	(EBV)	
defined as biological state variables that are measurable at particular 
points in time and space to document biodiversity change (e.g., com-
munity composition) (Pereira et al., 2013; Schmeller et al., 2017), (4) 
pond typology (e.g., pond, shallow lake, cf. Richardson et al. (2022)), 
(5) pond geometry (e.g., depth, surface), and (6) environmental driv-
ers of diversity (e.g., water quality, connectivity). We classified en-
vironmental	factors	affecting	EBVs	into	explanatory	variable	groups	
(Table 1).

Biodiversity is variously quantified across studies (e.g., functional 
versus genetic, alpha versus beta), complicating synthesis efforts. 

To simplify interpretation, we chose to aggregate biodiversity mea-
sures	in	accordance	with	the	six	EBV	classes	(Pereira	et	al.,	2013) as 
follows:

1. genetic composition (e.g., allelic diversity),
2. species traits (e.g., phenology),
3. ecosystem function (e.g., nutrient retention),
4. ecosystem structure (e.g., ecosystem vertical profile),
5. species populations (e.g., abundances), and
6. community composition (e.g., taxonomic diversity).

3  |  RESULTS

3.1  |  The geographic distribution of published 
studies on alpine ponds

Alpine	 ponds	 were	 predominately	 investigated	 in	 America	 and	
Europe	(respectively	32%	and	38%	of	the	studies;	Figure 1a), with 
the	Rocky	Mountains,	the	Andes,	and	the	Alps	being	the	most	stud-
ied mountain ranges. This is a heavily skewed sampling distribution 
as	 Europe	 and	 America	 represent	 only	 2%	 and	 24%	 of	 non-	polar	
alpine areas, respectively (Testolin et al., 2020).	 Indeed,	Asia	 rep-
resented	only	17%	of	studies	despite	constituting	73%	of	all	alpine	
area (Testolin et al., 2020), largely concentrated in the Himalaya/
Qinghai- Tibetean mountainous region (Chatterjee et al., 2010; Gujja 
et al., 2003).	Africa	comprises	the	smallest	alpine	area	(<1% (Testolin 
et al., 2020)) but was home to 6% of alpine pond studies. There were 
no alpine pond studies from Oceania, but one study in Tasmania 
used Chironomidae spp. diversity to infer post- glacial and Holocene 
paleoclimates (Rees & Cwynar, 2010).

The	 majority	 (74%)	 of	 studies	 occurred	 between	 1000	 and	
4000 m asl	(Figure 1b). Of the papers that included lower- altitude 

TA B L E  1 Different	explanatory	variables	are	used	to	study	the	effects	of	climate	change	on	the	biodiversity	of	alpine	ponds.	They	are	
grouped into 12 categories.

Topography Controlling catchment type, snow coverage, and lakes connectivity

Water quantity Hydrodynamics (type and volume of inflow/outflow), drought/hydroperiod, water- level/depth fluctuations (or 
not fluctuation), evaporation, glacier influence

Temperature Latitude, longitude, altitude, air temperature, water temperature

Alpine	ponds'	characteristics Pond surface area, pond depth, catchment size

Aquatic	habitat Aquatic	vegetation,	microhabitat,	freshwater	habitat	structure,	absence/presence	of	sediment,	pond	
successional stage

Land cover NDVI, environmental heterogeneity

Water quality Trophy, PC, nutrient concentration, catchment lithology, water browning, transparency, turbidity

UV	radiation

Pollutions Atmospheric	and	organic	pollutants

Connectivity Hydrologic and topographic

Biotic pressure Competition/biotic interaction, fish, biological invasions, parasitism

Anthropic	pressure Fire, pasturage, land use, human disturbance, grazing
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ponds	 under	 1000 m asl	 (the	 mean	 tree	 line	 elevation)	 in	 their	
study design (12%), most were used as endmembers of commu-
nity responses to an altitudinal gradient. High- altitude alpine 
ponds	 between	 4000	 and	 6000 m asl	 were	 less	 studied	 (14%)	
and	were	exclusively	in	Himalaya/Qinghai-	Tibetean	and	Andean	
mountains.

3.2  |  The biodiversity of alpine ponds

Alpine	 pond	 species	 richness	 decreased	 with	 increasing	 altitude	
(Oertli, 2010), as a function of increasingly constrained drivers of 
temperature (Oertli, 2010), hydroperiod (He et al., 2016; Sandvik & 
Odland, 2014; Thurman & Garcia, 2019) and geographical connectiv-
ity (Hill et al., 2021; Oertli et al., 2008). Geographical connectivity 
of	alpine	ponds	may	be	defined	as	the	Euclidean	distance	from	one	
pond to another, allowing direct comparison with species' disper-
sal distances, or the presence of tributaries connecting one pond 
to another. Whereas forests and topographic relief reduce disper-
sal distances of alpine species, rivers, lakes, and wetlands can act as 

corridors,	enhancing	geographical	connectivity	(Engler	et	al.,	2009). 
Indeed, deeper water bodies like lakes act as potential popula-
tion sources for alpine ponds and are habitat substitutes when al-
pine ponds are dried (Bouvier et al., 2009; Hortal et al., 2014; Ilg & 
Oertli, 2014).

3.2.1  |  Indicator	groups	to	investigate	the	effects	of	
climate change on alpine pond biodiversity

The effects of climate change on alpine pond biodiversity were pri-
marily studied on species for which all or part of their life stages 
are strictly aquatic. The distribution of biodiversity studies accord-
ing to guild was as follows: flora (including phytoplankton) (31%), 
macroinvertebrate (22%), zooplankton (21%), and amphibians (12%) 
(Figure 2a). These groups, including numerous endangered species, 
appeared as highly relevant climate change indicators because their 
life history strategies (distribution, composition, and phenology), be-
havior, and physiology makes them particularly sensitive to climate 
change.

F I G U R E  1 Alpine	ponds	papers	distribution	(a:	localities,	N = 73;	b:	altitude,	N = 66).
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3.2.2  |  Controls	on	alpine	pond	biodiversity	
responses to climate change

Each	of	the	six	EBVs	were	used	to	study	the	effect	of	climate	change	
on alpine pond biodiversity (Figure 2b).

1. Genetic composition: Only two papers considered genetic com-
position in alpine ponds, both on amphibian phylogeography 
(Ben Hassine et al., 2016; Gonçalves et al., 2015). They focused 
on the effect of climate change on alpine pond population 
persistence, differentiation, and incipient speciation.

2. Species traits: Only five papers studied species traits in alpine 
ponds. Phenology, physiology and morphology were stud-
ied across macroinvertebrates, zooplankton, and amphibians 
to understand resistance to temperature extremes (Hotaling 
et al., 2021; Lindholm et al., 2015; Pallarés et al., 2020) and to 
predatory fish invasions (Denoël et al., 2019). For example, in-
creasing water temperature modified the physiological traits (e.g., 
growth	 and	 respiration)	 of	 the	 Arctic	 fairy	 shrimp	 (Branchineta 

paludosa) up to a threshold temperature, at which point it disap-
peared from the pressured pond (Lindholm et al., 2015).

3.	 Ecosystem	function:	Ecosystem	disturbance	in	alpine	ponds	linked	
with	climate	change	was	 investigated	only	on	flora	 in	pond–peat-
land complexes (Chatanga & Seleteng- Kose, 2021; Hämmerle 
et al., 2018; Volkova et al., 2021), and primary productivity only 
on alpine pond phytoplankton (Thompson et al., 2008). Warming 
combined with other drivers (e.g., nitrogen deposition, land use, and 
pollution) led to changes of the composition of alpine pond commu-
nities (Thompson et al., 2008; Volkova et al., 2021). These changes 
can for example modify the community capacities of assimilation of 
nitrates and dissolved gaseous nitrogen (Thompson et al., 2008).

4.	 Ecosystem	 structure:	 Paleoecological	 indicators	 (e.g.,	 pollen,	
flora and fauna fossils) are used in sediment cores to study the 
long- term evolution of community composition of alpine peat-
lands with open- water pools (Connor et al., 2018; Rodríguez & 
Behling, 2011). These studies describe the changing effects (since 
the late Holocene) of climate and land- use pressure (e.g., fire, 
farming, and upper forest line) on pond biodiversity.

F I G U R E  2 Different	(a)	study	groups	and	(b)	essential	biodiversity	variables	(i.e.,	EBV,	measurement	required	for	study,	reporting,	
and management of biodiversity change (Pereira et al., 2013)) used to study the effect of climate change on alpine ponds' biodiversity. 
«	Community	composition	»	(48)	and	«	Species	population	»	(25)	are	the	principals	EBV'	applied	on	the	73	reviewed	papers.	They	are	
numerous because of the large share of articles respectively on « Taxonomic/Phylogenetic diversity » (31) and « Species distribution » (22). 
Most	of	the	EBVs	have	been	studied	for	some	faunal	or	floral	groups	(1–4)	with	the	exception	of	«	Taxonomic/Phylogenetic	diversity»	and	
« Species distribution », which concern seven groups.

 20457758, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.10883 by Inrae - D

ipso, W
iley O

nline L
ibrary on [15/03/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



6 of 14  |     LAMOUILLE-HÉBERT et al.

5.	 Species	 populations:	Alpine	pond	 species	 geographical	 distri-
bution	were	 studied	 (27%	 of	 selected	 papers)	 to	 understand	
how they react to climate change effects. Species move with 
the variation of their suitable habitat distribution, in relation 
to increase of temperature (Pallarés et al., 2020), frequency 
and duration of heatwaves (Carlson et al., 2020), glacier retreat 
(Seimon et al., 2007) and competition with valley and/or para-
sites species (Lindholm et al., 2016). For cold specialist species, 
warming and drying led to adaptation (Pallarés et al., 2020), or 
regional scale retraction of their distribution area (with local 
extinction) (Carlson et al., 2020; Lindholm et al., 2016). In ad-
dition, alpine ponds were colonized by warmer tolerant spe-
cies that were able to extend their range (Seimon et al., 2007). 
These species can be potential competitors for alpine pond 
specialist species making their joint survival more difficult 
(Shepard et al., 2022).

6. Community composition: Studies were done on alpine ponds 
using principally taxonomic/phylogenetic diversity (42% of se-
lected papers). Warming led to broad changes on species richness 
(Redmond, 2018; Sandvik & Odland, 2014). For example, no spe-
cialist species colonize alpine ponds when rare specialist species 
are disappearing (Sandvik & Odland, 2014). But also, communities 
can shift to smaller body size species more adapted to warming 
conditions (Redmond, 2018).

Overall, species distributions and taxonomic/phylogenetic di-
versity best described the effects of rapid climate change on alpine 
pond biodiversity. Indeed, temperature increase at high altitudes is 
so rapid that in situ possibilities of species adaptation are limited 
(Baur & Baur, 2013; Pallarés et al., 2020; Parmesan, 2006).	Using	
principally	these	two	EBVs	at	the	scale	of	populations	and	commu-
nities, we can describe how other environmental factors (e.g., water 
quality) influence the biodiversity of alpine ponds.

3.3  |  Environmental controls shaping the 
biodiversity of alpine ponds

To better predict the effects of climate change on alpine pond taxo-
nomic/phylogenetic diversity and species distribution, we identified 
the three dominant environmental controls (Table 1) common to the 
73	selected	studies.	The	main	drivers	studied	on	taxonomic/phylo-
genetic diversity were temperature (n = 21),	water	quantity	(n = 17),	
water quality (n = 12),	 land	cover	(n = 9),	connectivity	(n = 9)	and	bi-
otic pressure (n = 8).	On	species	distribution	they	were	temperature	
(n = 17),	 biotic	 pressure	 (n = 9),	 water	 quantity	 (n = 8),	 and	 connec-
tivity (n = 7).	For	 these	two	EBVs,	 temperature	and	water	quantity	
were the a priori most constraining environmental controls (and 
the most studied), with connectivity following close behind. To un-
derstand the effects of climate change on alpine pond biodiversity, 
we explored the effects of these three main drivers: temperature, 
hydroperiod (for water quantity), and connectivity (hydrologic and 
topographic).

3.3.1  |  Temperature

Alpine	ponds	are	post-	glacial	refugia	(Pallarés	et	al.,	2020) for cold 
specialist/stenotherm species that have undergone a long process 
of adaptation to environmental constraints. For example, due to 
cold water and air temperatures, species exhibit a short activ-
ity (growth) period when alpine ponds are free of ice and snow 
(Céréghino et al., 2012; Hinden et al., 2005; Lindholm et al., 2015). 
At	least	24	species	(birds,	vertebrates,	invertebrates,	flora)	are	en-
demic to alpine ponds (Chatanga et al., 2019; Izaguirre et al., 2018; 
Pallarés et al., 2020) because many of them remain isolated in 
these high- altitude areas (Sharma et al., 2015). Still, the total num-
ber of endemic alpine pond species is unknown and it is thought 
that they are among the most endangered in the world (Rosset & 
Oertli, 2011).

Alpine	pond	species	distributions	are	limited	by	air	temperature.	
For macroinvertebrates and amphibians, cold thermal specialist spe-
cies have been described in Switzerland located at sites with a mean 
annual air temperature not exceeding 6°C (Rosset & Oertli, 2011). 
Although	 they	 are	 able	 to	 endure	 large	 temperature	 ranges	 over	
daily timescales (e.g., >10°C in Norway), these species are sensi-
tive	to	high	temperatures	(Epele	et	al.,	2022; Lindholm et al., 2015) 
and are geographically restricted to a small thermal range (Rosset 
& Oertli, 2011).	Experimental	studies	of	beetles	(Agabus nevadensis 
and Hydroporus sabaudus sierranevadensis) in Spain demonstrated 
that while increased air temperature was not lethal to adults, long 
exposure (>10 days)	 to	 warmer	 temperatures	 induced	 oxidative	
stress (Pallarés et al., 2020). Still, it is unclear how warming may af-
fect less tolerant larvae.

Water temperature determines alpine ponds' community com-
position (Miller et al., 2021). Warmer waters have interactive effects 
with predation patterns on species growth, distribution, and intra- 
guild competition (Loewen et al., 2020; Owens et al., 2023; Shepard 
et al., 2022; Symons & Shurin, 2016). For example, as waters warm 
and species migrate to higher elevations, preferential consumption 
of large body zooplankton by predators (Oncorhyncus mykiss) allows 
smaller	body	zooplankton	to	dominate	colonization	patterns	(Jones	
et al., 2020). Moreover, increased water temperature preferentially 
reduces larger zooplankton populations due to their temperature- 
sensitive metabolism, leaving smaller, more metabolically plastic 
zooplankton species to fill their niche (Redmond, 2018). Increased 
metabolic and energetic demand induced by temperature increase 
can also reduce total animal biomass (Bruno et al., 2019), and sub-
sequently less available dispersal energy. Indeed, many cold water 
specialists that were present at the beginning of the 20th century 
are now absent in alpine ponds, following trends from boreal and 
arctic regions (Iglikowska & Namiotko, 2012).

By contrast, thermal generalist species occupy a wider distribu-
tion area than specialists and can more rapidly colonize the shifting 
thermal landscape (Rosset & Oertli, 2011; Sturm, 2012). If connec-
tivity is established, generalist species can colonize higher and cooler 
sites as lower sites begin to warm. For example, anurans and their 
pathogens (Chytridiomycosis	 spp.)	were	able	 to	move	156 m	higher	
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(5244	to	5400 m)	in	10 years	(Seimon	et	al.,	2007). In addition to their 
mobility, some generalist species can adapt to cooler temperatures: 
For example, decreasing their body size and consequently their need 
for nutrients or periodically going out of the water. They are charac-
terized by higher abilities to colonize new habitats when the other 
species of the same taxonomic group are not (Sturm, 2012).

As	air	temperature	 increases,	 increasingly	more	generalist	spe-
cies are arriving from lower altitudes with warmer and drier con-
ditions when specialist species are decreasing (He et al., 2016; 
Stiles et al., 2017). For example, alpine pond bryophytes are being 
replaced by vascular plants (He et al., 2016), and birds from lower al-
titude are now established on the Bogota Region in Colombia (Stiles 
et al., 2017). This overall upward trajectory shrinks the range for na-
tive	alpine	pond	species,	 like	 the	Arctic	 fairy	 shrimp	 (Branchinecta 
paludosa),	 whose	 occurrence	 was	 reduced	 over	 41 years	 from	 77	
ponds to 59 ponds in a pool of 121 ponds (Lindholm et al., 2012), due 
to	its	maximum	thermal	tolerance	of	12.7°C	(Lindholm	et	al.,	2015).

Although	 increased	 temperatures	 are	 driving	 specialist	 spe-
cies' disappearance, replacement generalists are likely causing 
alpine ponds to experience a simultaneous increase in overall tax-
onomic/phylogenetic diversity and a homogenization (Iglikowska & 
Namiotko, 2012). Still, few studies have documented direct links with 
increased temperature and alpine pond biodiversity, and we found 
no work on increased temperature effects on alpine pond snow 
cover or freezing. Nevertheless, we hypothesize that ice or snow 
cover period shortening will reduce alpine pond biodiversity linked 
for	example	to	phenological	prey–predator	desynchronization.

3.3.2  |  Hydroperiod	of	alpine	ponds

Although	the	effects	of	hydroperiod	have	been	little	studied	in	al-
pine pond biodiversity, the few studies that have been done con-
verge on similar results obtained in many studies done in freshwater 
depressional wetlands of lower altitude (Boix & Batzer, 2016;	Epele	
et al., 2022; Kneitel, 2014). Hydroperiod decrease can lead to modi-
fication of community composition, species traits and distribution, 
or to species disappearance. For example, mesocosm experiments 
linked lowered hydroperiod to reduced biomass of amphibian indi-
viduals at emergence (Thurman & Garcia, 2019). Reduced hydro-
period can also cause community composition modification and 
decrease of species distributions. In Norway alpine ponds, between 
1979	 and	 2010,	 hygrophilic	 plants	 (e.g.,	 Eriophorum angustifolium, 
Carex nigra) occurrence decreased, coinciding with colonization by 
species of drier environments, like graminoids (Calamagrostis ne-
glecta, Deschampsia alpina) (Sandvik & Odland, 2014). Likewise, some 
bryophytes are now absent in areas that have undergone hydrop-
eriod reduction (He et al., 2016).	Moreover,	the	2017	summer	heat	
waves dried out alpine ponds in Chamonix, which led to Rana tempo-
raria tadpoles mortality (Carlson et al., 2020).

Some cold specialist species can be adapted to hydroperiod 
variability. Like Somatochlora alpestris, some boreo- alpine odonata 
species have been seen burrowing in the peat to resist drought 

effects (Grand & Boudot, 2006; Heidemann & Seidenbusch, 2002; 
Wildermuth, 2013). However, these resistances were not measured 
(e.g., duration of resistance, soil moisture threshold). Some am-
phibians may adopt other resistance strategies, such as plasticity 
in metamorphosis timing as a function of hydroperiod conditions 
(Denoël, 2003). Indeed, phenological plasticity appears to be the 
most common resistance strategy to hydroperiod reduction across 
generalist (Izaguirre et al., 2018; Laurila et al., 2002) and specialist 
species, alike (Laurila et al., 2002; Nylin & Gotthard, 1998). Still, spe-
cies are ultimately limited by timing and duration of pond drying, and 
few species are adaptable to entire gradient of hydroperiod reduc-
tion (Galatowitsch & McIntosh, 2016).

Climate change is leading to variation of temperature and pre-
cipitation patterns (Barnett et al., 2005; Gobiet et al., 2014; Milly 
et al., 2005). Permanent alpine ponds are becoming temporary, and 
some	temporary	are	becoming	more	permanent	(Epele	et	al.,	2022; 
Robinson & Oertli, 2009; Wissinger et al., 2016). The presence of 
standing water is also controlled by winter ice grip when the entire 
water volume freezes in shallow systems. Date and duration of water 
availability are one of the main factors controlling alpine biological 
cycles (Ryan et al., 2014).	Under	 limited	mobility,	alpine	pond	spe-
cies need to resist in situ to hydroperiod range changes by modify-
ing, for example, their desiccation resistance. In addition, they are 
undergoing modifications in the composition of the communities, 
among other things by the arrival of new, more tolerant species. If 
they cannot adapt rapidly, they need to move to find an alpine pond 
connected with suitable hydroperiod conditions.

3.3.3  |  Connectivity

The spatial distribution of alpine ponds is heterogeneous and frag-
mented, highlighting the importance of regional connectivity in driv-
ing biodiversity patterns. Indeed, depending on location within the 
landscape and connectivity to other suitable habitats, either local 
or regional processes may drive an individual alpine pond biodiver-
sity (Leibold et al., 2004). For example, macroinvertebrate diversity 
in Switzerland (Macun Cirque) is positively correlated with regional 
alpine pond connectivity, but is uncorrelated with local variables 
(surface area, average water depth, hydroperiod) (Hill et al., 2021; 
Oertli et al., 2008). Connectivity among alpine ponds is therefore 
an important component of their metacommunity framework (sensu 
Leibold et al., 2004). To survive under climate change, alpine pond 
species need to adapt or to move to a suitable connected habitat. 
Those that cannot are threatened with extinction.

Alpine	pond	networks	are	made	up	of	habitats	that	rapidly	fluc-
tuate	in	different	gradients	of	hydroperiod.	As	temperature	increase,	
early melting of snow and glaciers shifts the timing of spring water 
availability and typically results in a summer hydroperiod decrease 
and drying of smaller ponds (Robinson & Oertli, 2009). Moreover, 
glacial margin expansion under warming is leading to a transfor-
mation of alpine pond landscapes and networks, like the appear-
ance of ecological corridors, and disappearance/creation of ponds, 
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themselves (Seimon et al., 2007). New connectivity is allowing cer-
tain species to colonize new environments, although wind speed 
and directionality has an important role too for the dispersal of 
non- flying terrestrial and aquatic species in alpine areas (Crabtree 
&	Ellis,	2010;	Epele	et	al.,	2021). Increased connectivity promotes 
pathogen (Batrachochytrium dendrobatidis) colonization which can 
lead to extinctions of amphibian populations (Seimon et al., 2007) 
and subsequent colonization by new species on vacated habitat 
patches (Leibold et al., 2004;	MacArthur	&	Wilson,	2001). By con-
trast, habitat isolation under reduced connectivity limits aquatic 
plant	colonization	(Arthaud	et	al.,	2013).

Broadly, effects of climate change on biodiversity of alpine 
ponds is poorly explored compared to alpine terrestrial ecosys-
tems. Indeed, the effect of climate change on habitat connectivity 
of alpine terrestrial species has been extensively studied (Breshears 
et al., 2008; Kelly & Goulden, 2008; Parmesan & Yohe, 2003).	Alpine	
pond species appear to follow the same distributional changes re-
lated to climate change as terrestrial species. The geographic ranges 
of many alpine species are changing by contracting, expanding or 
shifting in the direction of higher altitudes (Breshears et al., 2008; 
Kelly & Goulden, 2008; Parmesan & Yohe, 2003).

3.4  |  Conceptual model of the effect of climate 
change on alpine ponds' biodiversity

Our comprehensive review indicated that water temperature, hy-
droperiod and connectivity are the main drivers of the biodiversity 
of alpine ponds in the perspective of climate change. We used these 
three drivers to develop a conceptual model to predict the effects of 
climate change on the biodiversity of alpine ponds (Figure 3).

From this model, we draw several predictions of the effects 
of climate change on alpine pond biodiversity. The first predic-
tion is that temperature increase and its associated effect on 

hydroperiod reduction will shrink cold specialist species distri-
butions and overall taxonomic diversity. The second prediction is 
that the more connected alpine ponds are, the more the decline 
of specialist species can be mitigated. In contrast, we predict that 
generalist species distribution area and taxonomic diversity will 
be favored by temperature increase. Nevertheless, the decrease 
in hydroperiod will have similar effects on generalist species as it 
does on specialist species.

3.5  |  Research gaps

We identified several research gaps related to the three main driv-
ers of the biodiversity of alpine ponds in the perspective of climate 
change (Table 2). The largest research gap we identified is the ther-
mal range of alpine pond specialist species, which is needed to assess 
their capacities to adapt and survive under temperature increases. 
Filling this gap will make it possible to anticipate and guide the res-
toration	or	 creation	of	 suitable	 habitats	 for	 threatened	 species.	A	
second research gap is the ability for generalist species to colonize 
warmed habitats, as these species increase pressure for specialist 
survival. We should further quantify species' resistance abilities to 
drying and freezing, as has recently been done for invertebrates 
in temporary freshwaters (Strachan et al., 2015; Stubbington & 
Datry, 2013; Williams, 1996). The loss of alpine pond biodiversity 
under climate change could be attenuated if specialist species are 
able to colonize novel suitable habitats in higher altitudes or lati-
tudes. Yet, we need to improve knowledge about dispersal capaci-
ties of the different stages of alpine pond species. This will allow 
estimating the thresholds in terms of connectivity among alpine 
ponds promoting species survival and recolonization. Filling these 
critical research gaps will allow accurate prediction of current and 
future species distributions and can help guide conservation strate-
gies for alpine ponds prone to an uncertain future.

F I G U R E  3 Effects	of	climate	change	(temperature,	hydroperiod)	on	alpine	ponds'	taxonomic/phylogenetic	diversity	and	species	
distribution area. Warming leads to an increase of alpine ponds' taxonomic/phylogenetic diversity and species distribution area for generalist 
species (orange), especially since connectivity is high (decrease for specialist species had a higher decrease when alpine ponds are low 
connected [blue]). Decrease in hydroperiod leads to decrease (stronger when they are poorly connected) of taxonomic/phylogenetic 
diversity and species distribution area for all species (black).
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