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Abstract

The distribution of farm locations and sizes is paramount to characterize
patterns of disease spread. With some regions undergoing rapid intensifi-
cation of livestock production, resulting in increased clustering of farms in
peri-urban areas, measuring changes in the spatial distribution of farms is
crucial to design effective interventions. However, those data are not avail-
able in many countries, their generation being resource-intensive. Here, we
develop a farm distribution model (FDM), which allows the prediction of lo-
cations and sizes of poultry farms in countries with scarce data. The model
combines (i) a Log-Gaussian Cox process model to simulate the farm distri-
bution as a spatial Poisson point process, and (ii) a random forest model to
simulate farm sizes (i.e. the number of animals per farm). Spatial predictors
were used to calibrate the FDM on intensive broiler and layer farm distribu-
tions in Bangladesh, Gujarat (Indian state) and Thailand. The FDM yielded
realistic farm distributions in terms of spatial clustering, farm locations and
sizes, while providing insights on the factors influencing these distributions.
Finally, we illustrate the relevance of modelling realistic farm distributions
in the context of epidemic spread by simulating pathogen transmission on an
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array of spatial distributions of farms. We found that farm distributions gen-
erated from the FDM yielded spreading patterns consistent with simulations
using observed data, while random point patterns underestimated the prob-
ability of large outbreaks. Indeed, spatial clustering increases vulnerability
to epidemics, highlighting the need to account for it in epidemiological mod-
elling studies. As the FDM maintains a realistic distribution of farm location
and sizes, its use to inform mathematical models of disease transmission is
particularly relevant for regions where these data are not available.

1. Introduction

Livestock contribute to food security as a main source of animal protein
(dairy, meat and eggs) and provide 17% of the world population’s dietary
energy intake (FAO, 2017) whilst occupying 80% of global agricultural land
(Ritchie and Roser, 2019). The consumption of animal source food is in-
creasing most rapidly in low- and middle-income countries (LMICs) (Kastner
et al., 2012). In Asia, chicken meat production has quadrupled in the last
two decades (FAOSTAT); this rapid intensification has been characterised
by geographic displacement of farms, especially pig and poultry farms which
have smaller land requirements than ruminants, from rural to peri-urban
areas (Steinfeld, 2006).

Accurate and up-to-date maps of livestock farms are crucial to assess
their environmental impacts and the risk of diseases spreading through live-
stock populations (Keeling et al., 2001). However, many LMICs do not
have the resources needed to keep track of exact farm locations. For this
reason, some studies have relied on modelling frameworks to estimate high-
resolution farm distribution at various administrative levels, and to improve
on coarse census data. Such frameworks have mostly employed linear regres-
sion models (Prosser et al., 2011; Robinson et al., 2014; Van Boeckel et al.,
2011). Van Boeckel et al. (2012) mapped the distribution of intensive poul-
try farms in Thailand using a simultaneous autoregression model (SAR) that
explicitly accounted for spatial autocorrelation. However, as reported by the
authors, the model failed to capture the high levels of spatial clustering that
are observed among intensive farms in that country. Random forest mod-
els have been shown to outperform linear regression models when used to
downscale census data at the global scale for several livestock animal species
(Gilbert et al., 2018) or at national scale for pig populations in Thailand
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(Thanapongtharm et al., 2016) and China (Zhao et al., 2022). However, the
distribution of animals at farm level and the process of generating clustered
point distributions are yet to be embedded in these models. For instance, the
Gridded Livestock of the World (GLW) predicts livestock as a continuous,
gradually varying, density of animals per pixel at 10 km or 1 km resolution
(Wint and Robinson, 2007; Robinson et al., 2014; Gilbert et al., 2018). Thus,
these models do not provide information about how animals are distributed
across farms, and how farms are distributed across space, despite these pa-
rameters having major influence on both environmental impacts and disease
risk associated with intensification of livestock production.

This paper develops a novel modelling framework that alleviates limita-
tions of previous models and can be used to predict both farm locations and
sizes. The framework builds on a previous point pattern model introduced
by Chaiban et al. (2019, 2021) that was used to predict clustered farm dis-
tributions. We show that this Farm Distribution Model (FDM) successfully
predicts spatial farm locations and sizes of poultry farms in three ’test’ ge-
ographic regions (Bangladesh, Gujarat and Thailand) that are characterised
by different levels of intensification and for which farm data were already
available.

We trained a Log Gaussian Cox Process (LGCP) and Random Forest
model (RF) and assessed their external and internal validity using three ob-
served point patterns. This allowed us to test the robustness of the method
to reproduce farm distribution in data-scarce countries. We further illustrate
the relevance of our approach to inform models of disease spread in livestock
by comparing epidemic simulations on empirical and synthetic farm distri-
butions generated with different methods.

2. Methods

2.1. Training data sets
The modelling procedure was based on farm size and location data from

three regions in Asia: Thailand and Bangladesh (whole country) and Gu-
jarat (state in India). The Gujarat Biotechnology Research Centre collected
data on the distribution of farms in Gujarat, India. The data represented
are based on the information acquired from the Department of Animal Hus-
bandry, Dairying & Fisheries, Ministry of Agriculture & Framers Welfare,
Government of India and Directorate of Animal Husbandry, Government of
Gujarat, Gandhinagar, Gujarat, India in the year 2020.
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Area Area Code GDPa

(billion US$)
Surface area
(103 km²)

Intensity
(pts/m²)

Intensity of broiler
farms (pts/m²)

Intensity of layer
farms (pts/m²)

Number of farms
(broilers - layers)

Gujarat IN.GJ 230 196 1.77 10−8 9.88 10−9 1.39 10−9 2,611 - 311
Thailand THA 543.5 514 4.81 10−9 3.14 10−9 1.03 10−9 3,717 - 1,439
Bangladesh BGD 302.6 135 2.27 10−7 9.80 10−8 3.75 10−8 22,159 - 9,074

Table 1: Characteristics of data sets in terms of area surface, intensity of points distribution
(points/m²) and economic features.

aworldbank 2019

Around 59% of farm locations in Gujarat corresponded to village cen-
troids coordinates. Farms with overlapping locations were assigned to ran-
dom points within the area of the corresponding villages. A similar proce-
dure was adopted for farms in Thailand for which only the village location is
known (data collected in 2010 by the Department of Livestock Development
(Chaiban et al., 2019)). Finally, the geographic coordinates of the farms in
the Bangladesh dataset were obtained from an agricultural census collected
by the Food and Agriculture Organization of the United Nations, ensuring
accuracy and reliability of the location data.

Bangladesh and Gujarat data sets cover areas of similar size, while farms
in Thailand are scattered over a region that is around three times larger
(Table 1). Data sets consisted of the coordinates and capacity of farms
differentiated according to their type of production into broiler and layer
farms (Figure S1). We assumed that the size of a farm coincides with its
capacity (i.e. maximum number of animals that can be raised on a farm)
and hence ignored yearly stock variations. We kept only farms with more
than 500 chickens since the original FDM was developed for intensive farms
(Chaiban et al., 2019).

2.2. Spatial predictors
Table 2 lists the spatial predictors used for the LGCP and RF models

accross 4 categories of covariates: anthropogenic, topographical, vegetation
and livestock characteristics. The distribution of chicken density was derived
from the most recent version of the Gridded Livestock of the World (GLW,
(Gilbert et al., 2018)). Proximity predictors were the inverse of time travel
to major cities, ports and roads (x = 1

timetravel+1
), so that the maximal values

were associated to the closest locations. These predictors allowed us to assess
if farm locations were affected by infrastructure density. Other predictors
were used as originally published (references in the Table 2).
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Type Variable Units Source Abbreviation

Anthropogenic

Human population density Log10 people per hectare Tatem, 2017 Hpop

Proximity to cities with
5,000,000<x<50,000,000 inhabitants Minute−1 Nelson et al, 2019 Access_MC1

Proximity to cities with
50,000<x<50,000,000 inhabitants Minute−1 Nelson et al, 2019 Access_MC11

Proximity to cities with
with 1,000,000<x<5,000,000 Minute−1 Nelson et al, 2019 Access_MC2

Proximity to large
and medium ports Minute−1 Nelson et al, 2019 Access_Port12

Proximity to roads Minute−1 Meijer et al, 2019 Proxim_roads
Topography Slope Amatulli et al, 2018 Slope

Vegetation Crop cover Pixel % covered by crops Fritz et al, 2015 Crop

Tree cover Pixel % covered by forest Hansen et al, 2013 Tree
Livestock Chicken population density Log10 animals per hectare Gilbert et al, 2018 nChicken

Table 2: List of spatial predictors.

2.3. Point pattern modelling
The procedure for modelling farm locations is based on the point pat-

tern analysis method described in Chaiban et al. (2021). We modelled spa-
tial point patterns using LGCP associated with spatial predictors and the
Palm maximum likelihood method of parameters optimisation (Tanaka et al.,
2008). This approach was found to outperform other types of point pattern
models at reproducing clustered farm distributions (Chaiban et al., 2021,
2019). This method is suitable to deal with highly inhomogeneous point
intensity and spatial autocorrelation. Point distributions are generated in
space stochastically according to a Poisson process with intensity λ(u):

λ(u) = exp(θ0 + θ1pred1 + θ2pred2 + ...+ θnpredn) . (1)

where u denotes a location of the area, θi are the model weights associated
to spatial predictor predi.

We applied a LGCP model to each pairing of study region (Bangladesh,
Thailand, and Gujarat) with a poultry production type (broiler or layer),
resulting in a total of six models. The validity of these models was then
evaluated both within their respective training regions (internal validation)
and by application to regions where they were not originally trained (external
validation).

The importance of each spatial predictor predi was computed as the prod-
uct of its maximum value across space and its estimated weight θi.
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2.4. Point pattern characterisation and model validation
2.4.1. Spatial correlation analysis of points pattern

Ripley’s K-function measures the clustering behaviour in a spatial point
pattern (SPP), and is defined as the cumulative average number of data
points found within a distance r of a typical data point (Ripley, 1976; Bad-
deley et al., 2015). The inhomogeneous K-function, Kinhom(r), is a general-
ization of Ripley’s K-function designed to analyze point patterns with varying
intensity across space. The inhomogeneous K-function is defined as follows:

Kinhom(r) =
|W |

N(N − 1)

N∑
i=1

n∑
j=1
j ̸=i

I{dij ≤ r}eij , (2)

where N is the number of points, |W | denotes total study area, I{dij ≤ r}
equals 1 if the euclidian distance dij between points i,j is less than r and is
0 otherwise, and eij is an edge correction weight to avoid sampling biases.
Given the location of the first point x and the distance d = ||x − x′||, the
second point x′ must lie in the circle b of radius d and centred at x. However,
the circle b is generally only partly inside the study area W for large d.
Then, the Ripley’s isotropic correction eij uses the fraction of the length
of the circle, ℓ, that is within the study area and considers that the point
pattern is isotropic (statistically invariant under rotation). We calculated
the probability of the second point x′ being inside the window W as:

p(x, d) =
ℓ(W ∩ δb(x, d))

2πd
, (3)

Finally, the edge correction is:

eij =
1

p(xi, dij)
. (4)

We used the Besag’s transform of the in-homogeneous K-function (K(r))
by using the function linhom in the package spastat which is:

Linhom(r) =

√
Kinhom(r)

π
. (5)
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2.4.2. Global Rank Envelope Test for Model Validation
The global rank envelope test is a robust statistical method used to eval-

uate the goodness-of-fit of a model by comparing the observed data to a
collection of simulated data generated from the model. It provides a com-
prehensive approach for assessing whether simulated and observed patterns
are consistent.

The global rank envelope test is based on a chosen test statistic, in this
study the Linhom(r) function, a transformed version of the inhomogeneous K-
function. For each simulation and at each distance r, we computed the test
statistic and ranked the observed value of the statistic among the simulated
values. This created an envelope of expected values under the model. If the
observed test statistic lay within this envelope for all distances, it suggested
that the model was an adequate fit to the observed data. The test procedure
is described in the Appendix A.2.

2.4.3. Quadrat counting tests
We divided study areas into quadrats, and computed counts of points

within each quadrat (n = 23 - 44 depending on the study area) (De Cola,
1991). The patterns of quadrats are shown in Figure S2. We did not consider
quadrats that occupy less than 80% of the complete theoretical polygon to
avoid edge effects. The performance of a model was evaluated by comput-
ing the correlation coefficient between the log-transformed of the number of
points per quadrat between the observed and simulated pattern patterns.

2.5. Farm size modelling
2.5.1. Random Forest model with spatial predictors

The second-step of the algorithm consists of training a RF regression
model to predict farm sizes. First, we averaged spatial predictors within a
radius of 5,000 m around each farm. We tested different buffer zone sizes, of
2,500 m, 5,000 m and 7,500 m, and we selected the 5,000 m buffer zone in
the final analysis as it performed slightly better than others. Secondly, we
transformed farm sizes X using a power function to reduce the skewness of
their distribution:

Xtransform =
Xa − 1

a
, (6)

and used the function PowerTransformer from the sklearn package in Python
to fit the parameter a. We used the function RandomForestRegressor of the
sklearn package in Python, with 500 decision trees.
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The goodness of fit (GOF) metrics of the predictions were all established
through cross-validation, i.e. by measuring the correlation between observed
and predicted animal numbers in farms that were not used to train the Ran-
dom Forest models. The total data set was divided into a training data set
(75% of the data) and a validating data set (25%). This process was re-
peated 5 times, each time selecting a different random set of farms to train
the RF models. We then calculated GOF measures, i.e. the correlation
coefficient and the root-mean-square error (RMSE) between predicted and
observed farm sizes for each fold. Both GOF measures are calculated using
log transformed and absolute values of farm sizes.

2.6. Mathematical modelling of disease transmission
2.6.1. Simulations

We simulated the spread of a pathogen over M poultry farms with spatial
coordinates (xi, yi) and sizes Xi, i = 1, ...,M . Simulations were stochastic and
farms’ infection statuses were updated synchronously, with each time step
being 1 day long. Each farm was either susceptible to infection (S), infec-
tious (I) or removed (R). Removed farms do not contribute to transmission
and cannot be reinfected. An infectious farm i transmits the pathogen to a
susceptible farm j with daily probability:

pij(S → I) = 1− exp(−γij) , (7)

where the force of infection exerted by i on j is given by:

γij = β ·XQI
i ·XQS

j ·K(dij) , (8)

β denoting transmissibility and K(dij) representing a spatial transmission
kernel depending solely on the (euclidean) distance between i and j. The
exponents QI and QS allow for different scalings of the force of infection
with the sizes of infectious and susceptible farms, respectively.

Infectious farms recover with daily probability:

p(I → R) = 1− exp(−µ), (9)

where µ is the recovery rate.
We implemented our simulations in C++ using the Conditional subsam-

ple algorithm (Sellman et al., 2018). Briefly, the algorithm overlays a grid
over the study area, so that transmission attempts involving farms belonging
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to different grid cells can be checked only after resolving whether any trans-
mission occurs between those cells. In order to ensure an efficient implemen-
tation, we used a heuristic, adaptive routine to identify an optimal gridding.
Both simulation and cell-construction routines are detailed in (Sellman et al.,
2018).

2.6.2. Transmission kernels
We considered a power-law transmission kernel employed by Hill et al.

(2017) to study the spread of H5N1 avian influenza virus in Bangladesh:

K(d) = 1 if 0 ≤ d < dmin, (10)

and

K(d) = (dmin/d)α if d ⩾ dmin, (11)

with dmin = 0.1km.
We considered long-ranged and short-ranged transmission kernels corre-

sponding respectively to α = 0.643 and to α=3 (Figure S3).

2.6.3. Simulation scenarios
For a given study area, we simulated pathogen transmission using six

different spatial distributions of farms. First, we considered the empirical
distribution of farms, which we used as a reference. Results from this scenario
were then compared with SPP generated from the LGCP, and a random
distribution of points pattern generated according to a Complete Spatial
Randomness process. We also compared a homogeneous farm size scenario,
where all farm sizes were set to the average farm size (Constant Size; CS),
with a heterogeneous farm size scenario, where RF model was used to assign
a size to each farm (Random Forest Size; RFS). All scenarios are summarized
in table 3 and displayed in Figure S4 in the Supp Material.

We ran 2000 independent simulations for each scenario. In the case of
simulated farm distributions, we generated 40 independent farm distributions
and ran 50 disease spreading simulations for each model formulation. In each
simulation, we initialised the infection by selecting and infecting a random
farm at t = 0; a simulation stopped when no infectious farms remained.
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Name Description
Empirical Uses observed data

Empirical (CS) Uses empirical locations but farm size is set to the
average farm size for all farms.

Random+CS Farms are scattered uniformly at random over the study area; farm size is set
to a constant value (Constant Size; CS), namely average farm size.

LGCP+CS Farm locations are generated from a LGCP;
farm sizes are set to a constant value (Constant Size; CS), namely average farm size.

Random+RFS Farms are scattered uniformly at random over the study area; farm sizes are
generated from a RF model (Random Forest Size; RFS).

LGCP+RFS Farm locations are generated from a LGCP;
farm sizes are generated from a Random Forest model (Random Forest Size; RFS).

Table 3: Farm distributions considered in the disease transmission modelling.

2.6.4. Spatial epidemic risk.
In order to compare spatial predictions of epidemic risk using different

farm distributions, we implemented the following methodology. We defined
the risk Vi for farm i as the proportion of 100 simulations in which an epidemic
starting from this farm reaches at least 100 farms. For each distribution of
farms, we first calculated the risk Vi for each farm. In the case of BGD we
considered only 4000 random farms as initial seeds due to long computation
times. Then, in order to compare different farm distributions, we defined a
common spatial grid covering the study area and averaged risk Vi in each
cell. This procedure yielded an average risk Va for each cell in the cell a =
1, ..., Ncel. Using the same spatial grid for all point models, we then performed
a quantitative comparison between the different models on the basis of Va.
We used a rectangular grid of 40x40 km cells to the empirical distribution of
farms while allowing for an additional margin of 20 km in each direction.

To assess the extent to which the maps of Va obtained using LGCP models
trained on different sites match the estimate of V empirical

a obtained by using
the empirical distribution, we calculated the Spearman’s rank correlation co-
efficient between V empirical

a and the maps Va(j), where j = 1, 2, ..., 40 extends
over all the realisations generated from the same model (we omit any pair of
cells where at least one does not contain farms). We thus obtain a collection
of 40 correlation coefficients for each point model.
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3. Results

3.1. Characterisation of spatial homogeneity of farms distribution
Farm density is higher in Bangladesh than in Gujarat and Thailand (Ta-

ble 1). In all three study areas, the density of broiler farms is higher than
for layer farms. According to the L-function, all empirical SPPs are more
clustered than a random SPP for distances under 100 km (Figure 1A). The
maximal level of clustering occurs under 20 and 25 km for all SPPs, except
for layer farms in Bangladesh where it occurs at around 9 km. For all three
study areas, layer farms are more clustered than broiler farms for around
r < rmax

2
, with rmax being the maximum radius for each area.

Bro
ile

r_
BGD

La
ye

r_
BGD

Bro
ile

r_
TH

A

La
ye

r_
TH

A

Bro
ile

r_
IN

.G
J

La
ye

r_
IN

.G
J

Hpop

nChicken

Proxim_roads

Tree

Crop

Access_MC1

Access_MC11

Access_MC2

Access_Port12

Slope
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Lo
g
1

0
(I

m
p

o
rt

a
n
ce

 o
f 

co
v
a
ri

a
te

s)

La
y
e
r

B
ro

ile
r

La
y
e
r

B
ro

ile
r

La
y
e
r

B
ro

ile
r

BGD THA IN.GJ

A B
Bangladesh
Gujarat

Thailand

0

- 
r

Figure 1: A. L-function as a function of r for each training data set. The L-function
for broiler (solid) and layer (dashed) farms are presented. Subtracting r from Linhom(r)
aids in interpreting the plots; when Linhom(r)− r equals zero, it signifies complete spatial
randomness. Values of Linhom(r)−r greater than zero suggest a clustering pattern, whereas
negative values indicate a dispersed or regular pattern relative to a random spatial point
pattern at the scale of r. The black dashed line represents the L-function of a completely
random point pattern. Points above this line denote more clustering, whereas points
below indicate greater dispersion than would be expected under spatial randomness. B.
Importance of covariates for LGCP models on a logarithmic scale. One model
was trained per production type and study area (Bangladesh, Thailand, and Gujarat).

We trained a LGCP model for each area and production type (6 models).
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Among all predictors, proximity to roads had the highest influence on the
locations of farms, except for layer farms in Gujarat for which the distribution
is affected by chicken density and tree cover (Figure 1B). Crop and human
density are important for all models. Finally, other accessibility predictors
and slope were the least important covariates.

3.2. Performance of the farms location model (LGCP)
LGCP model generates a different simulated SPP at each simulation (Fig-

ure S5). We evaluated the goodness of fit of the farm location models by two
procedures. First, we assessed if the simulated and observed SPPs display
similar inhomogeneous patterns by calculating the L-function (section 2.4.1).
Second, the quadrat count test allowed us to assess if clusters of farms in
the observed and simulated SPPs were similarly located across a study area
(section 2.4.2). As an L-function was computed for each simulated SPP, we
plotted the envelope of all L-functions generated by 8000 simulations, and
compared these to the L-function of the observed SPPs. Figure 2 shows the
results for broiler farms.

3.2.1. Broiler farms
For broiler farms, the model trained using Bangladesh data offers the

best prediction in terms of both internal and external validation. Indeed,
the envelopes generated with the model trained on Bangladesh data and ap-
plied to Bangladesh and Gujarat include, or are near, the respective observed
L-function (Figure 2). Although the Bangladesh model underestimates the
clustering level of the Thailand SPP (2B), it reproduces the L-function for
low radii of the Gujarat SPPs (Figure 2C) even though it is different from
the Bangladesh L-function. Moreover, the Bangladesh-trained model locates
the cluster better with high correlation coefficient between observed and sim-
ulated SPPs (Figure 3C).

Although the Gujarat model fails the global rank envelope test for inter-
nal validation (Figure S6A & B), the observed L-function remains close to the
global envelope. We also note that the latter is particularly thin, indicating
consistency between simulated SPPs. While the Gujarat model has a high
p-value when applied to Bangladesh (Figure S6A & B), the global envelope is
wide (Figure 2H), implying high variability in clustering between simulated
SPPs. This suggests the need to interpret the p-value of the global enve-
lope test in combination with the visualisation of the observed L-function
and simulated envelope. In addition, the model locates clusters of farms in
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Thailand and Gujarat, but not in Bangladesh (Figure 3C). However, for sim-
ulated SPPs in Thailand, the global envelope test indicates a higher level of
clustering for distances above 50 km than observed.

Finally, the model trained in Thailand reproduces only its own spatial
point patterns (Figure 2E), with a thin global envelope of simulations, indi-
cating consistency between simulated SPPs.
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Figure 2: Global envelope of the L-function of simulated points patterns with
the LGCP model for broiler farms. The L-function of the training point pattern
is in orange, and the L-function of the observed points pattern of the testing area is in
blue. Points outside the envelope are highlighted with dots. A & B & C. Envelope
test of simulated SPPs generated with the model trained in Bangladesh, in respectively
Bangladesh, Thailand and Gujarat. D & E & F. Envelope test of simulated SPPs
generated with the model trained in Thailand, in respectively Bangladesh, Thailand and
Gujarat. H & I & J. Envelope test of simulated SPPs generated with the model trained
in Gujarat, in respectively Bangladesh, Thailand and Gujarat.

14

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.11.584368doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584368
http://creativecommons.org/licenses/by/4.0/


A B

Testing area

BGD IN.GJ THA

BGD

IN.GJ

THA

BGD IN.GJ THA

Pe
a
rs

o
n

 c
o
e
ffi

ci
e
n
t

Pe
a
rs

o
n

 c
o
e
ffi

ci
e
n
t

Figure 3: Boxplot of the correlation coefficient between the numbers of points
per quadrat in observed and each simulated SPP for each type of production:
broiler (A) and layer (B). Model names are indicated in the abscissa labels and refer
to the area where the model was trained. The color of the boxes indicate where the model
is tested (grey for Bangladesh, blue for Gujarat and yellow for Thailand).

15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.11.584368doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584368
http://creativecommons.org/licenses/by/4.0/


3.2.2. Layer farms
All three models for layer farms satisfy the internal validation test of the

global envelope (Figure S6B & D). Again, the model trained in Bangladesh
performs best, with high global envelope p-value when applied to Bangladesh
and Gujarat, and high quadrat correlation coefficient for the three areas. The
model underestimates the level of clustering in Thailand, even though the
envelope remains close to the observed L-function and followed the same
trend.

Although the Gujarat model is associated with high p-values when applied
to Bangladesh and Gujarat, the envelopes are wide (Figure 4H). Also, the
model does not reproduce the level of clustering and the locations of clusters
in Thailand (Figure 3D).

Finally, the Thailand model reproduces the Bangladesh L-function, de-
spite SPPs differing widely across countries. However, prediction of cluster
locations is poor (Figure 3D).
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Figure 4: Global envelope of the L-function of simulated points patterns for layer
farms. The L-function of the training point pattern is in orange, and the L-function of
the observed points pattern of the testing area is in blue. Points outside the envelope are
highlighted with dots. A & B & C. Envelope test of simulated SPPs generated with the
model trained in Bangladesh, in respectively Bangladesh, Thailand and Gujarat. D & E
& F. Envelope test of simulated SPPs generated with the model trained in Thailand, in
respectively Bangladesh, Thailand and Gujarat. H & I & J. Envelope test of simulated
SPPs generated with the model trained in Gujarat, in respectively Bangladesh, Thailand
and Gujarat.
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3.3. Farm size predictions with random forest model
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log10(n) log10(n)
Bangladesh Gujarat Thailand
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log10(n)
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log10(n)

Figure 5: Distribution of observed and predicted farm size. Cumulative distribu-
tion function (P (N > n)) of observed (dots) and predicted (solid line) farm size for broiler
farms (A) and layer farms (B). Probability density function of observed (dots) and pre-
dicted (solid line) farm size smoothed by a Kernel Density Estimation (KDE) for broiler
farms (C) and layer farms (D).

The second step of the FDM consists of predicting the farm sizes using
a RF model conditioned by farm locations (generated during the first step).
Two RF models were trained, one for broiler farms and another for layer
farms. The training data set of these two models covered the three study
areas. The most important predictors for farm size include proximity to
major cities, tree cover, human and chicken population densities (Fig S7).
The distributions of the log size of farms are close to an unimodal distribution
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for all three data sets. Bangladesh, which has the largest number of farms
of all three countries (table 1), exhibits the lowest farm size peak with a
median of 1,000 broiler chickens and 1,100 layer hens per farm. In contrast,
Gujarat and Thailand, which are characterised by more intensive livestock
production systems, have a median of respectively 5,000 and 10,000 chickens
per broiler farm; and a median of 12,000 and 6,500 chickens per layer farm.

The RF model predicts log transformed size of farms with an average
correlation coefficient of 0.83 and 0.70 over the five bootstraps for respec-
tively broiler and layer farms (tables S4 and S5). The RMSE between log
observed and predicted values is also weaker for broiler farms with around
0.275 against 0.343 for layer farms. These two GOF measures indicate a
significant predictability of farm sizes through RF model. Moreover, the
distribution of observed and predicted farm sizes shows that the RF model
allows us to reproduce the high heterogeneity of the farm size range thanks
to the log transformation (Fig. 5). However, heterogeneity is not maintained
when the RF model is applied to the distribution of farms generated with
LGCP (Fig S8).

19

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted March 13, 2024. ; https://doi.org/10.1101/2024.03.11.584368doi: bioRxiv preprint 

https://doi.org/10.1101/2024.03.11.584368
http://creativecommons.org/licenses/by/4.0/


3.4. Epidemic transmission modelling.
We now present the results of disease transmission simulations. As de-

tailed in the Methods section, we considered an array of 6 spatial farm dis-
tribution models with farm locations corresponding to either observed data
or random samples from the LGCP and random point pattern models, and
either homogeneous (CS) or heterogeneous (RFS) farm sizes (table 3).

Clustering or random distributions yielded substantial differences in terms
of predicting the probability of large disease outbreaks under two transmis-
sion kernels with different spatial ranges. Figure 6 shows that epidemic
simulations with LGCP-generated point patterns matched those in the em-
pirical networks more closely than simulations performed in fully random
farm distributions.

In the context of short-ranged transmission, it is noteworthy that the
empirical and simulated farm distributions exhibited substantial discrepan-
cies in terms of epidemic potential. Simulations using random farm dis-
tributions significantly underestimated the probability of large outbreaks.
In contrast, despite also underestimating the probability of large outbreaks,
LGCP models more accurately determined the critical threshold of the trans-
mission parameter (β), beyond which the risk of an epidemic substantially
increases from zero (Figure 6). This suggests that LGCP models are capable
of capturing the fundamental dynamics and conditions necessary for disease
transmission to occur, even if they somewhat underestimate the overall risk.

Using RF-generated farm sizes or employing a constant (average) value
for all farms had minimal impact on the simulations, except in the specific
case of the empirical distribution in Thailand (compared using black and
grey markers). This discrepancy arose due to the inherent heterogeneity of
farm sizes across Thailand (Figure 5C), which was not accurately captured
by the RF algorithm (Figure S8). Consequently, when the heterogeneities
were mitigated by homogenizing farm sizes, the agreement between LGCP
and Empirical+CS (grey) improved significantly.

LGCP models trained in Thailand, Gujarat, and Bangladesh exhibited
similar results in Gujarat and Bangladesh, but not in Thailand. Specifically,
the model trained in Thailand demonstrated superior performance in the
context of the short-ranged kernel, whereas the Gujarat model produced
more realistic epidemics when considering the long-ranged kernel. Therefore,
it appeared that a single best-performing model cannot be identified based
on this analysis.
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Spatial risk maps were generated by evaluating the epidemic potential of
each farm based on its location (Figure S9). Boxplots depicting correlation
coefficients between risk maps generated with observed and simulated farm
distributions are shown in Figure 7. The performance of LGCP models in
relation to the long-ranged kernel was robust, as evidenced by their capa-
bility to accurately predict the risk maps. Correlation coefficients exhibited
some variability with some simulated configurations displaying risk patterns
that were quite different from the observed one. Nevertheless, the median
correlation coefficients across all sites are relatively high, suggesting a robust
alignment between the predicted risk maps and the actual observed data.

Conversely, correlation coefficients were generally lower for short-ranged
transmission, suggesting a decreased predictive accuracy in terms of risk
maps. However, it is worth noting that correlation coefficients tended to
increase on average with the transmission parameter β, albeit up to a certain
threshold beyond which they reached a plateau.

Remarkably, the model trained in Thailand consistently demonstrated
the poorest performance at recovering spatial patterns of epidemic risk across
all instances, even when applied to the same country. On the other hand,
the model trained in Bangladesh appeared to outperform the other models.
Not only did it exhibit higher average correlation coefficients, but it also
displayed a narrower range of values, indicating a more consistent and reli-
able predictive performance compared to the other models, which exhibited
greater variability in this regard. These findings highlight the importance of
carefully selecting and training LGCP models for specific sites and transmis-
sion scenarios, as the choice of training data can significantly impact their
predictive capabilities.
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Figure 6: Probability of large outbreak. Average probability of large outbreak (i.e.
the proportion of simulations where the attack rate exceeds 100 farms) as a function
of transmissibility for long- and short-range kernels calculated for Thailand (first row),
Gujarat (second row) and Bangladesh (last row). The curves shown include LGCP + RFS
models trained in Thailand (red), Bangladesh (yellow) and Gujarat (blue). The markers
denote simulations using empirical farm locations with original (black) and homogeneous
(grey) farm sizes. The pink line corresponds to random farm locations with RFS-generated
farm sizes. We set α = 0.643 for long-range kernel and α = 3 for short-range kernel. Other
parameters are: µ = 0.143d−1, QS = 1.06, QI = 0.057, dmin = 0.1 km.
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Figure 7: Spatial risk analysis. Boxplots show Spearman’s rank correlation coefficients
between gridded risk distributions for the empirical farm distributions of Thailand (top
row), Gujarat (middle row) and Bangladesh (bottom row) and the LGCP+RFS models
trained on each area. A single correlation coefficient is calculated for each of 40 realisations
from every point pattern model. The first and second columns correspond to long- and
short-ranged transmission kernels, respectively. The missing boxplots in the middle-left
panel are the due to the fact that no farms became infected when β = 10−7 and Spearman’s
correlation coefficient is not defined when all variables in one input set are the same (all
equal to 0 in this case).
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4. Discussion

Producing accurate spatial maps of livestock farm distributions is paramount
for assessing the risk of future epidemics. This study aimed to develop farm
distribution models that simulate the locations and sizes of chicken farms,
while accounting for production types and spatial clustering of farms in data-
scarce countries. The FDM enables the partial reproduction of clustering
patterns, the locations of clusters, and farm size in external areas (i.e. when
trained in an area and applied to another). In addition, the FDM outputs
were used as an input in a disease transmission model to assess whether
epidemic patterns are consistent with simulations using observed data.

The LGCP model produces simulated SPPs with farms clustered within
specific distances (around <50 to 100 kms for all global envelope tests). The
LGCP model, which includes a Gaussian Random Field to induce additional
spatial correlation between points (Møller et al., 1998), allows us to maintain
the level of clustering of farms distribution. In comparison, linear regression
models and random forest modelling poorly reproduce levels of clustering
for intensive livestock production (Van Boeckel et al., 2012). Indeed, model
outputs such as density of animals per pixel do not allow for significant
heterogeneity of values, despite employing log transformation of values for
model calibration.

Chaiban et al. (2021) were able to reproduce the spatial clustering of farms
in the same areas where their model was trained, but failed when considering
further regions. In other words, their model failed external validation tests.
Indeed, the areas considered in their study were highly heterogeneous in
terms of geographical location and level of intensification. Here, we focus
instead on areas within South and Southeast Asia with similar degrees of
intensification.

We found that the same spatial predictors were able to explain all farm
distributions in our study, and lead to acceptable external validation of farm
locations compared to the study by Chaiban et al. (2021), where study areas
were located in different continents. Similarity in production systems, driven
by climatic and economic features, is therefore a crucial factor for choosing
appropriate areas for model training. However, the model trained in Thailand
provided the worst external validation. This could be caused by the country’s
geographical characteristics and the specific configuration of the production
system, with the country presenting the highest GDP of our selected study
areas. Indeed, economies of scale have shifted the structure of Thai poul-
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try production towards industrialized systems, with fewer producers owning
larger holdings (NaRanong, 2007). In addition, these structural changes have
been supported by the shift from agricultural subcontracting to vertical in-
tegration, which involved the centralization of production steps by a few
companies and have contributed to the clustering of poultry farms within
the peri-urban belt of Bangkok. In contrast, most chickens in Bangladesh
are produced in smaller units, which, for most, are not contracted by inte-
grators but rely on credit provided by local production input suppliers to
operate (Hennessey et al., 2021). In contrast, in Gujarat, farm sizes are
more comparable to Bangladesh but mostly contracted, and not owned, by
integrators.

Our study emphasises the importance of accounting for production types
when modelling farm distributions, as the level of clustering differs between
layer and broiler farms. However, the transition point in the L-function,
where the clustering of farms shifts to dispersion, occurs at a similar dis-
tance for both broiler and layer farms. This reflects influence of specific
country characteristics on these patterns. Indeed, for a given area, the most
important predictive variables are the same for both production types.

Epidemic patterns simulated by the disease transmission model align
more closely with those obtained using empirical farm distributions under
long-range than short-range transmission, particularly in Gujarat. Short-
range transmission models are more sensitive to the farms distribution at
short distance, therefore their lower efficiency at reproducing similar epi-
demic patterns might be due to the lower clustering level at short distances
in LGCP farm distributions. In Thailand, the discrepancy between observed
and simulated farm size distributions likely impacted simulated epidemic
patterns. This observation parallels findings from the 1997–1998 Classical
Swine Fever epidemic in The Netherlands (Boender et al., 2014) and epi-
demic simulations conducted in New Zealand (Van Andel et al., 2018), where
farms’ sizes appeared to affect their susceptibility to infection and infectivity.
Nonetheless, the LGCP model outperforms a random distribution and accu-
rately predicts the transmissibility threshold above which a major outbreak
becomes probable.

Indeed, spatial clustering increases epidemic risk by lowering said thresh-
old (Tildesley et al., 2010; Brown and Bolker, 2004). In highly clustered point
distributions, the dynamic of an epidemic strongly depends on the probabil-
ity of transmission between clusters (Benincà et al., 2020). Our modelling
framework can thus be used to gain insights into the vulnerability of livestock
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production systems to disease outbreaks under scenarios assuming various
levels of clustering and variations in cluster locations. As previously high-
lighted, when simulating farm distributions in a specific targeted area, the
selection of the training area should be based on the similarity of produc-
tion systems. In cases where there is limited evidence to guide this choice,
employing models trained across diverse areas becomes beneficial. This ap-
proach generates a spectrum of epidemic patterns capturing uncertainties in
the actual underlying distributions of farm locations and sizes.

A limitation of the FDM is that the number of farms cannot be fixed as a
parameter, but varies with each simulation. Knowledge about the expected
density (i.e. intensity) of farms in the area where the model will be used to
simulate farm distributions may be a relevant indicator to select the region
used to calibrate the model. Another limitation is that a large number of
predictors may lead to an overestimation of the number of farms. Therefore,
we tested all combinations of predictors to select the model associated with
the largest AUC as an input for the disease transmission model. Assessing the
performance of SPP models is non-trivial and still debated in the literature
(Baddeley et al., 2014). Our results raise questions about the reliability of the
envelope test p-value. Indeed, LGCP models associated with large variations
in the level of clustering across simulations will be associated with large p-
values as the wide enveloped would include the L-function. We argue that
envelope tests should not only be interpreted based on the p-value, but also
graphically.

In conclusion, the FDM, by simulating farm locations and sizes, enhances
our understanding of the way these spatial patterns, especially farm clus-
tering, influence disease spread. Such understanding is crucial for designing
more effective disease control and prevention strategies tailored to local char-
acteristics of production systems. This modelling framework is particularly
relevant in resource-limited countries where the intensification of poultry pro-
duction may often outpace the availability of reliable data. In such contexts,
the FDM offers a forward-looking tool, enabling stakeholders to proactively
assess epidemic risks associated with various intensification scenarios, and
can thus serve as a pivotal tool for informing agricultural planning.

Direct applications of our study include the testing of different levels of
clustering and the assessment of their impacts on epidemic spread (Benincà
et al., 2020). By manipulating the degree of clustering in farm distributions
and the clusters locations, policy-makers and stakeholders can gain insights
into the vulnerability of livestock systems to disease outbreaks. Understand-
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ing the relationship between clustering and epidemic spread is crucial for
transitioning towards safer production systems.
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A. Appendix Section: Material and Methods

A.1. Farm distribution in Bangladesh, Gujarat (state of India) and Thailand
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Figure S1: Spatial distribution of layers and broilers farm in Gujarat (2020), Bangladesh
and Thailand (2010).
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A.2. Algorithm of Global Envelope Test
The test procedure is as follows:

1. Generate a large number of simulated point patterns (1000 simulations)
based on the fitted model parameters.

2. For each simulation and each distance r, calculate the test statistic
(Linhom(r)).

3. Rank the observed test statistic among the simulated values at each r.
4. Construct the global envelope based on the ranks. In this case, the

envelope is constructed using the most extreme ranks from the simula-
tions, i.e. the minimum and maximum (the 1st rank from the bottom
and top, respectively) simulated values at each distance r.
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A.3. Quadrat count test

BangladeshGujarat Thailand

Figure S2: Window division and selection for quadrat count test. Grey tiles were used to
calculate the coefficient correlation between observed and simulated points pattern. We
did not consider quadrats that occupy less than 80% of the complete theoretical polygon
to avoid edge effects.
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A.4. Epidemic transmission modelling
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Figure S3: Short-ranged (blue) and long-ranged kernels (yellow) in a log-log scale.
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Figure S4: Scenarios for the epidemiological model in Gujarat. A. Random farms distri-
bution with constant farm size. B. Farms distribution generated with the LGCP model
with constant farm size. C. Random farms distribution with farm sizes predicted with RF
model. D. Farms distribution generated with the LGCP model with farm sizes predicted
with RF model.
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B. Appendix Section: Results

B.1. Simulations of point patterns in Gujarat

Observed points pattern
Simulated points pattern

Intensity 
(pts/square unit)

A B

Figure S5: A. Observed points patterns of broiler farms in Gujarat and one simulated
point pattern with the model trained with Bangladesh broiler farms. B. Mean intensity of
points of 8000 simulations from the model trained in Bangladesh and the observed point
pattern is represented with black dots.
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B.2. Performance of the LGCP
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Figure S6: Internal and external validation p-values of the global rank envelope
test for the different models (Bangladesh: BGD, Gujarat: IN.GJ and Thailand:
THA), for the two types of farm: broilers (A & C) and layers (B & D) and for
radii under 20kms (A & B) and for radii above 20kms (C & D). Labels on the
x axis denote the training area. Hatched bars distinguish p-values for internal validation
from those for external validation. The color of the bar charts indicate where the model
is tested (grey for Bangladesh, blue for Gujarat and yellow for Thailand). The horizontal
dashed line indicate the threshold of significance of the p-values for the envelope of 1000
simulations.

B.3. Farm size modelling
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Figure S7: A & B. Predicted farm size in function of observed farm size (A. Broiler and
B. Layer). C & D. Importance of each covariate for broiler farm RF model (A) and layer
farm RF moodel (B).
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Bootstrap RMSE Pearson
coefficient

1 0.281 0.823
2 0.276 0.824
3 0.273 0.830
4 0.275 0.824
5 0.272 0.830

Table S4: Broiler farms.

Bootstrap RMSE Pearson
coefficient

1 0.335 0.708
2 0.350 0.701
3 0.348 0.695
4 0.341 0.701
5 0.343 0.683

Table S5: Layer farms.
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Figure S8: Cumulative empirical size farm distribution (thick line) and farm size distri-
bution from 40 individual realisations of the LGCP+RF model (grey lines) used for the
epidemic transmission modellings.
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Figure S9: Examples of epidemic risk maps. Shown for Thailand (top row), Gujarat
(middle row) and Bangladesh (bottom row). All simulations are based on a long-ranged
transmission kernel and the middle β values in Figure 7. The first column shows risk cal-
culated from using the empirical farm distribution. The second and third columns use the
average- and best-performing point pattern distributions sampled from the iLGCP+RFS
model trained on the same area. Performance is based on Spearman’s rank correlation
coefficient between gridded risk distributions. White cells contain no farms.
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