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Abstract

The distribution of farm locations and sizes is paramount to characterize patterns of disease

spread. With some regions undergoing rapid intensification of livestock production, resulting

in increased clustering of farms in peri-urban areas, measuring changes in the spatial distri-

bution of farms is crucial to design effective interventions. However, those data are not avail-

able in many countries, their generation being resource-intensive. Here, we develop a farm

distribution model (FDM), which allows the prediction of locations and sizes of poultry farms

in countries with scarce data. The model combines (i) a Log-Gaussian Cox process model

to simulate the farm distribution as a spatial Poisson point process, and (ii) a random forest

model to simulate farm sizes (i.e. the number of animals per farm). Spatial predictors were

used to calibrate the FDM on intensive broiler and layer farm distributions in Bangladesh,

Gujarat (Indian state) and Thailand. The FDM yielded realistic farm distributions in terms of

spatial clustering, farm locations and sizes, while providing insights on the factors influenc-

ing these distributions. Finally, we illustrate the relevance of modelling realistic farm distribu-

tions in the context of epidemic spread by simulating pathogen transmission on an array of

spatial distributions of farms. We found that farm distributions generated from the FDM

yielded spreading patterns consistent with simulations using observed data, while random

point patterns underestimated the probability of large outbreaks. Indeed, spatial clustering

increases vulnerability to epidemics, highlighting the need to account for it in epidemiological

modelling studies. As the FDM maintains a realistic distribution of farm location and sizes,

its use to inform mathematical models of disease transmission is particularly relevant for

regions where these data are not available.
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Author summary

We have developed a model to predict the location and size of poultry farms in countries

or regions with limited data. This is important because knowing the distribution of farms

helps in understanding how diseases spread, especially in areas with rapidly growing farm

populations. Our model uses advanced statistical methods and is calibrated with environ-

mental and human activity data to simulate farm locations and sizes, which we tested on

farms in Bangladesh, Gujarat (India), and Thailand. We found that our model creates

realistic patterns of farm locations and sizes, which are crucial for predicting disease out-

breaks. When we simulated disease spread, our model showed that farms clustered

together are more vulnerable to large outbreaks. This highlights the need for realistic farm

data in disease prevention efforts. Our model can help public health officials in regions

without detailed farm information to better plan and respond to potential disease threats.

This work is a step towards better protecting both animal and human health from the

spread of diseases.

1 Introduction

Livestock contribute to food security as a main source of animal protein (dairy, meat and eggs)

and provide 17% of the world population’s dietary energy intake [1] whilst occupying 80% of

global agricultural land [2]. The consumption of animal source food is increasing most rapidly

in low- and middle-income countries (LMICs) [3]. In Asia, chicken meat production has qua-

drupled in the last two decades [4]. This rapid intensification has been characterised by a shift

in the spatial distribution of farms, particularly pig and poultry farms which have smaller land

requirements than ruminants, transitioning from rural to peri-urban areas [5–7].

Accurate and up-to-date maps of livestock farms are crucial to assess their environmental

impacts and the risk of diseases spreading through livestock populations [8]. However, record-

ing exact farm locations may not be achievable in many LMICs due to limited available

resources and may also be constrained for privacy reasons, including in HICs. For this reason,

some studies have relied on modelling frameworks to estimate high-resolution farm distribu-

tion at various administrative levels, and to improve on coarse census data. Such frameworks

have mostly employed linear regression models [9–11]. Van Boeckel et al. [12] mapped the dis-

tribution of intensive poultry farms in Thailand using a simultaneous autoregression model

(SAR) that explicitly accounted for spatial autocorrelation. However, as reported by the

authors, the model failed to capture the high levels of spatial clustering that are observed

among intensive farms in that country. Random forest models have been shown to outperform

linear regression models when used to downscale census data at the global scale for several

livestock animal species [13] or at national scale for pig populations in Thailand [14] and

China [15]. The use of remote sensing combined with synthetic data methods results in realis-

tic distribution and density patterns of farms in the United States [16]. However, the distribu-

tion of animals at farm level and the process of generating clustered point distributions are yet

to be embedded in these models. At the global level, the Gridded Livestock of the World

(GLW) predicts livestock as a continuous, gradually varying, density of animals per pixel at 10

km or 1 km resolution [10, 13, 17]. Thus, these models do not provide information about how

animals are distributed across farms, and how farms are distributed across space, despite these

parameters having major influence on both environmental impacts and disease risk associated

with intensification of livestock production.
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This paper develops a novel modelling framework that alleviates limitations of previous

models and can be used to predict both farm locations and sizes. The framework builds on a

previous point pattern model introduced by [18, 19] that was used to predict clustered farm

distributions. We show that this Farm Distribution Model (FDM) successfully predicts spatial

farm locations and sizes of poultry farms in three ‘test’ geographic regions (Bangladesh, Guja-

rat and Thailand) that are characterised by different levels of intensification and for which

farm data were already available.

We trained a Log Gaussian Cox Process (LGCP) and Random Forest model (RF) and

assessed their external and internal validity using three observed point patterns. This allowed

us to test the robustness of the method to reproduce farm distribution in data-scarce countries.

We further illustrate the relevance of our approach to inform models of disease spread in live-

stock by comparing epidemic simulations on empirical and synthetic farm distributions gener-

ated with different methods.

2 Methods

2.1 Training data sets

The modelling procedure was based on farm size and location data from three regions in Asia:

Thailand and Bangladesh (whole country) and Gujarat (state in India). The Gujarat Biotech-

nology Research Centre collected data on the distribution of farms in Gujarat, India. The data

represented are based on the information acquired from the Department of Animal Hus-

bandry, Dairying & Fisheries, Ministry of Agriculture & Framers Welfare, Government of

India and Directorate of Animal Husbandry, Government of Gujarat, Gandhinagar, Gujarat,

India in the year 2020.

Around 59% of farm locations in Gujarat corresponded to village centroids coordinates.

Farms with overlapping locations were assigned to random points within the area of the corre-

sponding villages. A similar procedure was adopted for farms in Thailand for which only the

village location is known (data collected in 2010 by the Department of Livestock Development

[18]). Finally, the geographic coordinates of the farms in the Bangladesh dataset were obtained

from an agricultural census collected by the Food and Agriculture Organization of the United

Nations, ensuring accuracy and reliability of the location data.

Bangladesh and Gujarat data sets cover areas of similar size, while farms in Thailand are

scattered over a region that is around three times larger (Table 1). Data sets consisted of the

coordinates and capacity of farms differentiated according to their type of production into

broiler and layer farms (S1 Fig). We assumed that the size of a farm coincides with its capacity

(i.e. maximum number of animals that can be raised on a farm) and hence ignored yearly

stock variations. We kept only farms with more than 500 chickens since the original FDM was

developed for intensive farms [18].

Table 1. Characteristics of data sets in terms of area surface, intensity of points distribution (points/m2) and economic features. GDP is given for 2019 for the three

regions. The distribution of broiler and layer chicken farms in Gujarat, Thailand and Bangladesh was collected in 2020, 2010 and 2010 respectively.

Area Area

Code

GDP1 (billion

US$)

Surface area (103

km2)

Intensity (pts/

m2)

Intensity of broiler farms

(pts/m2)

Intensity of layer farms

(pts/m2)

Number of farms (broilers

—layers)

Gujarat IN.GJ 230 196 1.77 10−8 9.88 10−9 1.39 10−9 2,611—311

Thailand THA 543.5 514 4.81 10−9 3.14 10−9 1.03 10−9 3,717—1,439

Bangladesh BGD 302.6 135 2.27 10−7 9.80 10−8 3.75 10−8 22,159—9,074

1 worlbank 2019

https://doi.org/10.1371/journal.pcbi.1011980.t001
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2.2 Spatial predictors

Table 2 lists the spatial predictors used for the LGCP and RF models accross 4 categories of

covariates: anthropogenic, topographical, vegetation and livestock characteristics. The distri-

bution of chicken density was derived from the most recent version of the Gridded Livestock

of the World (GLW, [13]). Proximity predictors were the inverse of time travel to major cities,

ports and roads (x ¼ 1

timetravelþ1
), so that the maximal values were associated to the closest loca-

tions. These predictors allowed us to assess if farm locations were affected by infrastructure

density. Other predictors were used as originally published (references in the Table 2).

2.3 Point pattern modelling

The procedure for modelling farm locations is based on the point pattern analysis method

described in [19]. We modelled spatial point patterns using LGCP associated with spatial pre-

dictors and the Palm maximum likelihood method of parameters optimisation [26]. This

approach was found to outperform other types of point pattern models at reproducing clus-

tered farm distributions [18, 19]. This method is suitable to deal with highly inhomogeneous

point intensity and spatial autocorrelation. In the LGCP model, point distributions are gener-

ated in space stochastically according to a Poisson process with intensity λ(u), which is mod-

eled as the exponential of a Gaussian random field:

λðuÞ ¼ expðZðuÞÞ : ð1Þ

Here, Z(u) represents the sum of a deterministic linear predictor based on spatial covariates

and a stochastic Gaussian process, Y(u):

ZðuÞ ¼ ðy0 þ y1pred1 þ y2pred2 þ . . .þ ynprednÞ þ YðuÞ : ð2Þ

The Gaussian process, Y(u), introduces spatial correlation among the points and is charac-

terized by a zero-mean and a specified covariance structure, ensuring that the model captures

the spatial dependency inherent in the geographic distribution of farms.

The spatial distribution of farms was modelled by estimating the intensity function λ(u) on

a 128x128 grid, where each grid cell represents a specific spatial location u. This configuration

was automatically set by spatstat (version ‘2.3.3’, [27]) to effectively capture spatial varia-

tions within the study regions [28].

We applied a LGCP model to each pairing of study region (Bangladesh, Thailand, and

Gujarat) with a poultry production type (broiler or layer), resulting in a total of six models.

Table 2. List of Spatial Predictors with their sources and units used in the LGCP and RF models.

Type Variable Units Source Abbreviation

Anthropogenic Human population density Log10 people per hectare Tatem, 2017 [20] Hpop

Proximity to cities with 5,000,000<x<50,000,000 inhabitants Minute−1 Nelson et al., 2019 [21] Access_MC1

Proximity to cities with 50,000<x<50,000,000 inhabitants Minute−1 Nelson et al., 2019 [21] Access_MC11

Proximity to cities with with 1,000,000<x<5,000,000 Minute−1 Nelson et al., 2019 [21] Access_MC2

Proximity to large and medium ports Minute−1 Nelson et al., 2019 [21] Access_Port12

Proximity to roads Minute−1 Meijer et al., 2018 [22] Proxim_roads

Topography Slope Amatulli et al., 2018 [23] Slope

Vegetation Crop cover Pixel % covered by crops Fritz et al., 2015 [24] Crop

Tree cover Pixel % covered by forest Hansen et al., 2013 [25] Tree

Livestock Chicken population density Log10 animals per hectare Gilbert et al., 2018 [13] nChicken

https://doi.org/10.1371/journal.pcbi.1011980.t002
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The validity of these models was then evaluated both within their respective training regions

(internal validation) and by application to regions where they were not originally trained

(external validation).

The importance of each spatial predictor predi was computed as the product of its maxi-

mum value across space and its estimated weight θi.

2.4 Point pattern characterisation and model validation

2.4.1 Spatial correlation analysis of points pattern. Ripley’s K-function measures the

clustering behaviour in a spatial point pattern (SPP), and is defined as the cumulative average

number of data points found within a distance r of a typical data point [28, 29]. The inhomoge-

neous K-function, Kinhom(r), is a generalization of Ripley’s K-function designed to analyze

point patterns with varying intensity across space. The inhomogeneous K-function is defined

as follows:

KinhomðrÞ ¼
jWj

NðN � 1Þ

XN

i¼1

Xn

j ¼ 1
j 6¼ i

1

bλi
bλj

Ifdij � rgeij ; ð3Þ

where N is the number of points, |W| denotes total study area, bλi and bλj are respectively the

estimated intensity functions at point i and j, Ifdij � rg equals 1 if the euclidian distance dij
between points i,j is less than r and is 0 otherwise, and eij is an edge correction weight to avoid

sampling biases. Given the location of the first point x and the distance d = kx − x0k, the second

point x0 must lie in the circle b of radius d and centred at x. However, the circle b is generally

only partly inside the study area W for large d. Then, the Ripley’s isotropic correction eij uses

the fraction of the length of the circle, ℓ, that is within the study area (S2 Fig) and considers

that the point pattern is isotropic (statistically invariant under rotation). We calculated the

probability of the second point x0 being inside the window W as:

pðx; dÞ ¼
‘ðW \ dbðx; dÞÞ

2pd
; ð4Þ

Finally, the edge correction is:

eij ¼
1

pðxi; dijÞ
: ð5Þ

We used the Besag’s transform of the in-homogeneous K-function (K(r)) by using the func-

tion linhom in the package spastat which is:

LinhomðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KinhomðrÞ

p

r

: ð6Þ

2.4.2 Global rank envelope test for model validation. The global rank envelope test is a

robust statistical method used to evaluate the goodness-of-fit of a model by comparing the

observed data to a collection of simulated data generated from the model. It provides a com-

prehensive approach for assessing whether simulated and observed patterns are consistent

[30].

The global rank envelope test is based on a chosen test statistic, in this study the Linhom(r)
function, a transformed version of the inhomogeneous K-function. For each simulation and at

each distance r, we computed the test statistic and ranked the observed value of the statistic
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among the simulated values. This created an envelope of expected values under the model. If

the observed test statistic lay within this envelope for all distances, it suggested that the model

was an adequate fit to the observed data. The test was performed using the envelope and

Linhom functions from the spatstat package in R [27, 28]. The test procedure is described

in the Appendix S1 File.

2.4.3 Quadrat counting tests. We divided study areas into quadrats, and computed

counts of points within each quadrat (n = 23 − 44 depending on the study area) [31]. The pat-

terns of quadrats are shown in S3 Fig. We did not consider quadrats that occupy less than 80%

of the complete theoretical polygon to avoid edge effects. The performance of a model was

evaluated by computing the correlation coefficient between the log-transformed of the number

of points per quadrat between the observed and simulated pattern patterns.

2.5 Farm size modelling: Random Forest model with spatial predictors

The second-step of the algorithm consists of training a RF regression model to predict farm

sizes. First, we averaged spatial predictors within a radius of 5,000 m around each farm. We

tested different buffer zone sizes, of 2,500 m, 5,000 m and 7,500 m, and we selected the 5,000

m buffer zone in the final analysis as it performed slightly better than others. Secondly, we

transformed farm sizes X using a power function to reduce the skewness of their distribution:

Xtransform ¼
Xa � 1

a
; ð7Þ

and used the function PowerTransformer from the sklearn package in Python to fit the parame-

ter a. We used the function RandomForestRegressor of the sklearn package in Python, with 500

decision trees.

The goodness of fit (GOF) metrics of the predictions were all established through cross-vali-

dation, i.e. by measuring the correlation between observed and predicted animal numbers in

farms that were not used to train the Random Forest models. The total data set was divided

into a training data set (75% of the data) and a validating data set (25%). This process was

repeated 5 times, each time selecting a different random set of farms to train the RF models.

We then calculated GOF measures, i.e. the correlation coefficient and the root-mean-square

error (RMSE) between predicted and observed farm sizes for each fold. Both GOF measures

are calculated using log transformed and absolute values of farm sizes.

2.6 Mathematical modelling of disease transmission

2.6.1 Simulations. We simulated the spread of a pathogen over M poultry farms with spa-

tial coordinates (xi, yi) and sizes Xi, i = 1, . . ., M. Simulations were stochastic and farms’ infec-

tion statuses were updated synchronously, with each time step being 1 day long. Each farm

was either susceptible to infection (S), infectious (I) or removed (R). An infectious farm i trans-

mits the pathogen to a susceptible farm j with daily probability:

pijðS! IÞ ¼ 1 � expð� gijÞ ; ð8Þ

where the force of infection exerted by i on j is given by:

gij ¼ b � X
QI
i � X

QS
j � KðdijÞ ; ð9Þ

β denoting transmissibility and K(dij) representing a spatial transmission kernel depending

solely on the (euclidean) distance between i and j. The exponents QI and QS allow for different

scalings of the force of infection with the sizes of infectious and susceptible farms, respectively.
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Infectious farms recover with daily probability:

pðI ! RÞ ¼ 1 � expð� mÞ; ð10Þ

where μ is the recovery rate.

At the end of the infectious period, the removed state (R) describes premises that were

culled following reporting of disease and/or anomalous excess deaths caused by the viral incur-

sion (which we are not modelling explicitly). We assume that these farms are depopulated and

remain empty until the end of the outbreak. Therefore, removed farms are not infectious and

can not be reinfected in simulations. These assumptions are more appropriate to describe the

spread of a highly pathogenic avian influenza virus strain such as H5N1.

We implemented our simulations in C++ using the Conditional subsample algorithm [32].

Briefly, the algorithm overlays a grid over the study area, so that transmission attempts involv-

ing farms belonging to different grid cells can be checked only after resolving whether any

transmission occurs between those cells. In order to ensure an efficient implementation, we

used a heuristic, adaptive routine to identify an optimal gridding. Both simulation and cell-

construction routines are detailed in [32].

2.6.2 Transmission kernels. We considered a power-law transmission kernel employed

by Hill et al. (2017) [33] to study the spread of H5N1 avian influenza virus in Bangladesh:

KðdÞ ¼ 1 if 0 � d < dmin; ð11Þ

and

KðdÞ ¼ dmin
�

d

� �a if d ⩾ dmin; ð12Þ

with dmin = 0.1km.

We considered long-ranged and short-ranged transmission kernels corresponding respec-

tively to α = 0.643 and to α=3 (S4 Fig). The former value was retrieved from Hill et al. (2017)

[33], while the latter is compatible with shorter transmission lengths across farms as observed

in earlier works [34].

2.6.3 Simulation scenarios. For a given study area, we simulated pathogen transmission

using six different spatial distributions of farms. First, we considered the empirical distribution

of farms, which we used as a reference. Results from this scenario were then compared with

SPP generated from the LGCP, and a random distribution of points pattern generated accord-

ing to a Complete Spatial Randomness process. We also compared a homogeneous farm size

scenario, where all farm sizes were set to the average farm size (Constant Size; CS), with a het-

erogeneous farm size scenario, where RF model was used to assign a size to each farm (Ran-

dom Forest Size; RFS). All scenarios are summarized in Table 3 and displayed in S5 Fig.

We ran 2000 independent simulations for each scenario. In the case of simulated farm dis-

tributions, we generated 40 independent farm distributions and ran 50 disease spreading sim-

ulations for each model formulation. In each simulation, we initialised the infection by

selecting and infecting a random farm at t = 0; a simulation stopped when no infectious farms

remained.

2.6.4 Spatial epidemic risk. In order to compare spatial predictions of epidemic risk

using different farm distributions, we implemented the following methodology. We defined

the risk Vi for farm i as the proportion of 100 simulations in which an epidemic starting from

this farm reaches at least 100 farms. For each distribution of farms, we first calculated the risk

Vi for each farm. In the case of BGD we considered only 4000 random farms as initial seeds

due to long computation times. Then, in order to compare different farm distributions, we

defined a common spatial grid covering the study area and averaged risk Vi in each cell. This
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procedure yielded an average risk Va for each cell in the cell a = 1, . . ., Ncel. Using the same spa-

tial grid for all point models, we then performed a quantitative comparison between the differ-

ent models on the basis of Va. We used a rectangular grid of 40x40 km cells to the empirical

distribution of farms while allowing for an additional margin of 20 km in each direction.

To assess the extent to which the maps of Va obtained using LGCP models trained on dif-

ferent sites match the estimate of Vempirical
a obtained by using the empirical distribution, we cal-

culated the Spearman’s rank correlation coefficient between Vempirical
a and the maps Va(j),

where j = 1, 2, . . ., 40 extends over all the realisations generated from the same model (we omit

any pair of cells where at least one does not contain farms). We thus obtain a collection of 40

correlation coefficients for each point model.

3 Results

3.1 Characterisation of spatial homogeneity of farms distribution

Farm density is higher in Bangladesh than in Gujarat and Thailand (Table 1). In all three study

areas, the density of broiler farms is higher than for layer farms. According to the L-function,

all empirical SPPs are more clustered than a random SPP for distances under 100 km (Fig 1A).

The maximal level of clustering occurs under 20 and 25 km for all SPPs, except for layer farms

in Bangladesh where it occurs at around 9 km. For all three study areas, layer farms are more

clustered than broiler farms for around r < rmax
2

, with rmax being the maximum radius for each

area.

We trained a LGCP model for each area and production type (6 models). Among all predic-

tors, proximity to roads had the highest influence on the locations of farms, except for layer

farms in Gujarat for which the distribution is affected by chicken density and tree cover (Fig

1B). Human density is important for all models, while other accessibility predictors, crop and

slope were the least important covariates.

3.2 Performance of the farms location model (LGCP)

LGCP model generates a different simulated SPP at each simulation (S6 Fig). We evaluated the

goodness of fit of the farm location models by two procedures. First, we assessed if the simu-

lated and observed SPPs display similar inhomogeneous patterns by calculating the L-function

(section 2.4.1). Second, the quadrat count test allowed us to assess if clusters of farms in the

observed and simulated SPPs were similarly located across a study area (section 2.4.2). As an

L-function was computed for each simulated SPP, we plotted the envelope of all L-functions

Table 3. Farm distributions considered in the disease transmission modelling.

Name Description

Empirical Uses observed data

Empirical

(CS)

Uses empirical locations but farm size is set to the average farm size for all farms.

Random+CS Farms are scattered uniformly at random over the study area; farm size is set to a constant value

(Constant Size; CS), namely average farm size.

LGCP+CS Farm locations are generated from a LGCP; farm sizes are set to a constant value (Constant Size;

CS), namely average farm size.

Random+RFS Farms are scattered uniformly at random over the study area; farm sizes are generated from a RF

model (Random Forest Size; RFS).

LGCP+RFS Farm locations are generated from a LGCP; farm sizes are generated from a Random Forest model

(Random Forest Size; RFS).

https://doi.org/10.1371/journal.pcbi.1011980.t003
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generated by 8000 simulations, and compared these to the L-function of the observed SPPs.

Fig 2 shows the results for broiler farms.

3.2.1 Broiler farms. For broiler farms, the model trained using Bangladesh data offers the

best prediction in terms of both internal and external validation. Indeed, the envelopes gener-

ated with the model trained on Bangladesh data and applied to Bangladesh and Gujarat

include, or are near, the respective observed L-function (Fig 2). Although the Bangladesh

model underestimates the clustering level of the Thailand SPP (Fig 2B), it reproduces the L-

function for low radii of the Gujarat SPPs (Fig 2C) even though it is different from the Bangla-

desh L-function. Moreover, the Bangladesh-trained model locates the cluster better with high

correlation coefficient between observed and simulated SPPs (Fig 3A).

Although the Gujarat model fails the global rank envelope test for internal validation (S7A

and S7B Fig), the observed L-function remains close to the global envelope. We also note that

the latter is particularly thin, indicating consistency between simulated SPPs. While the Guja-

rat model has a high p-value when applied to Bangladesh (S7A and S7B Fig), the global enve-

lope is wide (Fig 2G), implying high variability in clustering between simulated SPPs. This

suggests the need to interpret the p-value of the global envelope test in combination with the

visualisation of the observed L-function and simulated envelope. In addition, the model locates

clusters of farms in Thailand and Gujarat, but not in Bangladesh (Fig 3A). However, for simu-

lated SPPs in Thailand, the global envelope test indicates a higher level of clustering for dis-

tances above 50 km than observed.

Fig 1. A. L-function as a function of r for each training data set. The L-function for broiler (solid) and layer (dashed) farms are presented. Subtracting r
from Linhom(r) aids in interpreting the plots; when Linhom(r) − r equals zero, it signifies complete spatial randomness. Values of Linhom(r) − r greater than

zero suggest a clustering pattern, whereas negative values indicate a dispersed or regular pattern relative to a random spatial point pattern at the scale of r.
The black dashed line represents the L-function of a completely random point pattern. Points above this line denote more clustering, whereas points below

indicate greater dispersion than would be expected under spatial randomness. B. Importance of covariates for LGCP models on a logarithmic scale. One

model was trained per production type and study area (Bangladesh, Thailand, and Gujarat).

https://doi.org/10.1371/journal.pcbi.1011980.g001
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Finally, the model trained in Thailand reproduces only its own spatial point patterns (Fig

2E), with a thin global envelope of simulations, indicating consistency between simulated SPPs.

3.2.2 Layer farms. All three models for layer farms satisfy the internal validation test of

the global envelope (S7B and S7D Fig). Again, the model trained in Bangladesh performs best,

with high global envelope p-value when applied to Bangladesh and Gujarat, and high quadrat

correlation coefficient for the three areas. The model underestimates the level of clustering in

Thailand, even though the envelope remains close to the observed L-function and followed the

same trend.

Fig 2. Global envelope of the L-function of simulated points patterns with the LGCP model for broiler farms. The envelope of the simulated SPPs is

represented in grey. The L-function of the training point pattern is in orange, and the L-function of the observed points pattern of the testing area is in blue.

Points outside the envelope are highlighted with dots. A & B & C. Envelope test of simulated SPPs generated with the model trained in Bangladesh, Applied

in Bangladesh, Thailand, and Gujarat. D & E & F. Envelope test of simulated SPPs generated with the model trained in Thailand, Applied in Bangladesh,

Thailand, and Gujarat. G & H & I. Envelope test of simulated SPPs generated with the model trained in Gujarat, Applied in Bangladesh, Thailand, and

Gujarat.

https://doi.org/10.1371/journal.pcbi.1011980.g002
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Although the Gujarat model is associated with high p-values when applied to Bangladesh

and Gujarat, the envelopes are wide (Fig 4G). Also, the model does not reproduce the level of

clustering and the locations of clusters in Thailand (Fig 3B).

Finally, the Thailand model reproduces the Bangladesh L-function, despite SPPs differing

widely across countries. However, prediction of cluster locations is poor (Fig 3B).

3.3 Farm size predictions with random forest model

The second step of the FDM consists of predicting the farm sizes using a RF model condi-

tioned by farm locations (generated during the first step). Two RF models were trained, one

for broiler farms and another for layer farms. The training data set of these two models covered

the three study areas. The most important predictors for farm size include proximity to major

cities, tree cover, human and chicken population densities (S8 Fig). The distributions of the

log size of farms are close to an unimodal distribution for all three data sets. Bangladesh, which

has the largest number of farms of all three countries (Table 1), exhibits the lowest farm size

peak with a median of 1,000 broiler chickens and 1,100 layer hens per farm. In contrast, Guja-

rat and Thailand, which are characterised by more intensive livestock production systems,

have a median of respectively 5,000 and 10,000 chickens per broiler farm; and a median of

12,000 and 6,500 chickens per layer farm.

The RF model predicts log transformed size of farms with an average correlation coefficient

of 0.83 and 0.70 over the five bootstraps for respectively broiler and layer farms (S1 and S2

Tables). The RMSE between log observed and predicted values is also weaker for broiler farms

with around 0.275 against 0.343 for layer farms. These two GOF measures indicate a significant

predictability of farm sizes through RF model. Moreover, the distribution of observed and pre-

dicted farm sizes shows that the RF model allows us to reproduce the high heterogeneity of the

farm size range thanks to the log transformation (Fig 5). However, heterogeneity is not main-

tained when the RF model is applied to the distribution of farms generated with LGCP (S9 Fig).

3.4 Epidemic transmission modelling

We now present the results of disease transmission simulations. As detailed in the Methods

section, we considered an array of 6 spatial farm distribution models with farm locations

Fig 3. Boxplot of the correlation coefficient between the numbers of points per quadrat in observed and each simulated SPP for each type of

production: broiler (A) and layer (B). Model names are indicated in the abscissa labels and refer to the area where the model was trained. The color of the

boxes indicate where the model is tested (red for Bangladesh, blue for Gujarat and yellow for Thailand).

https://doi.org/10.1371/journal.pcbi.1011980.g003
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corresponding to either observed data or random samples from the LGCP and random point

pattern models, and either homogeneous (CS) or heterogeneous (RFS) farm sizes (Table 3).

Clustering or random distributions yielded substantial differences in terms of predicting

the probability of large disease outbreaks under two transmission kernels with different spatial

ranges. Fig 6 shows that epidemic simulations with LGCP-generated point patterns matched

those in the empirical networks more closely than simulations performed in fully random

farm distributions.

In the context of short-ranged transmission, it is noteworthy that the empirical and simu-

lated farm distributions exhibited substantial discrepancies in terms of epidemic potential.

Fig 4. Global envelope of the L-function of simulated points patterns for layer farms. The envelope of the simulated SPPs is represented in grey. The L-

function of the training point pattern is in orange, and the L-function of the observed points pattern of the testing area is in blue. Points outside the

envelope are highlighted with dots. A & B & C. Envelope test of simulated SPPs generated with the model trained in Bangladesh, Applied in Bangladesh,

Thailand, and Gujarat. D & E & F. Envelope test of simulated SPPs generated with the model trained in Thailand, Applied in Bangladesh, Thailand, and

Gujarat. G & H & I. Envelope test of simulated SPPs generated with the model trained in Gujarat, Applied in Bangladesh, Thailand, and Gujarat.

https://doi.org/10.1371/journal.pcbi.1011980.g004
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Simulations using random farm distributions significantly underestimated the probability of

large outbreaks. In contrast, despite also underestimating the probability of large outbreaks,

LGCP models more accurately determined the critical threshold of the transmission parameter

(β), beyond which the risk of an epidemic substantially increases from zero (Fig 6). This sug-

gests that LGCP models are capable of capturing the fundamental dynamics and conditions

necessary for disease transmission to occur, even if they somewhat underestimate the overall

risk.

Using RF-generated farm sizes or employing a constant (average) value for all farms had

minimal impact on the simulations, except in the specific case of the empirical distribution in

Thailand (compared using black and grey markers). This discrepancy arose due to the inherent

Fig 5. Distribution of observed and predicted farm size. Cumulative distribution function (P(N> n)) of observed (dots) and predicted (solid line) farm

size for broiler farms (A) and layer farms (B). Probability density function of observed (dots) and predicted (solid line) farm size smoothed by a Kernel

Density Estimation (KDE) for broiler farms (C) and layer farms (D).

https://doi.org/10.1371/journal.pcbi.1011980.g005
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Fig 6. Probability of large outbreak. Average probability of large outbreak (i.e. the proportion of simulations where the attack rate exceeds 100 farms)

as a function of transmissibility for long- and short-range kernels calculated for Thailand (first row), Gujarat (second row) and Bangladesh (last row).

The curves shown include LGCP + RFS models trained in Thailand (yellow), Bangladesh (red) and Gujarat (blue). The markers denote simulations

using empirical farm locations with original (black) and homogeneous (grey) farm sizes. The grey line correspond to random farm locations with RFS-

generated farm sizes. We set α = 0.643 for long-range kernel and α = 3 for short-range kernel. Other parameters are: μ = 0.143d−1, QS = 1.06, QI = 0.057,

dmin = 0.1 km.

https://doi.org/10.1371/journal.pcbi.1011980.g006
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heterogeneity of farm sizes across Thailand (Fig 5C), which was not accurately captured by the

RF algorithm (S9 Fig). Consequently, when the heterogeneities were mitigated by homogeniz-

ing farm sizes, the agreement between LGCP and Empirical+CS (grey) improved significantly.

LGCP models trained in Thailand, Gujarat, and Bangladesh exhibited similar results in

Gujarat and Bangladesh, but not in Thailand. Specifically, the model trained in Thailand dem-

onstrated superior performance in the context of the short-ranged kernel, whereas the Gujarat

model produced more realistic epidemics when considering the long-ranged kernel. There-

fore, it appeared that a single best-performing model cannot be identified based on this

analysis.

Spatial risk maps were generated by evaluating the epidemic potential of each farm based

on its location (S10 Fig). Boxplots depicting correlation coefficients between risk maps gener-

ated with observed and simulated farm distributions are shown in Fig 7. The performance of

LGCP models in relation to the long-ranged kernel was robust, as evidenced by their capability

to accurately predict the risk maps. Correlation coefficients exhibited some variability with

Fig 7. Spatial risk analysis. Boxplots show Spearman’s rank correlation coefficients between gridded risk distributions for the empirical farm distributions

of Thailand (top row), Gujarat (middle row) and Bangladesh (bottom row) and the LGCP+RFS models trained on each area. A single correlation

coefficient is calculated for each of 40 realisations from every point pattern model. The first and second columns correspond to long- and short-ranged

transmission kernels, respectively. The missing boxplots in the middle-left panel are the due to the fact that no farms became infected when β = 10−7 and

Spearman’s correlation coefficient is not defined when all variables in one input set are the same (all equal to 0 in this case).

https://doi.org/10.1371/journal.pcbi.1011980.g007
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some simulated configurations displaying risk patterns that were quite different from the

observed one. Nevertheless, the median correlation coefficients across all sites are relatively

high, suggesting a robust alignment between the predicted risk maps and the actual observed

data.

Conversely, correlation coefficients were generally lower for short-ranged transmission,

suggesting a decreased predictive accuracy in terms of risk maps. However, it is worth noting

that correlation coefficients tended to increase on average with the transmission parameter β,

albeit up to a certain threshold beyond which they reached a plateau.

Remarkably, the model trained in Thailand consistently demonstrated the poorest perfor-

mance at recovering spatial patterns of epidemic risk across all instances, even when applied to

the same country. On the other hand, the model trained in Bangladesh appeared to outper-

form the other models. Not only did it exhibit higher average correlation coefficients, but it

also displayed a narrower range of values, indicating a more consistent and reliable predictive

performance compared to the other models, which exhibited greater variability in this regard.

These findings highlight the importance of carefully selecting and training LGCP models for

specific sites and transmission scenarios, as the choice of training data can significantly impact

their predictive capabilities.

4 Discussion

Producing accurate spatial maps of livestock farm distributions is paramount for assessing the

risk of future epidemics. This study aimed to develop farm distribution models that simulate

the locations and sizes of chicken farms, while accounting for production types and spatial

clustering of farms in data-scarce countries. The FDM enables the partial reproduction of clus-

tering patterns, the locations of clusters, and farm size in external areas (i.e. when trained in an

area and applied to another). In addition, the FDM outputs were used as an input in a disease

transmission model to assess whether epidemic patterns are consistent with simulations using

observed data.

The LGCP model produces simulated SPPs with farms clustered within specific distances

(around <50 to 100 kms for all global envelope tests). The LGCP model, which includes a

Gaussian Random Field to induce additional spatial correlation between points [35], allows us

to maintain the level of clustering of farms distribution. In comparison, linear regression mod-

els and random forest modelling poorly reproduce levels of clustering for intensive livestock

production [12]. Indeed, model outputs such as density of animals per pixel do not allow for

significant heterogeneity of values, despite employing log transformation of values for model

calibration.

Chaiban et al. (2021) [19] were able to reproduce the spatial clustering of farms in the same

areas where their model was trained, but failed when considering further regions. In other

words, their model failed external validation tests. Indeed, the areas considered in their study

were highly heterogeneous in terms of geographical location and level of intensification. Here,

we focus instead on areas within South and Southeast Asia with similar degrees of

intensification.

We found that the same spatial predictors were able to explain all farm distributions in our

study, and lead to acceptable external validation of farm locations compared to the study by

Chaiban et al. (2021) [19], where study areas were located in different continents. Similarity in

production systems, driven by climatic and economic features, is therefore a crucial factor for

choosing appropriate areas for model training. However, the model trained in Thailand pro-

vided the worst external validation. This could be caused by the country’s geographical charac-

teristics and the specific configuration of the production system, with the country presenting
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the highest GDP of our selected study areas. Indeed, economies of scale have shifted the struc-

ture of Thai poultry production towards industrialized systems, with fewer producers owning

larger holdings [36]. In addition, these structural changes have been supported by the shift

from agricultural subcontracting to vertical integration, which involved the centralization of

production steps by a few companies and have contributed to the clustering of poultry farms

within the peri-urban belt of Bangkok. In contrast, most chickens in Bangladesh are produced

in smaller units, which, for most, are not contracted by integrators but rely on credit provided

by local production input suppliers to operate [37]. In contrast, in Gujarat, farm sizes are more

comparable to Bangladesh but mostly contracted, and not owned, by integrators.

Our study emphasises the importance of accounting for production types when modelling

farm distributions, as the level of clustering differs between layer and broiler farms. However,

the transition point in the L-function, where the clustering of farms shifts to dispersion, occurs

at a similar distance for both broiler and layer farms. This reflects influence of specific country

characteristics on these patterns. Indeed, for a given area, the most important predictive vari-

ables are the same for both production types.

Epidemic patterns simulated by the disease transmission model align more closely with

those obtained using empirical farm distributions under long-range than short-range trans-

mission, particularly in Gujarat. Short-range transmission models are more sensitive to the

farms distribution at short distance, therefore their lower efficiency at reproducing similar epi-

demic patterns might be due to the lower clustering level at short distances in LGCP farm dis-

tributions. In Thailand, the discrepancy between observed and simulated farm size

distributions likely impacted simulated epidemic patterns. This observation parallels findings

from the 1997–1998 Classical Swine Fever epidemic in The Netherlands [38] and epidemic

simulations conducted in New Zealand [39], where farms’ sizes appeared to affect their suscep-

tibility to infection and infectivity. Nonetheless, the LGCP model outperforms a random dis-

tribution and accurately predicts the transmissibility threshold above which a major outbreak

becomes probable.

Indeed, spatial clustering increases epidemic risk by lowering said threshold [40, 41]. In

highly clustered point distributions, the dynamic of an epidemic strongly depends on the

probability of transmission between clusters [42]. Our modelling framework can thus be used

to gain insights into the vulnerability of livestock production systems to disease outbreaks

under scenarios assuming various levels of clustering and variations in cluster locations. As

previously highlighted, when simulating farm distributions in a specific targeted area, the

selection of the training area should be based on the similarity of production systems. In cases

where there is limited evidence to guide this choice, employing models trained across diverse

areas becomes beneficial. This approach generates a spectrum of epidemic patterns capturing

uncertainties in the actual underlying distributions of farm locations and sizes.

A limitation of the FDM is that the number of farms cannot be fixed as a parameter, but

varies with each simulation. Knowledge about the expected density (i.e. intensity) of farms in

the area where the model will be used to simulate farm distributions may be a relevant indica-

tor to select the region used to calibrate the model. Another limitation is that a large number

of predictors may lead to an overestimation of the number of farms. Therefore, we tested all

combinations of predictors to select the model associated with the largest AUC as an input for

the disease transmission model. Assessing the performance of SPP models is non-trivial and

still debated in the literature [43]. Our results raise questions about the reliability of the enve-

lope test p-value. Indeed, LGCP models associated with large variations in the level of cluster-

ing across simulations will be associated with large p-values as the wide enveloped would

include the L-function. We argue that envelope tests should not only be interpreted based on

the p-value, but also graphically.
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In conclusion, the FDM not only enhances the prediction of data by simulating farm loca-

tions and sizes but also significantly improves our understanding of how spatial patterns, par-

ticularly farm clustering, influence disease spread. Such understanding is crucial for designing

more effective disease control and prevention strategies tailored to local characteristics of pro-

duction systems. This modelling framework is particularly relevant in resource-limited coun-

tries where the intensification of poultry production may often outpace the availability of

reliable data. In such contexts, the FDM offers a forward-looking tool, enabling stakeholders

to proactively assess epidemic risks associated with various intensification scenarios, and can

thus serve as a pivotal tool for informing agricultural planning.

Direct applications of our study include the testing of different levels of clustering and the

assessment of their impacts on epidemic spread [42]. By manipulating the degree of clustering

in farm distributions and the clusters locations, the vulnerability of livestock systems to disease

outbreaks can be explored. Generating such an understanding of the relationship between

clustering and epidemic spread is crucial to support policy makers and stakeholders in plan-

ning the transition towards safer production systems.

Supporting information

S1 Fig. Spatial distribution of layers and broilers farm in Gujarat (2020), Bangladesh and

Thailand (2010). Source of the basemaps: https://gml.noaa.gov/aftp/pub/basu/Borders/

GADM/.

(PDF)

S2 Fig. Illustration of the edge correction for the computation of K-function. The study

area, W, is the administrative border of the study region (here, Gujarat is illustrated). The

Euclidean distance d between points x and x0 is shown, along with a circle of radius d centered

at x. The portion of the circle, ℓ, inside the study area is highlighted, demonstrating how the

edge correction weight eij is calculated. This correction accounts for the fraction of the circle’s

length that lies within the study area, ensuring accurate spatial analysis by adjusting for bound-

ary effects. Source of the basemaps: https://gml.noaa.gov/aftp/pub/basu/Borders/GADM/.

(PDF)

S3 Fig. Window division and selection for quadrat count test. Grey tiles were used to

calculate the coefficient correlation between observed and simulated points pattern. We did

not consider quadrats that occupy less than 80% of the complete theoretical polygon to

avoid edge effects. Source of the basemaps: https://gml.noaa.gov/aftp/pub/basu/Borders/

GADM/.

(PDF)

S4 Fig. Short-ranged (blue) and long-ranged kernels (yellow) in a log-log scale.

(PDF)

S5 Fig. Scenarios for the epidemiological model in Gujarat. A. Random farms distribution

with constant farm size. B. Farms distribution generated with the LGCP model with constant

farm size. C. Random farms distribution with farm sizes predicted with RF model. D. Farms

distribution generated with the LGCP model with farm sizes predicted with RF model. Source

of the basemaps: https://gml.noaa.gov/aftp/pub/basu/Borders/GADM/.

(PDF)

S6 Fig. Simulations of point patterns in Gujarat. A. Observed points patterns of broiler

farms in Gujarat and one simulated point pattern with the model trained with Bangladesh

broiler farms. B. Mean intensity of points of 8000 simulations from the model trained in
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Bangladesh and the observed point pattern is represented with black dots. Source of the base-

maps: https://gml.noaa.gov/aftp/pub/basu/Borders/GADM/.

(PDF)

S7 Fig. Performance of the LGCP. Internal and external validation p-values of the global rank

envelope test for the different models (Bangladesh: BGD, Gujarat: IN.GJ and Thailand: THA),

for the two types of farm: broilers (A & C) and layers (B & D) and for radii under 20kms (A &

B) and for radii above 20kms (C & D). Labels on the x axis denote the training area. Hatched

bars distinguish p-values for internal validation from those for external validation. The color

of the bar charts indicate where the model is tested (grey for Bangladesh, blue for Gujarat and

yellow for Thailand). The horizontal dashed line indicate the threshold of significance of the p-

values for the envelope of 1000 simulations.

(PDF)

S8 Fig. Farm size modelling. Predicted farm size in function of observed farm size (A. Broiler

and B. Layer). C & D. Importance of each covariate for broiler farm RF model (A) and layer

farm RF moodel (B).

(PDF)

S9 Fig. Cumulative empirical size farm distribution (thick line) and farm size distribution

from 40 individual realisations of the LGCP+RF model (grey lines) used for the epidemic

transmission modellings.

(PDF)

S10 Fig. Examples of epidemic risk maps. Shown for Thailand (top row), Gujarat (middle

row) and Bangladesh (bottom row). All simulations are based on a long-ranged transmission
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