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1 | INTRODUCTION
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Abstract

Inland waters are among the most threatened biodiversity hotspots. Ponds located in
alpine areas are experiencing more rapid and dramatic water temperature increases
than any other biome. Despite their prevalence, alpine ponds and their biodiversity
responses to climate change have been poorly explored, reflecting their small size and
difficult access. To understand the effects of climate change on alpine pond biodiver-
sity, we performed a comprehensive literature review for papers published since 1955.
Through analysis of their geographic distribution, environmental features, and biodi-
versity values, we identified which environmental factors related to climate change
would have direct or indirect effects on alpine pond biodiversity. We then synthe-
sized this information to produce a conceptual model of the effects of climate change
on alpine pond biodiversity. Increased water temperature, reduced hydroperiod, and
loss of connectivity between alpine ponds were the main drivers of biodiversity geo-
graphic distribution, leading to predictable changes in spatial patterns of biodiversity.
We identified three major research gaps that, if addressed, can guide conservation

and restoration strategies for alpine ponds biodiversity in an uncertain future.
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et al., 2010; Strayer, 2010; Woodward et al., 2010). Increasing air

Inland waters are among the most threatened biodiversity hotspots
(Reid et al., 2019; Tickner et al., 2020). In addition to containing ~13%
of all described species while representing less than 2% of the globe
surface, they provide key ecosystem services to people and soci-
ety, including provision of drinking water, regulation of climate, and
food production (Reid et al., 2019; Tickner et al., 2020). However,

climate change threatens the biodiversity of inland waters (Fenoglio

temperature and the alteration of precipitation patterns increase
the frequency and severity of extreme weather events, such as
droughts and floods (Barnett et al., 2005; Gobiet et al., 2014; Milly
et al., 2005). These changes impose constraints on inland freshwater
biodiversity with documented effects on species extinction (Pounds
et al, 2006) and geographical distribution (Comte et al., 2013;
Hickling et al., 2005, 2006) and phenology (Gibbs & Breisch, 2001;
Winder & Schindler, 2004).
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Alpine ecosystems, which represent 2.64% of land outside
Antarctica (Testolin et al., 2020), experience more rapid climate
effects than any other biome (Beniston, 2005; Duan & Xiao, 2015;
Pepin et al., 2015). Moreover, alpine areas constitute highly diverse
terrestrial and aquatic habitats (Haslett, 1997), with high degrees
of endemism (Dirnbock et al., 2011; Korner, 2004; Steinbauer
et al., 2016). Alpine areas are thus sentinels of the on-going and fu-
ture effects of climate change on biodiversity (Hauer et al., 1997,
Williamson et al., 2009). For example, while the global increase in air
temperature is 0.25°C/decade (O'Reilly et al., 2015), the European
Alps (1000-2700masl) experienced an increase in 0.36°C/decade
(Gobiet et al., 2014; Thuiller et al., 2005). This alpine temperature
effect is compounded by changes in precipitation, radiation, and
relative humidity that have led to decreases in snow cover, glaciers
volume and extent, and increased drying of freshwater habitats
(Chatterjee et al., 2010; Gobiet et al., 2014; Paillex et al., 2020).
These changes have measurable effects on the biodiversity of al-
pine ecosystems.

Alpine biodiversity is already constrained by high-altitude ex-
treme conditions, such as radiation exposure and high winds. For
example, many alpine species require pigmentation or aquatic life-
styles to protect them from high-altitude UV-B radiation, which
increases by 19% per 1000m of elevation (Blumthaler et al., 1992;
Redmond, 2018). Likewise, flying species need to generate the re-
quired power and wing size to adapt to approximately 5% increase
of airspeed per 1000m increase in altitude and low air density
(Hedenstrom et al., 2002).

The effects of climate change on alpine biodiversity are well-
documented across ecosystem types, including terrestrial (Dirnbock
et al,, 2011; Hoffmann et al., 2019; Weil et al., 2021) and aquatic
(Bruno et al., 2019; Green et al., 2022; Niedrist & Fireder, 2023). For
example, glacier-runoff reduction can lead to an increase of algal and
herbivore biomass in streams (Cauvy-Fraunié et al., 2016). In addi-
tion, after the loss of hydrological connectivity to a glacier, stopping
the influx of “glacier dust,” turbid lakes can turn clear with subse-
quent effects on community structure due to increased ultraviolet
radiation (Kammerlander et al., 2016; Tiberti et al., 2020).

Alpine ponds are one of the most biodiverse alpine ecosystem,
hosting endangered and endemic species around the world (Khan &
Baig, 2017; Yang et al., 2017). Still, the fate of alpine ponds and their
biota is uncertain under climate change, as melting glaciers may re-
veal new ephemeral habitats at high altitudes, while simultaneously,
habitats at lower altitudes may dry up due to reduced hydroperiod
(Diaz et al., 2020; Matthews & Vater, 2015; Salerno et al., 2014).
Specifically, ponds, natural, or man-made are defined as being <5ha
in surface area with a water depth of <5m, and can exhibit perma-
nent or intermittent hydroperiods (Biggs et al., 2005; Richardson
et al., 2022). Thus, due to their small size and limited accessibility, al-
pine ponds and their biodiversity response to climate change remain
a major research gap (Khan & Baig, 2017).

In contrast to alpine ponds, the biodiversity response of lowland

ponds to climate change is well-studied (Biggs et al., 2005; Herstoff

& Urban, 2014; Thompson & Shurin, 2012), providing an important
theoretical framework for predicting effects at higher altitudes. For
example, it is predicted that alpine pond biodiversity is at high risk
to climate change due to the high sensitivity of their species to tem-
perature increases, hydroperiod alteration, and the gradual isolation
of alpine ponds (Carlson et al., 2020). These general predictions
still need to be tested and synthesized; however, as species are un-
equally vulnerable to climate change and because alpine ponds have
unique temperature and hydrologic regimes.

Climate change will not affect all species equally, challenging our
ability to predict overall biodiversity responses across alpine ponds.
Indeed, certain species may even be favored under climate change
due to the disappearance of ice barriers and competitors, or perhaps
due to preferable changes in food webs (Cauvy-Fraunié et al., 2016;
Redmond, 2018; Seimon et al., 2007). Broadly however, warmer tem-
peratures lead to expected changes in species phenology (e.g., early
emergence), size and fecundity (Harper & Peckarsky, 2006), and geo-
graphical distribution (Lindholm et al., 2015; Pallarés et al., 2020).
Furthermore, water temperature increase is both a direct (via ther-
mal sensitivity) and indirect (e.g., via hypoxia) physiological stress on
many aquatic species (Diamond et al., 2023; Portner, 2001). These
water temperature effects are exacerbated by reductions in water
availability due to drying (Diamond et al., 2023).

Annual hydroperiod—the timing and the length of time that
there is standing water at a location (Convertino et al., 2013)—
is among the strongest filters for species persistence in alpine
ponds (Ryan et al., 2014), and in ponds more generally (Wellborn
etal., 1996). Hydroperiod decrease due to drying can affect species'
size, phenology (Denoél, 2003; Galatowitsch & Mclintosh, 2016),
and geographical distribution (Sandvik & Odland, 2014; Thurman
& Garcia, 2019). In addition to shrinking ecosystem surface area,
drying reduces water volume and thermal inertia so that daily water
temperature in shallow alpine ponds can fluctuate up to 30°C (Lund
et al.,, 2016; Wissinger et al., 2016). These changes propagate to
organismal interactions, especially in the differing responses of res-
ident versus range-shifting species (Shepard et al., 2022). The grad-
ual geographic isolation of suitable habitat under drying increases
the distance among alpine ponds (Ashrafzadeh et al., 2019; Simaika
& Samways, 2015), reducing their connectivity. As possibilities for
alpine pond species adaptation to climate change are limited, this
loss of connectivity reduces the accessibility of suitable niches.
Some species may thus shift their ranges to higher elevation (Baur
& Baur, 2013; Kelly & Goulden, 2008; Parmesan & Yohe, 2003), but
if those ranges exceed peak altitudes, there is an absence of suit-
able habitat.

In this review, we explored the main drivers and effects of cli-
mate change on the biodiversity of alpine ponds. We first conducted
a systematic review of the literature to address: (1) the geographic
distribution of studied alpine ponds, (2) their biodiversity, and (3)
environmental controls on this biodiversity. We then synthesized
this information to develop a conceptual model of climate change

effects on alpine pond biodiversity. Finally, we used this model to
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identify research gaps and possible mitigation actions to protect al-

pine ponds prone to an uncertain future.

2 | METHODS

We performed a comprehensive literature review using the search
engine in Clarivate Web of Science (WoS; Core Collection) for pa-
pers published between January 1, 1955, and December 14, 2021.
We created a research query including at least the terms “biodi-
versity” and “climate change”. The query also included two word
groups associated with our specific topic of interest: (1) topogra-

» o«

phy (“mountain”, “alpine”, “high-elevation”), (2) and pond habitat
(“ponds”, “waterbody(ies)”, “standing water”, “tarns”, “kettleholes”,
“wetland”, “bog”, “peatland”, “fen”, “bofedale(s)”). This search led to
316 results, all of which were written since 1997, with 48% of them
written after 2018. From these papers, we found that 73 of those
referred to ponds' biodiversity and climate change within alpine
regions.

We organized the information from each paper in a database
(see Appendix S1) according to the following: (1) study location (e.g.,
country, altitude), (2) study biological group (e.g., macroinverte-
brates, flora), (3) “essential biodiversity description variables” (EBV)
defined as biological state variables that are measurable at particular
points in time and space to document biodiversity change (e.g., com-
munity composition) (Pereira et al., 2013; Schmeller et al., 2017), (4)
pond typology (e.g., pond, shallow lake, cf. Richardson et al. (2022)),
(5) pond geometry (e.g., depth, surface), and (6) environmental driv-
ers of diversity (e.g., water quality, connectivity). We classified en-
vironmental factors affecting EBVs into explanatory variable groups
(Table 1).

Biodiversity is variously quantified across studies (e.g., functional

versus genetic, alpha versus beta), complicating synthesis efforts.
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To simplify interpretation, we chose to aggregate biodiversity mea-
sures in accordance with the six EBV classes (Pereira et al., 2013) as

follows:

genetic composition (e.g., allelic diversity),

species traits (e.g., phenology),

ecosystem function (e.g., nutrient retention),
ecosystem structure (e.g., ecosystem vertical profile),

species populations (e.g., abundances), and

S e o

community composition (e.g., taxonomic diversity).

3 | RESULTS

3.1 | The geographic distribution of published
studies on alpine ponds

Alpine ponds were predominately investigated in America and
Europe (respectively 32% and 38% of the studies; Figure 1a), with
the Rocky Mountains, the Andes, and the Alps being the most stud-
ied mountain ranges. This is a heavily skewed sampling distribution
as Europe and America represent only 2% and 24% of non-polar
alpine areas, respectively (Testolin et al., 2020). Indeed, Asia rep-
resented only 17% of studies despite constituting 73% of all alpine
area (Testolin et al., 2020), largely concentrated in the Himalaya/
Qinghai-Tibetean mountainous region (Chatterjee et al., 2010; Gujja
et al., 2003). Africa comprises the smallest alpine area (<1% (Testolin
et al., 2020)) but was home to 6% of alpine pond studies. There were
no alpine pond studies from Oceania, but one study in Tasmania
used Chironomidae spp. diversity to infer post-glacial and Holocene
paleoclimates (Rees & Cwynar, 2010).

The majority (74%) of studies occurred between 1000 and
4000 masl (Figure 1b). Of the papers that included lower-altitude

TABLE 1 Different explanatory variables are used to study the effects of climate change on the biodiversity of alpine ponds. They are

grouped into 12 categories.

Hydrodynamics (type and volume of inflow/outflow), drought/hydroperiod, water-level/depth fluctuations (or

Topography Controlling catchment type, snow coverage, and lakes connectivity
Water quantity

not fluctuation), evaporation, glacier influence
Temperature Latitude, longitude, altitude, air temperature, water temperature

Alpine ponds' characteristics

Agquatic habitat
successional stage
Land cover NDVI, environmental heterogeneity
Water quality
UV radiation
Pollutions Atmospheric and organic pollutants
Connectivity Hydrologic and topographic
Biotic pressure

Anthropic pressure

Pond surface area, pond depth, catchment size

Aquatic vegetation, microhabitat, freshwater habitat structure, absence/presence of sediment, pond

Trophy, PC, nutrient concentration, catchment lithology, water browning, transparency, turbidity

Competition/biotic interaction, fish, biological invasions, parasitism

Fire, pasturage, land use, human disturbance, grazing
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FIGURE 1 Alpine ponds papers distribution (a: localities, N=73; b: altitude, N=66).

ponds under 1000 masl (the mean tree line elevation) in their
study design (12%), most were used as endmembers of commu-
nity responses to an altitudinal gradient. High-altitude alpine
ponds between 4000 and 6000 masl were less studied (14%)
and were exclusively in Himalaya/Qinghai-Tibetean and Andean

mountains.

3.2 | The biodiversity of alpine ponds

Alpine pond species richness decreased with increasing altitude
(Oertli, 2010), as a function of increasingly constrained drivers of
temperature (Oertli, 2010), hydroperiod (He et al., 2016; Sandvik &
Odland, 2014; Thurman & Garcia, 2019) and geographical connectiv-
ity (Hill et al., 2021; Oertli et al., 2008). Geographical connectivity
of alpine ponds may be defined as the Euclidean distance from one
pond to another, allowing direct comparison with species' disper-
sal distances, or the presence of tributaries connecting one pond
to another. Whereas forests and topographic relief reduce disper-
sal distances of alpine species, rivers, lakes, and wetlands can act as

corridors, enhancing geographical connectivity (Engler et al., 2009).
Indeed, deeper water bodies like lakes act as potential popula-
tion sources for alpine ponds and are habitat substitutes when al-
pine ponds are dried (Bouvier et al., 2009; Hortal et al., 2014; llg &
Oertli, 2014).

3.2.1 | Indicator groups to investigate the effects of
climate change on alpine pond biodiversity

The effects of climate change on alpine pond biodiversity were pri-
marily studied on species for which all or part of their life stages
are strictly aquatic. The distribution of biodiversity studies accord-
ing to guild was as follows: flora (including phytoplankton) (31%),
macroinvertebrate (22%), zooplankton (21%), and amphibians (12%)
(Figure 2a). These groups, including numerous endangered species,
appeared as highly relevant climate change indicators because their
life history strategies (distribution, composition, and phenology), be-
havior, and physiology makes them particularly sensitive to climate
change.
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FIGURE 2 Different (a) study groups and (b) essential biodiversity variables (i.e., EBV, measurement required for study, reporting,

and management of biodiversity change (Pereira et al., 2013)) used to study the effect of climate change on alpine ponds' biodiversity.

« Community composition » (48) and « Species population » (25) are the principals EBV' applied on the 73 reviewed papers. They are
numerous because of the large share of articles respectively on « Taxonomic/Phylogenetic diversity » (31) and « Species distribution » (22).
Most of the EBVs have been studied for some faunal or floral groups (1-4) with the exception of « Taxonomic/Phylogenetic diversity» and

« Species distribution », which concern seven groups.

3.2.2 | Controls on alpine pond biodiversity
responses to climate change

Each of the six EBVs were used to study the effect of climate change

on alpine pond biodiversity (Figure 2b).

1. Genetic composition: Only two papers considered genetic com-
position in alpine ponds, both on amphibian phylogeography
(Ben Hassine et al., 2016; Gongalves et al., 2015). They focused
on the effect of climate change on alpine pond population
persistence, differentiation, and incipient speciation.

2. Species traits: Only five papers studied species traits in alpine
ponds. Phenology, physiology and morphology were stud- 4,
ied across macroinvertebrates, zooplankton, and amphibians
to understand resistance to temperature extremes (Hotaling
et al., 2021; Lindholm et al., 2015; Pallarés et al., 2020) and to
predatory fish invasions (Denoél et al., 2019). For example, in-
creasing water temperature modified the physiological traits (e.g.,
growth and respiration) of the Arctic fairy shrimp (Branchineta

paludosa) up to a threshold temperature, at which point it disap-
peared from the pressured pond (Lindholm et al., 2015).
Ecosystem function: Ecosystem disturbance in alpine ponds linked
with climate change was investigated only on flora in pond-peat-
land complexes (Chatanga & Seleteng-Kose, 2021; Hammerle
et al., 2018; Volkova et al., 2021), and primary productivity only
on alpine pond phytoplankton (Thompson et al., 2008). Warming
combined with other drivers (e.g., nitrogen deposition, land use, and
pollution) led to changes of the composition of alpine pond commu-
nities (Thompson et al., 2008; Volkova et al., 2021). These changes
can for example modify the community capacities of assimilation of
nitrates and dissolved gaseous nitrogen (Thompson et al., 2008).
Ecosystem structure: Paleoecological indicators (e.g., pollen,
flora and fauna fossils) are used in sediment cores to study the
long-term evolution of community composition of alpine peat-
lands with open-water pools (Connor et al., 2018; Rodriguez &
Behling, 2011). These studies describe the changing effects (since
the late Holocene) of climate and land-use pressure (e.g., fire,

farming, and upper forest line) on pond biodiversity.
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5. Species populations: Alpine pond species geographical distri-
bution were studied (27% of selected papers) to understand
how they react to climate change effects. Species move with
the variation of their suitable habitat distribution, in relation
to increase of temperature (Pallarés et al., 2020), frequency
and duration of heatwaves (Carlson et al., 2020), glacier retreat
(Seimon et al., 2007) and competition with valley and/or para-
sites species (Lindholm et al., 2016). For cold specialist species,
warming and drying led to adaptation (Pallarés et al., 2020), or
regional scale retraction of their distribution area (with local
extinction) (Carlson et al., 2020; Lindholm et al., 2016). In ad-
dition, alpine ponds were colonized by warmer tolerant spe-
cies that were able to extend their range (Seimon et al., 2007).
These species can be potential competitors for alpine pond
specialist species making their joint survival more difficult
(Shepard et al., 2022).

6. Community composition: Studies were done on alpine ponds
using principally taxonomic/phylogenetic diversity (42% of se-
lected papers). Warming led to broad changes on species richness
(Redmond, 2018; Sandvik & Odland, 2014). For example, no spe-
cialist species colonize alpine ponds when rare specialist species
are disappearing (Sandvik & Odland, 2014). But also, communities
can shift to smaller body size species more adapted to warming
conditions (Redmond, 2018).

Overall, species distributions and taxonomic/phylogenetic di-
versity best described the effects of rapid climate change on alpine
pond biodiversity. Indeed, temperature increase at high altitudes is
so rapid that in situ possibilities of species adaptation are limited
(Baur & Baur, 2013; Pallarés et al., 2020; Parmesan, 2006). Using
principally these two EBVs at the scale of populations and commu-
nities, we can describe how other environmental factors (e.g., water

quality) influence the biodiversity of alpine ponds.

3.3 | Environmental controls shaping the
biodiversity of alpine ponds

To better predict the effects of climate change on alpine pond taxo-
nomic/phylogenetic diversity and species distribution, we identified
the three dominant environmental controls (Table 1) common to the
73 selected studies. The main drivers studied on taxonomic/phylo-
genetic diversity were temperature (n=21), water quantity (n=17),
water quality (n=12), land cover (n=9), connectivity (n=9) and bi-
otic pressure (n=8). On species distribution they were temperature
(h=17), biotic pressure (n=9), water quantity (n=8), and connec-
tivity (n=7). For these two EBVs, temperature and water quantity
were the a priori most constraining environmental controls (and
the most studied), with connectivity following close behind. To un-
derstand the effects of climate change on alpine pond biodiversity,
we explored the effects of these three main drivers: temperature,
hydroperiod (for water quantity), and connectivity (hydrologic and
topographic).

3.3.1 | Temperature

Alpine ponds are post-glacial refugia (Pallarés et al., 2020) for cold
specialist/stenotherm species that have undergone a long process
of adaptation to environmental constraints. For example, due to
cold water and air temperatures, species exhibit a short activ-
ity (growth) period when alpine ponds are free of ice and snow
(Céréghino et al., 2012; Hinden et al., 2005; Lindholm et al., 2015).
At least 24 species (birds, vertebrates, invertebrates, flora) are en-
demic to alpine ponds (Chatanga et al., 2019; Izaguirre et al., 2018;
Pallarés et al., 2020) because many of them remain isolated in
these high-altitude areas (Sharma et al., 2015). Still, the total num-
ber of endemic alpine pond species is unknown and it is thought
that they are among the most endangered in the world (Rosset &
Oertli, 2011).

Alpine pond species distributions are limited by air temperature.
For macroinvertebrates and amphibians, cold thermal specialist spe-
cies have been described in Switzerland located at sites with a mean
annual air temperature not exceeding 6°C (Rosset & Oertli, 2011).
Although they are able to endure large temperature ranges over
daily timescales (e.g., >10°C in Norway), these species are sensi-
tive to high temperatures (Epele et al., 2022; Lindholm et al., 2015)
and are geographically restricted to a small thermal range (Rosset
& Oertli, 2011). Experimental studies of beetles (Agabus nevadensis
and Hydroporus sabaudus sierranevadensis) in Spain demonstrated
that while increased air temperature was not lethal to adults, long
exposure (>10days) to warmer temperatures induced oxidative
stress (Pallarés et al., 2020). Still, it is unclear how warming may af-
fect less tolerant larvae.

Water temperature determines alpine ponds' community com-
position (Miller et al., 2021). Warmer waters have interactive effects
with predation patterns on species growth, distribution, and intra-
guild competition (Loewen et al., 2020; Owens et al., 2023; Shepard
et al., 2022; Symons & Shurin, 2016). For example, as waters warm
and species migrate to higher elevations, preferential consumption
of large body zooplankton by predators (Oncorhyncus mykiss) allows
smaller body zooplankton to dominate colonization patterns (Jones
et al., 2020). Moreover, increased water temperature preferentially
reduces larger zooplankton populations due to their temperature-
sensitive metabolism, leaving smaller, more metabolically plastic
zooplankton species to fill their niche (Redmond, 2018). Increased
metabolic and energetic demand induced by temperature increase
can also reduce total animal biomass (Bruno et al., 2019), and sub-
sequently less available dispersal energy. Indeed, many cold water
specialists that were present at the beginning of the 20th century
are now absent in alpine ponds, following trends from boreal and
arctic regions (Iglikowska & Namiotko, 2012).

By contrast, thermal generalist species occupy a wider distribu-
tion area than specialists and can more rapidly colonize the shifting
thermal landscape (Rosset & Oertli, 2011; Sturm, 2012). If connec-
tivity is established, generalist species can colonize higher and cooler
sites as lower sites begin to warm. For example, anurans and their

pathogens (Chytridiomycosis spp.) were able to move 156 m higher
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(5244 to 5400 m) in 10years (Seimon et al., 2007). In addition to their
mobility, some generalist species can adapt to cooler temperatures:
For example, decreasing their body size and consequently their need
for nutrients or periodically going out of the water. They are charac-
terized by higher abilities to colonize new habitats when the other
species of the same taxonomic group are not (Sturm, 2012).

As air temperature increases, increasingly more generalist spe-
cies are arriving from lower altitudes with warmer and drier con-
ditions when specialist species are decreasing (He et al., 2016;
Stiles et al., 2017). For example, alpine pond bryophytes are being
replaced by vascular plants (He et al., 2016), and birds from lower al-
titude are now established on the Bogota Region in Colombia (Stiles
et al., 2017). This overall upward trajectory shrinks the range for na-
tive alpine pond species, like the Arctic fairy shrimp (Branchinecta
paludosa), whose occurrence was reduced over 41years from 77
ponds to 59 ponds in a pool of 121 ponds (Lindholm et al., 2012), due
to its maximum thermal tolerance of 12.7°C (Lindholm et al., 2015).

Although increased temperatures are driving specialist spe-
cies' disappearance, replacement generalists are likely causing
alpine ponds to experience a simultaneous increase in overall tax-
onomic/phylogenetic diversity and a homogenization (Iglikowska &
Namiotko, 2012). Still, few studies have documented direct links with
increased temperature and alpine pond biodiversity, and we found
no work on increased temperature effects on alpine pond snow
cover or freezing. Nevertheless, we hypothesize that ice or snow
cover period shortening will reduce alpine pond biodiversity linked

for example to phenological prey-predator desynchronization.

3.3.2 | Hydroperiod of alpine ponds

Although the effects of hydroperiod have been little studied in al-
pine pond biodiversity, the few studies that have been done con-
verge on similar results obtained in many studies done in freshwater
depressional wetlands of lower altitude (Boix & Batzer, 2016; Epele
et al., 2022; Kneitel, 2014). Hydroperiod decrease can lead to modi-
fication of community composition, species traits and distribution,
or to species disappearance. For example, mesocosm experiments
linked lowered hydroperiod to reduced biomass of amphibian indi-
viduals at emergence (Thurman & Garcia, 2019). Reduced hydro-
period can also cause community composition modification and
decrease of species distributions. In Norway alpine ponds, between
1979 and 2010, hygrophilic plants (e.g., Eriophorum angustifolium,
Carex nigra) occurrence decreased, coinciding with colonization by
species of drier environments, like graminoids (Calamagrostis ne-
glecta, Deschampsia alpina) (Sandvik & Odland, 2014). Likewise, some
bryophytes are now absent in areas that have undergone hydrop-
eriod reduction (He et al., 2016). Moreover, the 2017 summer heat
waves dried out alpine ponds in Chamonix, which led to Rana tempo-
raria tadpoles mortality (Carlson et al., 2020).

Some cold specialist species can be adapted to hydroperiod
variability. Like Somatochlora alpestris, some boreo-alpine odonata
species have been seen burrowing in the peat to resist drought
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effects (Grand & Boudot, 2006; Heidemann & Seidenbusch, 2002;
Wildermuth, 2013). However, these resistances were not measured
(e.g., duration of resistance, soil moisture threshold). Some am-
phibians may adopt other resistance strategies, such as plasticity
in metamorphosis timing as a function of hydroperiod conditions
(Denoél, 2003). Indeed, phenological plasticity appears to be the
most common resistance strategy to hydroperiod reduction across
generalist (Izaguirre et al., 2018; Laurila et al., 2002) and specialist
species, alike (Laurila et al., 2002; Nylin & Gotthard, 1998). Still, spe-
cies are ultimately limited by timing and duration of pond drying, and
few species are adaptable to entire gradient of hydroperiod reduc-
tion (Galatowitsch & Mclntosh, 2016).

Climate change is leading to variation of temperature and pre-
cipitation patterns (Barnett et al., 2005; Gobiet et al., 2014; Milly
et al., 2005). Permanent alpine ponds are becoming temporary, and
some temporary are becoming more permanent (Epele et al., 2022;
Robinson & Oertli, 2009; Wissinger et al., 2016). The presence of
standing water is also controlled by winter ice grip when the entire
water volume freezes in shallow systems. Date and duration of water
availability are one of the main factors controlling alpine biological
cycles (Ryan et al., 2014). Under limited mobility, alpine pond spe-
cies need to resist in situ to hydroperiod range changes by modify-
ing, for example, their desiccation resistance. In addition, they are
undergoing modifications in the composition of the communities,
among other things by the arrival of new, more tolerant species. If
they cannot adapt rapidly, they need to move to find an alpine pond

connected with suitable hydroperiod conditions.

3.3.3 | Connectivity

The spatial distribution of alpine ponds is heterogeneous and frag-
mented, highlighting the importance of regional connectivity in driv-
ing biodiversity patterns. Indeed, depending on location within the
landscape and connectivity to other suitable habitats, either local
or regional processes may drive an individual alpine pond biodiver-
sity (Leibold et al., 2004). For example, macroinvertebrate diversity
in Switzerland (Macun Cirque) is positively correlated with regional
alpine pond connectivity, but is uncorrelated with local variables
(surface area, average water depth, hydroperiod) (Hill et al., 2021;
Oertli et al., 2008). Connectivity among alpine ponds is therefore
an important component of their metacommunity framework (sensu
Leibold et al., 2004). To survive under climate change, alpine pond
species need to adapt or to move to a suitable connected habitat.
Those that cannot are threatened with extinction.

Alpine pond networks are made up of habitats that rapidly fluc-
tuate in different gradients of hydroperiod. As temperature increase,
early melting of snow and glaciers shifts the timing of spring water
availability and typically results in a summer hydroperiod decrease
and drying of smaller ponds (Robinson & Oertli, 2009). Moreover,
glacial margin expansion under warming is leading to a transfor-
mation of alpine pond landscapes and networks, like the appear-
ance of ecological corridors, and disappearance/creation of ponds,
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themselves (Seimon et al., 2007). New connectivity is allowing cer-
tain species to colonize new environments, although wind speed
and directionality has an important role too for the dispersal of
non-flying terrestrial and aquatic species in alpine areas (Crabtree
& Ellis, 2010; Epele et al., 2021). Increased connectivity promotes
pathogen (Batrachochytrium dendrobatidis) colonization which can
lead to extinctions of amphibian populations (Seimon et al., 2007)
and subsequent colonization by new species on vacated habitat
patches (Leibold et al., 2004; MacArthur & Wilson, 2001). By con-
trast, habitat isolation under reduced connectivity limits aquatic
plant colonization (Arthaud et al., 2013).

Broadly, effects of climate change on biodiversity of alpine
ponds is poorly explored compared to alpine terrestrial ecosys-
tems. Indeed, the effect of climate change on habitat connectivity
of alpine terrestrial species has been extensively studied (Breshears
etal., 2008; Kelly & Goulden, 2008; Parmesan & Yohe, 2003). Alpine
pond species appear to follow the same distributional changes re-
lated to climate change as terrestrial species. The geographic ranges
of many alpine species are changing by contracting, expanding or
shifting in the direction of higher altitudes (Breshears et al., 2008;
Kelly & Goulden, 2008; Parmesan & Yohe, 2003).

3.4 | Conceptual model of the effect of climate
change on alpine ponds' biodiversity

Our comprehensive review indicated that water temperature, hy-
droperiod and connectivity are the main drivers of the biodiversity
of alpine ponds in the perspective of climate change. We used these
three drivers to develop a conceptual model to predict the effects of
climate change on the biodiversity of alpine ponds (Figure 3).

From this model, we draw several predictions of the effects
of climate change on alpine pond biodiversity. The first predic-

tion is that temperature increase and its associated effect on

—— High connectivity
= = Low connectivity

Alpine ponds
taxonomic/phylogenetic diversity
species distribution area

[[] Generalist species

hydroperiod reduction will shrink cold specialist species distri-
butions and overall taxonomic diversity. The second prediction is
that the more connected alpine ponds are, the more the decline
of specialist species can be mitigated. In contrast, we predict that
generalist species distribution area and taxonomic diversity will
be favored by temperature increase. Nevertheless, the decrease
in hydroperiod will have similar effects on generalist species as it

does on specialist species.

3.5 | Research gaps

We identified several research gaps related to the three main driv-
ers of the biodiversity of alpine ponds in the perspective of climate
change (Table 2). The largest research gap we identified is the ther-
mal range of alpine pond specialist species, which is needed to assess
their capacities to adapt and survive under temperature increases.
Filling this gap will make it possible to anticipate and guide the res-
toration or creation of suitable habitats for threatened species. A
second research gap is the ability for generalist species to colonize
warmed habitats, as these species increase pressure for specialist
survival. We should further quantify species' resistance abilities to
drying and freezing, as has recently been done for invertebrates
in temporary freshwaters (Strachan et al.,, 2015; Stubbington &
Datry, 2013; Williams, 1996). The loss of alpine pond biodiversity
under climate change could be attenuated if specialist species are
able to colonize novel suitable habitats in higher altitudes or lati-
tudes. Yet, we need to improve knowledge about dispersal capaci-
ties of the different stages of alpine pond species. This will allow
estimating the thresholds in terms of connectivity among alpine
ponds promoting species survival and recolonization. Filling these
critical research gaps will allow accurate prediction of current and
future species distributions and can help guide conservation strate-

gies for alpine ponds prone to an uncertain future.

. Specialist species (cold
stenotherm)

B All species

Temperature

Hydroperiod decrease

FIGURE 3 Effects of climate change (temperature, hydroperiod) on alpine ponds' taxonomic/phylogenetic diversity and species
distribution area. Warming leads to an increase of alpine ponds' taxonomic/phylogenetic diversity and species distribution area for generalist
species (orange), especially since connectivity is high (decrease for specialist species had a higher decrease when alpine ponds are low
connected [blue]). Decrease in hydroperiod leads to decrease (stronger when they are poorly connected) of taxonomic/phylogenetic

diversity and species distribution area for all species (black).

85UB017 SUOLULLOD 3AIID 3|edl|dde aUy Ag pausenob a1 3ol YO ‘BSN J0 S3|nJ 04 ARIq1T BUIUO /8|1 UO (SUORIPUOD-PLR-SLLBYWI0D" A3 1M ARIq 1 [RU1IUO//SARY) SUORIPUOD PUe SWiB L 8U} 885 *[7202/€0/ST] uo Ariqi aulluo Aojim ‘osdiq - Seiu| A €80T €899/200T 0T/I0p/Lu0d" 3| ImAfeq jou|uoy/sdny o papeo|umoq ‘2 ‘¥20e ‘85LLSY02



LAMOUILLE-HEBERT T AL.

Ecology and Evolution 9 of 14
=t S VY LEY- 2o

TABLE 2 Few studies have been carried out to describe and quantify the effects of climate change induced variability of water
temperature, hydroperiod, connectivity, on alpine pond biodiversity. Here we list the main research questions we need to develop in order
to identify an operational framework for the preservation of specialist alpine pond species threatened by climate change.

Driver Research questions

Water temperature

Will these ranges be available with climate change?

What are the cold stenotherm alpine pond species and their thermal ranges?

What are the physiological resistance pathways to resist temperature increase, amplitude and freezing?

Which species will benefit from the increase in water temperature to colonize alpine ponds?

How cold stenotherm species will survive with new species colonizations?

Hydroperiod

What is the duration cold stenotherm alpine pond species could resist drying in summer and freezing in winter?

Does frequency of drying have significant effects on organism survival?

What are the effects of intra-annual drying events (frequencies and duration) on species' distribution?

What are the physiological resistance pathways for organisms to resist freezing and drying?

What frequency and duration of drying/freezing is tolerable for the organisms colonizing alpine ponds?

With early melting of ice and snow on alpine ponds, does predator-prey phenology still synchronize?

Connectivity

What is habitat availability for alpine pond species?

What are dispersal abilities of different stages of cold stenotherm alpine pond species?

How land-use changes (drained ponds, creation of artificial ponds) are already affecting habitat availability for alpine

pond species?

Are connectivity's thresholds ensuring the maintenance of cold stenotherm alpine pond species?

Can we prioritize connectivity maintenance and restoration between alpine ponds to preserve cold stenotherm alpine

pond species?

What are the dispersal abilities of “winning” species?

How connectivity maintenance, restoration, and new connectivity (glacier retreat for example) between alpine ponds

could allow “winning” species colonization?

Can we find a way to preserve or to create cold stenotherm species connectivity between alpine ponds without favoring

“winning” species colonization?
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