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Abstract

The rapid intensification of poultry production raises important concerns about the associ-

ated risks of zoonotic infections. Here, we introduce EPINEST (EPIdemic NEtwork Simula-

tion in poultry Transportation systems): an agent-based modelling framework designed to

simulate pathogen transmission within realistic poultry production and distribution networks.

We provide example applications to broiler production in Bangladesh, but the modular struc-

ture of the model allows for easy parameterization to suit specific countries and system con-

figurations. Moreover, the framework enables the replication of a wide range of eco-

epidemiological scenarios by incorporating diverse pathogen life-history traits, modes of

transmission and interactions between multiple strains and/or pathogens. EPINEST was

developed in the context of an interdisciplinary multi-centre study conducted in Bangladesh,

India, Vietnam and Sri Lanka, and will facilitate the investigation of the spreading patterns of

various health hazards such as avian influenza, Campylobacter, Salmonella and antimicro-

bial resistance in these countries. Furthermore, this modelling framework holds potential for

broader application in veterinary epidemiology and One Health research, extending its rele-

vance beyond poultry to encompass other livestock species and disease systems.

Author summary

Poultry meat is important for improving nutrition in developing countries. However, the

rapid growth of poultry production raises concerns about the risks of diseases that can be

passed from animals to humans and cause outbreaks. To understand and manage these

risks, we developed EPINEST, an agent-based modelling framework that allows investi-

gating how diseases can spread within the networks of poultry farms, markets and their
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associated transportation systems. EPINEST can be adjusted to match the way in which

poultry are raised and traded in specific countries. It considers different traits of patho-

gens, how they are transmitted, and how different strains or pathogen types can interact.

While EPINEST was primarily developed to simulate the transmission of zoonotic patho-

gens (namely avian influenza, Campylobacter, Salmonella and other bacteria carrying

resistance genes) in poultry populations in South and Southeast Asia, this modelling

framework can also be useful for studying the transmission of other pathogens in other

livestock species. EPINEST will help understand how poultry farming and trading shape

pathogen spread, maintenance and evolution, and support decision-making to make

poultry production safer and more sustainable.

Introduction

Animal populations act as reservoirs for a wide range of zoonotic pathogens, such as Ebola

virus, MERS-CoV, SARS-CoV-2, avian influenza viruses (AIVs), Campylobacter and Salmo-
nella [1–6]. Within this context, livestock production is known to promote the risk of zoo-

notic infections [7]. In the case of emerging pathogens of wildlife, livestock may become

intermediate or amplifier hosts, increasing odds of spillover into the human population [8].

The ongoing global intensification of livestock production raises critical questions about the

role of husbandry and animal trading practices in shaping the risk of zoonotic epidemics or

spillover events. [9, 10]. Unfortunately, however, a comprehensive understanding of how

such risk is modulated and amplified along production and distribution networks (PDNs) is

lacking.

Poultry production has become the fastest growing livestock sector in the last three decades,

with rapid intensification occurring in low- and middle-income countries (LMICs) and partic-

ularly in South and Southeast Asia [11]. In many of these countries, intensive production did

not replace local farming and trading practices completely, resulting in multiple modes of pro-

duction and distribution articulated in ways that are poorly understood and which vary

according to market and other conditions. While such transformative changes have proven

instrumental towards improving food security, nutrition and economic and societal develop-

ment e.g. in China, India, Bangladesh among others, they also require careful monitoring and

investigation. Indeed, the growth of poultry production and distribution networks has brought

novel challenges in terms of disease management: intensive farming, limited surveillance infra-

structure and veterinary services and in many examples poor biosecurity conditions [12, 13]

can lead to an environment replete with health hazards. For example, widespread sub-optimal

use of antimicrobial drugs by poultry farmers represents a leading driver of the emergence of

antimicrobial resistance [14–16].

In many LMICs, people prefer to obtain their poultry from live bird markets (LBMs),

which are a longstanding feature of poultry trade and of urban and rural life. Within poultry

PDNs, LBMs may be considered as hubs, sites wherein large numbers of people, and critically

birds, meet and mix [17, 18]. Thus, they are major hotspots of AIV amplification and evolution

[19], and have been implicated in sustaining viral transmission in domestic poultry [20]. The

diverse ecology of AIV strains circulating within LBMs in Asia has been documented exten-

sively [21–24]. Low pathogenic strains such as H9N2 AIV are commonly found among LBMs

in Bangladesh, often at higher rates than in surrounding farms [25–27]. Since its first identifi-

cation in 1996, highly-pathogenic H5N1 influenza has been detected in LBMs in many Asian

countries [28–32].
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While the biological risks within poultry production systems are widely acknowledged, they

remain poorly characterised. This is partly due to the inherent complexity of PDNs, which

makes it difficult to understand how such risks are modulated and increased along poultry

value chains. Previous modelling efforts have focused on disease transmission within specific

PDN settings, e.g. single farms or LBMs [33, 34], or some PDN segment, such as networks of

farms or LBMs [18, 35–37]. Attempts to account for poultry or livestock PDN structure in

infectious disease modelling are rare and mostly theoretical, often leaving out many epidemio-

logically relevant details of poultry production and distribution [38, 39]. Recent PDN mapping

efforts have provided a clearer picture of PDNs in several Asian countries [40, 41]. A central

observation is that PDNs are highly heterogeneous across countries, poultry types, and even

within the same country. Therefore, a better understanding can be achieved by extending and

developing modelling to increase our understanding of structural heterogeneities within and

across PDNs.

To address this gap, we introduce EPINEST, a novel agent-based model (ABM) that allows

simulation of pathogen transmission on top of realistic, empirically derived assumptions about

poultry movements. EPINEST generates synthetic PDNs consisting of the key nodes, e.g.

farms, traders, LBMs, that are responsible for the production and transportation of chickens

through the PDN until they are sold to end-point consumers. Extensive data about farming

and trading practices, collected mainly from field surveys, is used to inform PDN generation

and simulation [18, 27]. Farm-specific data, for example, include farm locations, capacity and

statistics of distinct stages of production cycles. Trader-level data encompass details of pur-

chases and sales involving individual actors, origins of purchased poultry, and trader move-

ments. EPINEST allows for substantial flexibility for users in terms of specifying PDN

structure and functioning, making it a suitable framework to carry both data-driven and more

open-ended analyses. In fact, the ABM permits customisation of many PDN properties, thus

allowing users to explore a wide range of hypothetical PDN configurations.

This ABM provides a unified and flexible modelling framework to simulate epidemic

dynamics in poultry PDNs and is the outcome of a wider interdisciplinary research initiative

[42]. Within this context, EPINEST will enable investigating the amplification and dissemina-

tion of a wide range of health hazards, including AIV, Campylobacter and anti-microbial resis-

tance genes in poultry systems in Bangladesh, India, Vietnam and Sri Lanka. More broadly,

our framework may also be tailored to distinct poultry and livestock production realities to

tackle a wider range of epidemiological questions.

In this paper, we provide a detailed description of our ABM and illustrate how to use it to

explore a range of PDN structures and to better understand aspects of pathogen transmission

in PDNs. The examples presented here are based on a broiler (chickens reared for meat) PDN

in Bangladesh, which has been characterised extensively [18, 40], while epidemic simulations

focus on the paradigmatic case of AIV transmission. The latter also illustrate an important fea-

ture of our framework, namely the ability to simulate multiple co-circulating pathogens and

their interactions.

Results

Synthetic poultry networks

To address questions about the eco-epidemiological dynamics of AIVs and other poultry-

related pathogens, we implemented an agent-based model to simulate pathogen transmission

on top of synthetic PDNs. Within our framework, generated PDNs consists of four main types

of nodes: farms, middlemen, vendors and LBMs (Fig 1A). The system works as a supply chain

where chickens are reared in farms starting from day-old chicks and are later transported to
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LBMs by middlemen (more details can be found in the Materials and methods section and in

S1 Text). Once they arrive at the LBM stage, chickens are handled by vendors. These vendors

may then sell chickens to other vendors operating in the same or different LBMs, and/or to

endpoint consumers, in which case chickens are removed from the PDN. At any stage where

chickens are exchanged, other than to the endpoint customer, an opportunity arises for patho-

gen exchange and mixing.

To illustrate the ability of the model to synthesize realistic poultry movements, we simulate

a small PDN consisting of 1200 farms scattered across the 50 upazilas (sub-districts) that sup-

ply the largest amount of broiler chickens to LBMs located in Dhaka (Fig 2A). The simulated

PDN includes 20 distinct LBMs, 163 middlemen and 444 vendors, and allows the trade of

chickens between LBMs. Numbers of middlemen and vendors can not be specified a priori;

instead, they are determined dynamically by initially calculating the average number of chick-

ens that are sold by farms to each LBM daily. These calculations depend on the spatial arrange-

ment of farms, their sizes and frequency of selling, i.e. parameters that can be specified a

priori. The capacity of each trader (middleman or vendor), i.e. the maximum amount of chick-

ens that he/she can purchase daily is also fixed over the course of a simulation.

Farms sell all their chickens at the end of a production cycle. The trading phase may require

multiple days to complete and the flock may be split into multiple transactions involving dif-

ferent middlemen. Fig 2B and 2C show that both the distributions of farm trading times and

numbers of transactions per production cycle obtained through simulations are consistent

with field observations. Upstream transportation and distribution of poultry operated by mid-

dlemen represent an important driver of poultry mixing in LBMs [18]. In simulations, middle-

men direct previously purchased chickens to LBMs depending on where these have been

sourced from. In practice, a chicken bought in upazila a is sold in market l with probability fa,l,

as estimated from field questionnaires. Fig 2D shows that the ABM generates poultry fluxes

between individual upazilas and LBMs that are in excellent agreement with the corresponding

Fig 1. Model schematics. (A) Synthetic PDN and poultry movements. Chickens are produced in farms (red) across the study area, and

transported to LBMs (blue) by middlemen (yellow). These are mobile traders that may collect chickens from multiple farms located in one or

more upazilas/sub-districts (an administrative area below that of a district in Bangladesh). Within LBMs, chickens are handled by vendors

(orange) and may be moved between LBMs as a result of vendors’ trading practices. (B) Individual settings associated with farms, middlemen,

LBMs (when open) and vendors (overnight, when LBMs are closed) provide the context for pathogen transmission, under the assumption that

chickens mix homogeneously within the same setting. The panel zooms in on a single LBM, where chickens are colour-coded according to disease

status: susceptible (S), exposed or latent (E), infectious (I) and recovered or immune (R). The base layer of the map was obtained from https://

gadm.org/download_country_v2.html.

https://doi.org/10.1371/journal.pcbi.1011375.g001
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Fig 2. Simulating poultry movements. (A) Spatial population of 1200 farms supplying Dhaka. Farm locations are generated as described in S1

Text and assigned preferentially to upazilas with a larger observed outgoing chicken flux (colour scale). (B) Empirical (black) and simulated (red)

distribution of times required to sell an entire batch. (C) Expected and measured distributions of transactions a single batch is split into. (D)

Measured vs expected relative flux between individual pairs (dots) of upazilas and LBMs. (E) Distribution of LBMs serviced daily by individual

middlemen. (F) Proportion of chickens sold to wholesalers (W, teal) and retailers (R, yellow) by LBM tier in simulations (bars) and data

(markers).MM! V0 refers to transactions involving middlemen and first tier vendors, while VL! VL+1 represents inter-tier transactions. For

each tier, bars do not add up to 1 since wholesalers can sell to end-point consumers as well. Inset shows proportions of wholesalers and retailers.

(G) Marketing time distribution. Results are obtained from a single simulation with default settings. We emphasize that some of the quantities
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expected values (i.e. fa,l). Moreover, the allocation algorithm ensures that individual middle-

men deliver chickens to a desired number of LBMs, as specified by some statistical distribu-

tion. The agreement between empirical and simulated frequencies of unique LBMs visited

daily is shown in Fig 2E. At the market level, wholesaling activities and vendor movements

between LBMs further contribute to poultry mixing. Once a chicken enters an LBM, it may be

sold multiple times to secondary vendors before reaching end-point consumers [18, 43]. In

order to better capture the inner organization of LBMs, the model structures vendors in tiers

according to their position along transaction chains (Fig 2F). Finally, we show the realised dis-

tribution of poultry marketing times alongside another estimate obtained using a different

approach [18] (Fig 2G). Further statistics about individual actors and poultry transactions can

be found in S1, S2 and S3 Figs.

Selected aspects of generated PDNs can be easily manipulated within our framework, allow-

ing flexibility in exploring PDN configurations. In Fig 3, for example, we examine different

distributions of LBMs serviced (Pr(km)) by individual middlemen on a daily basis (Fig 3A). As

we increase the number of LBMs serviced per middleman, hkmi on average, middlemen trade

with more vendors (Fig 3B); consequently, individual transactions involve fewer birds since

the total cargo is the same (Fig 3C). Fig 3B also suggests that the small discrepancy observed in

Fig 3A at larger hkmi is due to the limited amount of vendors (inset).

We also present the impact of vendors’ trading practices on poultry marketing time. In par-

ticular, we alter the probability pempty that a vendor sells its entire cargo in a single day, the

fraction ρunsold of unsold birds in presence of some surplus (occurring with probability 1 −
pempty). In addition, we consider high and low tendency to prioritise selling older (i.e. previ-

ously unsold) chickens over newly purchased ones. Varying parameters ρunsold and pempty
affects the average marketing time (Fig 4A), as well as the proportion of chickens being offered

for sale on multiple days (Fig 4B). Full distributions of marketing times can be found in S4 Fig.

Prioritizing the sale of older chickens had a negligible effect on these statistics. Indeed, priori-

tizing older chickens is compensated by a delay in selling newly purchased chickens (Fig 4C).

shown here (panels B,C,G), emerge dynamically during simulations and are not enforced as tightly as poultry fluxes (D) and visits to LBMs (E).

Farm data are obtained from [27]. Data about middlemen and vendor trading practices and marketing times are obtained from [18]. The base

layer of the map was obtained from https://gadm.org/download_country_v2.html.

https://doi.org/10.1371/journal.pcbi.1011375.g002

Fig 3. Markets serviced daily. (A) Empirical (scatters) and simulated (lines) distributions of markets serviced daily. Empirical distributions are of the

form Prðkm ¼ nÞ / ð1 � pkm Þ
n� 1pkm where n = 1, . . ., 20. The inset compares empirical and simulated average numbers of markets serviced. (B)

Distribution of vendors a single middleman trades daily with. (C) Cumulative distribution of sizes of transactions involving middlemen and vendors

(solid lines). Dashed lines represent cumulative proportion of chickens sold in transactions up to a given size. Results are averaged over 50 simulations

from 10 different PDN realisations.

https://doi.org/10.1371/journal.pcbi.1011375.g003

PLOS COMPUTATIONAL BIOLOGY EPINEST, an agent-based model for epidemic simulations in poultry populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011375 February 21, 2024 6 / 22

https://gadm.org/download_country_v2.html
https://doi.org/10.1371/journal.pcbi.1011375.g002
https://doi.org/10.1371/journal.pcbi.1011375.g003
https://doi.org/10.1371/journal.pcbi.1011375


As a final example, we examine the role of vendor movements between LBMs in promoting

the mixing of chickens from different upazilas/sub-districts. Networks of LBMs defined by

trader movements can vary considerably across poultry types, countries, and even cities within

the same country [40]. In Chattogram, for example, vendors trading broiler chickens operate

almost exclusively in a single market (Fig 5A). In Dhaka, however, this is not the case, resulting

in frequent vendor movements that are articulated in a top-down structure where central and

peripheral markets can be identified (Fig 5B). In fact, removing a single edge in the network

shown in Fig 5B is sufficient to make it acyclic, suggesting a hierarchical organisation.

Within our framework, we encode inter-market mobility in a graph G, whose entries Gi,j
represent the probability that a vendor purchasing in market imoves to market j (or remains

in i) to sell. As outlined above, vendors are further arranged in tiers, so that vendors in tier L
(VL) can only buy poultry from wholesalers located in tier L − 1 or, in the case of L = 0 vendors

(V0) from middlemen trading in LBM i. For each vendor, purchase and sell locations remain

fixed throughout a simulation.

To explore inter-market mobility, we use a generative network model to create mobility net-

works G akin to that of Fig 5B. In practice, we generate directed acyclic graphs (DAGs) of vary-

ing density and amount of hierarchy (see Materials and methods section), according to

parameters ρ and prandom. ρ represents the density of connections, while prandom is the probability

of an individual connection emanating from a source LBM that is selected randomly, rather

than proportionally to their actual number of connections. To quantify the degree of hierarchy

in a DAG G, we measure its global reaching centrality (GRC, see Fig 5C and 5E) and tree depth

(TD, see Fig 5D and 5F). GRC measures how well every node can reach other nodes in the net-

work with respect to the most influential node; it takes value 1 in the case of a star graph and

approaches 0 when all nodes are equally influential (no hierarchy). In contrast, TD represents

the longest directed path in G. Hierarchical DAGs, e.g. stars, tend to be more compact and

hence shallower than random structures. Setting prandom = 1 yields DAGs with little hierarchy, as

edges are allocated randomly. In contrast, prandom! 0 introduces additional structure. Fig 5C

and 5D show GRC and TD, respectively, for Dhaka’s network and for DAGs generated with pran-
dom = 1 (red) and prandom = 0.1 (cyan) while keeping the density of edges constant. Clearly, Dha-

ka’s network is significantly more hierarchical and compact than random DAGs; in contrast,

DAGs generated with prandom = 0.1 provide a much closer fit in terms of both GRC and TD.

We also summarize framework output by quantifying poultry mixing across 20 LBMs for

different combinations of ρ and prandom (GRC and TD are shown in Fig 5E and 5F,

Fig 4. Vendor trading practices. (A) Average marketing time as a function of ρunsold for different values of pempty. Solid and dashed lines correspond

respectively to low (10%) and high (90%) frequency of vendors prioritizing trading older chickens. (B) Proportion of marketed chickens offered for sale

on multiple days. (C) Marketing time distributions for low and high frequency of vendors prioritizing older chickens. Here, ρunsold = 0.1 and pempty =

0.2. Results are averaged over 50 simulations from 10 different PDN realisations.

https://doi.org/10.1371/journal.pcbi.1011375.g004
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respectively). Here mixing refers to the extent to which chickens from distinct regions are

brought together within LBMs. Upstream distribution, managed by middleman, and vendor

movements between LBMs are the factors driving chicken mixing within this model. To quan-

tify the amount of mixing, we record the geographic origins of chickens offered for sale in each

LBM and use Pianka’s index [44] to make pairwise comparisons of poultry populations mar-

keted in distinct LBMs. Mean Pianka’s index values are shown in Fig 5G as a function of

parameters ρ and prandom. Values close to 0 imply low overlap, while a value of 1 corresponds

to identical distributions of geographic sources of poultry. Fig 5H shows another, complemen-

tary quantification of poultry mixing in terms of the mean number of LBMs where it is possi-

ble to find chickens from two randomly chosen upazilas/sub-districts. In general, we find that

chicken mixing increases with network density, while hierarchy has the opposite effect: ran-

dom vendor movements are more effective at mixing chickens within this simplified network

model. It should be noted that high levels of mixing can be observed even in the absence of

vendor movements due to upstream distribution (overlap between the catchment areas of

LBMs, of which middlemen are responsible; see caption of Fig 5 for further details).

Epidemic dynamics

In this section, we illustrate how our framework can be used to simulate and characterise path-

ogen transmission across PDNs. We first consider a single, AIV-like pathogen whose

Fig 5. LBM networks and poultry mixing. (A,B) Broiler LBM networks for Chattogram and Dhaka, respectively. An arrow pointing from market l to l0
indicates at least one movement in that direction, while arrow thickness is proportional to the number of vendors moving on that edge. Node size is

proportional to the outgoing weight, i.e. the total number of vendors leaving it. Isolated and connected nodes are shown in cyan and teal, respectively.

(C,D) GRC and TD, respectively, for Dhaka’s network (line) and ensembles of 2000 synthetic LBM networks with the same density as Dhaka’s network

and prandom = 1 (red) and prandom = 0.1 (cyan). (E,F) Average GRC and TD, respectively, across 100 networks with 20 nodes and as a function of ρ and

prandom. The dotted line denotes Dhaka’s density. (G,H) Pianka’s index of overlap and proportion of markets where it is possible to find chickens from

different upazilas/sub-districts, respectively, as a function of network parameters. Performing the same measurement before any vendor movement

occurs, yields an overlap (Pianka’s) of 0.261, and 25,7% shared markets, on average. This represents the baseline overlap due to middlemen sourcing

chickens from farms and selling them to vendors. Results are averaged over 50 simulations from 10 different PDN realisations. All other PDN

parameters are set to default values.

https://doi.org/10.1371/journal.pcbi.1011375.g005
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dynamics is described by a Susceptible-Exposed-Infectious-Recovered (SEIR) model, as

depicted in Fig 1B: upon infection, susceptible (S) chickens enter an intermediate exposed

stage (E) and become infectious (I) after a short latent period TE = 6 hours. Infectious chickens

recover (R) after an infectious period TI = 48 hours and become immune to further infection.

Importantly, we assume that infected chickens do not die due to the disease and that sick

chickens are not removed from LBM stalls. This assumption is broadly compatible with the

epidemiology of low-pathogenic AIV strains such as H9N2 AIV, which are highly prevalent in

Bangladeshi LBMs and only cause mild to sub-clinical symptoms in chickens [25–27]. We

assume that the pathogen (repeatedly) emerges at rate α in farms due to external factors (e.g.

contacts with wild birds) and spreads through the PDN through a combination of poultry

movements, within- and inter-farm transmission (see Materials and methods section).

Model output comes at different levels of aggregation. Fig 6A shows for example daily inci-

dence within LBMs during the first stages of an outbreak. At the most granular level, individ-

ual transmission events and their metadata can be tracked as well. Using this information, we

can reconstruct transmission chains originating from individual introduction events and char-

acterise their spatio-temporal evolution (Fig 6B). Fig 6C further characterises farm outbreaks

by summarising attack rates by production cycle.

In Fig 6D–6F, we investigate the role of spatial transmission in an endemic context. We do

so in a scenario where most transmission events occur within farms (Fig 6D), while viral

amplification in LBMs is limited (Fig 6E). Here, spatial transmission is a crucial factor in deter-

mining global levels of infection. In the model, the intensity of inter-farm transmission is pro-

portional to a spatial kernel K(d) decaying with spatial distance d and such that K(0) = βFF.
The latter parameter represents the maximum extent of inter-farm transmission at d = 0 (see

also S1 Text and Table F therein). Increasing βFF facilitates spatial invasions, thus leading to

more outbreaks in farms and more infections (Fig 6D). This results in an increasing number

of infected chickens pouring into LBMs from farms (Fig 6F), explaining also the increase in

within-market prevalence observed in Fig 6E.

Another important epidemiological question is whether AIV is transmitted and maintained

in LBMs despite short marketing times. We address this question by considering an alternative

endemic scenario where transmission is contributed mostly by LBMs (Fig 6G). We find that a

major limiting factor to viral amplification in LBMs is represented by the latent period TE (Fig

6H): delaying the onset of infectiousness corresponds to a shorter window of opportunity for

transmission under short marketing times. In order to further demonstrate this point, we

quantify the persistence of transmission chains within LBMs (Fig 6I). As TE increases, oppor-

tunities for transmission are diminished and chains of infection stutter, leading to reduced

persistence. In this case, the presence of AIV in LBMs can only be maintained through

repeated introductions of infected poultry.

Simulating multi-strain pathogens

Genomic surveillance in LBMs routinely identifies AIV lineages with distinct genetic signa-

tures [45]. In some instances, the presence of multiple AIV subtypes, including the highly

pathogenic H5N1 AIV, is also reported. Understanding this diversity requires, however,

accounting for multiple, potentially interacting strains/pathogens that co-circulate in the same

PDN. In this section, we use our framework to perform multi-strain simulations in a variety of

PDN structures.

We illustrate this in Fig 7, which shows SEIR simulations with 50 co-circulating strains. For

simplicity, we assume that these share the same epidemiological parameters, namely TE, TI and

β, and generate partial cross-immunity after a single infection.
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Our aim is to measure the extent to which PDNs mix viral lineages from distinct geographi-

cal regions. To this end, we modify the external seeding protocol so that strain si, i = 1, . . ., 50

can emerge only from upazila i. First, we investigate the role of viral amplification during the

transport segment, which is operated by middlemen (Fig 7A–7C). To better disentangle the

role of these actors, we consider low within-farm transmission and prevent inter-farm trans-

mission fully by setting βFF = 0. Consequently, viral mixing can not occur until chickens from

different upazilas/sub-districts are collected by a middleman. As shown in Fig 7A, increasing

transmission during transport by varying wMM leads to more infected chickens being intro-

duced in LBMs, i.e. it results in viral amplification. Note, however, that below a certain value

of wMM, middlemen may introduce fewer infections in LBMs than those they picked up at

farms. Increasing wMM has a modest positive effect on the average number of strains

Fig 6. Epidemic dynamics. (A) Daily incidence in LBMs in multiple simulations. (B) Cumulative number of new farms infected over time from

multiple clusters. Each cluster is initiated by a different infectious seed. (C) Distribution of attack rates for individual production cycles, conditional on

at least one infection. (D-F) High farm transmission scenario (wF = 0.2, wM = 0.7). Colour scale corresponds to varying levels of inter-farm transmission

βFF. (D) Proportion of incident cases in different setting types (F: farms, MM: middlemen, M: markets, V: vendors). (E) Average hourly prevalence in

LBMs at stationariety. (F) Proportion of latent and infectious chickens entering markets daily as a function of βFF. (G-I) High LBM transmission

scenario (wF = 0.1, wM = 2.4). Colour scale corresponds to varying latent period TE. (G,H) mirror (D,E). (I) Persistence is measured as the proportion of

simulations where at least one transmission chain persisting in markets and vendors for longer than 50 days was observed. Results are qualitatively the

same under different criteria about the duration of transmission chains (S5 Fig). Other parameters are set to default values. Results are based on 50

simulations from 10 different synthetic PDNs.

https://doi.org/10.1371/journal.pcbi.1011375.g006

PLOS COMPUTATIONAL BIOLOGY EPINEST, an agent-based model for epidemic simulations in poultry populations

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011375 February 21, 2024 10 / 22

https://doi.org/10.1371/journal.pcbi.1011375.g006
https://doi.org/10.1371/journal.pcbi.1011375


circulating (i.e. strain richness) in individual LBMs, and on the overlap between LBMs in

terms of circulating strains (light to dark bars in Fig 7B and 7C, respectively). We also

explored, for fixed wMM, the role of inter-market mobility on these metrics. In this context, the

density ρ of vendor movements had a positive effect on both strain richness and overlap

between LBMs as it is promoting the dissemination of multiple strains across LBMs. In con-

trast, a more hierarchical layout of vendor movements decreased strain richness and overlap

across LBMs. This is consistent with findings from Fig 5, which are suggestive of random

inter-market connections promoting chicken’s access to multiple LBMs. These results high-

light the importance of accounting for inter-market movements to analyse the mixing of co-

circulating AIVs.

Finally, we consider a further scenario in which transmission within and between farms

plays a central role in shaping epidemic dynamics, while transmission occurring during trans-

port is assumed to be negligible (wMM = 0.001). We find that increasing inter-farm transmis-

sion βFF leads to a wider spatial dissemination of strains even outside their upazila of origin

(Fig 7D). Consequently, a more diverse set of strains is supplied to LBMs, as evidenced by the

number of strains observed at these locations (Fig 7E). Also, because larger values of βFF pro-

mote strain dispersal across the entire area, LBMs are now more similar to each other in terms

of their strain populations (Fig 7F). It should be noted, however, that increased within-farm

Fig 7. Multi-strain dynamics and viral mixing in LBMs. (A-C) Simulations with no inter-farm transmission (βFF = 0). (A) Viral amplification

happening through transportation from farm to LBM gates as a function of middlemen-specific transmission weight wMM. This is quantified through

the difference between total numbers of exposed and infected chickens sold to vendors and purchased daily by middlemen. (B) Average strain richness

(i.e. number of strains) in single LBMs as a function of density ρ of vendor movements (on the x-axis), wMM (from light to dark). Solid and striped bars

correspond to low and high hierarchy in vendor movements, respectively. (C) Average Pianka’s index of overlap between pairs of LBMs in terms of

their catchment areas. (D-F) Simulations with inter-farm transmission. (D) Average richness per upazila for increasing βFF. Note that the bottom-right

map uses a different colour scale. (E,F) Same as (B,C) but for varying βFF and with wMM = 0.001. We set wF = 0.1 in (A-C) and wF = 0.2 in (D-F), while

wM = 2.4 and wV = 1 in all panels. Cross-immunity reduces susceptibility to secondary infections to σ = 0.3. Results are averaged over 50 simulations

from 10 different synthetic PDNs. In each simulation, statistics are collected for 100 days after an initial transient of 2000 days. The base layer of the

maps was obtained from https://gadm.org/download_country_v2.html.

https://doi.org/10.1371/journal.pcbi.1011375.g007
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transmission is responsible, at least in part, for the larger strain numbers and overlap between

LBMs observed in Fig 7E and 7F with respect to panels B,C. Finally, we note that the effects of

density and hierarchy of vendor movements on ecological metrics are analogous to those

observed in the previous scenario. These results are robust to increasing cross-immunity

between strains (S6 Fig).

Discussion

In this paper we have introduced EPINEST, an agent-based model to simulate the transmis-

sion of generic health hazards in the context of realistic poultry or livestock movements within

a defined PDN. To the best of our knowledge, this work represents the first attempt to account

for the structural complexities of poultry PDNs in the context of epidemic transmission

modelling. Our model allows to generate synthetic PDNs consisting of key actors and settings

involved in poultry production and distribution, namely farms, middlemen, LBMs and market

vendors. Using Bangladesh as a case study, we illustrated the ability of our framework to repro-

duce empirical features of a broiler PDN. We used extensive data from field surveys to inform

most aspects of the model, including farming and trading practices of key actors [18, 27, 46].

At the same time, our model offers the possibility to easily manipulate most properties of the

network, allowing exploration of alternative PDN configurations. Importantly, we emphasize

that our model may be applied to other contexts, e.g. different poultry types and countries for

which sufficient data is available.

One of the main purposes of EPINEST was to assess the impact of PDN structure and stake-

holders’ trading practices on pathogen transmission. For this reason, we prioritised including

PDN components with the highest relevance to transmission dynamics. These include, for

example, the time spent by chickens at different locations. All-in/all-out production, which is

commonly implemented in commercial broiler farms, results in relatively homogeneous rear-

ing times across farmed chickens, although these vary considerably among different chicken

types. In contrast, LBMs are characterised by a much faster turnover, with most chickens

being sold within a few hours and unsold chickens remaining for up to a few days. Longer

marketing times are a well-established risk factor for AIV infection in LBMs, and have been

linked to AIV persistence in these settings [18, 47]. To account for heterogeneity in marketing

times, we explicitly account for a fraction of chickens being offered for sale on consecutive

days.

Further basic ingredients of the model are the spatial distribution of poultry farms and their

sizes. Both elements are highly relevant to disease transmission. Heterogeneities in farm loca-

tions can affect systemic vulnerability to epidemics and pathogen dispersal patterns [48–50],

while higher livestock densities are associated with increased intra-farm transmission and may

favor the emergence of virulent pathogens [9, 51]. In the absence of accurate data about farm

locations, we generated random farm distributions complying with reported volumes of poul-

try production at the upazila level, and used field surveys to assign farm sizes [18, 27]. None-

theless, we stress that our model can accommodate any distribution of farms. These may

represent not only higher-resolution data, but also outcomes from more accurate generative

models [52–54].

Our model also allows to control the degree of mixing of chickens along distribution and

trading channels. The ability of PDNs to mix large numbers of chickens, particularly within

LBMs, is well-established. The inter-mingling of different types of birds from potentially dis-

tant locations is concerning when associated to co-circulation of genetically distinct viruses. A

recent phylodynamics study found substantial genetic structuring of H9N2 AIV by city in Ban-

gladesh [55], compatibly with low overlap between the corresponding supplying production
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areas [18]. In contrast, viral lineages appeared to be highly mixed across LBMs within the same

city, possibly indicating frequent connections between these markets. Live poultry trade has

also been shown to be an important driver of regional AIV dissemination in China [56]. Here,

poultry mixing within and between LBMs is dictated by two factors: first, upstream distribu-

tion via middlemen connects LBMs with farmed populations from a wide geographic area.

Within our framework, geographic fluxes between regions (upazilas/sub-districts) and LBMs

are expressed as a matrix that can be informed using field surveys or traceability systems. Sec-

ond, wholesaling activities and vendor movements further contribute to stirring marketed

poultry across LBMs. In this manuscript, we used a generative model to sample inter-market

mobility networks, and quantified their impact on poultry mixing. We emphasize that more

complex mobility patterns, informed either from data or through simulations, can be easily

embedded within our framework.

A major feature of our model is that it allows simulating pathogen transmission while

accounting for the complexity of poultry movements and PDN structures. Importantly, the

epidemic layer is fully uncoupled from PDN generation. Thus, while current code supports

simulations of SIR and SEIR dynamics only, implementing additional epidemic models is a

relatively straightforward task. We illustrated how our ABM can be used to model AIV

dynamics in both epidemic and endemic settings. In the former case, the ABM makes it possi-

ble to map the early dissemination of, e.g., an emerging AIV strain across farms and the rest of

the PDN. The second scenario would be more suitable to describe endemic circulation of

AIVs. In this context, relevant scientific questions that could be addressed using our frame-

work include understanding how and where an endemic AIV is maintained and amplified

along the PDN.

A novel aspect of our ABM is that it enables simulations of multiple co-circulating patho-

gens/strains and their interactions. This paves the way for a number of eco-epidemiological

applications. As an example, we assessed the potential of PDNs to mix viral lineages originat-

ing from distinct geographical areas. Additional applications may consider the joint dynamics

of endemic and emerging AIVs and simulate the early transmission dynamics of, say, highly-

pathogenic H5N1 AIV against a background of (cross-)immunity generated by endemic circu-

lation of H9N2 AIV [57].

As any modelling framework, there are limitations to our ABM. Despite our efforts to

account for the structural complexity of PDNs, our focus on epidemiological investigations

meant that several aspects of real PDNs could not be included in the model. For example,

actors’ behaviours are treated as fixed parameters external to, rather than emerging from, the

dynamic system being modelled. In reality, the decisions made by individual traders to sell or

purchase birds is influenced by social, economic and epidemiological factors. These may

include uncertainty about market conditions and fear spurred by disease outbreaks [58, 59]. In

addition, unequal power dynamics often constrains trading ties [40, 60]. In this context, we

plan on expanding our ABM’s capabilities to include simple reactive behaviours, e.g. farmers

selling chickens pre-emptively following a surge in bird mortality [59]. An important assump-

tion in EPINEST is that chickens mix homogeneously within a given setting. This simplifica-

tion may be less accurate for larger farms that store multiple flocks in separate sheds, or for

large villages where multiple backyard poultry flocks are raised. Heterogeneity in local trans-

mission could be partly recovered by ‘splitting’ large farms in smaller, neighbouring units and

by exploiting inter-farm transmission (as if different units were distinct farms). In its current

implementation, EPINEST assumes pathogens to spread directly from infected to susceptible

chickens. However, environmental contamination, caused by infected chickens, can also affect

transmission and contribute to pathogen dispersal within and between sites, especially from

LBMs back to farms via contaminated mobile traders. Future versions of this software may
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incorporate these additional routes of transmission. Further extensions to the model could

include mixing of different poultry species, different farming systems and trading practices,

such as second-line middlemen purchasing chickens from other traders, and different biosecu-

rity measures implemented at different LBMs to limit pathogen spread. Finally, although we

wrote our model in C++ to improve simulation speed (An assessment of simulation times is

shown in S7 Fig), computational constraints make it difficult to scale up simulations to more

than a few millions of farmed chickens. This is a common challenge in agent-based models,

where the increased amount of detail is traded off by computational costs.

This ABM framework would allow users to conduct a more comprehensive assessment of

intervention effectiveness, thereby yielding more meaningful recommendations. For interven-

tions classically implemented in other disease transmission models such as culling and vacci-

nation, for example, the ABM enables the evaluation of their impact across the entire PDN.

Moreover, the model facilitates the exploration of interventions that seek to modify the PDN

configuration—such as rewiring the network of mobile traders and/or vendors—an aspect

that has been overlooked in the modelling literature despite its relevance for mitigating disease

risks.

In conclusion, we implemented a novel agent-based model to jointly simulate realistic poul-

try movements and epidemic trajectories. Realised structures encompass a wide-range of PDN

configurations as encountered in many countries in South and Southeast Asia, and potentially

even other livestock production systems with similar structure to the one discussed here. Com-

pared to existing ABMs devoted to veterinary epidemiology applications [61–64], ours offers

the ability to run both single- and multi-strain simulations. In addition, the simulator can be

programmed to yield a wide range of outputs, including individual transactions and chains of

infections, hence providing a full characterisation of the underlying system. This model is a

unique tool in the One Health context as it allows investigation of a range of epidemiological

scenarios and helps us to understand better the role of different structural aspects on disease

transmission. Immediate applications of this model will allow exploration of the transmission

and amplification of AIVs and anti-microbial resistance genes within poultry PDNs.

Materials and methods

Generating synthetic PDNs

In general, a PDN denotes the ensemble of actors that are involved in the production and/or

distribution of a product such as poultry and their interactions. At any point in time, a chicken

is physically located within one and only one setting, such as a farm, a middleman’s truck, an

LBM or a vendor-owned shed during the night.

Our generative algorithm instantiates a population of actors based on external specifica-

tions. First, a spatial distribution of farms must be provided alongside the corresponding geo-

graphic setup. The latter consists of a partitioning of the study area into a set of non-

overlapping regions. In this study, we take upazilas/sub-districts as regional units. Second, the

user specifies a number of LBMs and their catchment areas. In practice, this is achieved by

specifying a matrix fa,l representing the relative fluxes of chickens reaching market l = 1, . . .,

NM from area a = 1, . . ., NA. A full description of LBMs requires a set of weights Gl,l0 encoding

the probability that a vendor purchases chickens in LBM l and trades in LBM l0 (with possibly l
= l0). Finally, a number of parameters influencing farming, distribution and trading practices

should be specified as well (these are described in S1 Text). With these details, the algorithm

computes the expected poultry fluxes between farms and LBMs and allocates enough vendors

and middlemen to satisfy such demand. At the LBM stage, vendors are allocated in a tier-wise

fashion depending on the volume of chickens supplied by middlemen, inter-market
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movements, and wholesaling practices. Eventually, it is possible to generate more middlemen

and vendors than strictly required based on heuristic calculations by inflating the expected

supply of chickens handled by middlemen and vendors through multiplicative factors �MM

and �V.

Modelling inter-market movements

As detailed in S1 Text, a vendor purchasing chickens in LBM i is assigned to trade in LBM j
with probability Gi,j.

We sample the weights Gi,j from a generative network model defined by a growth mecha-

nism: we add LBMs j = 1, . . ., NM one at a time and establish links i! j, i< j as follows: first,

we draw the number of incoming edges (in-degree) zj* Binomial(ρ, j − 1). Second, we sample

zj LBMs (with i< j) without replacement either at random with probability prandom, or propor-

tionally to their current out-degree. As nodes acquire more connections, they increase their

ability to attract further links whenever prandom< 1. prandom = 1 completely suppresses the

advantage of nodes with larger out-degrees as it assigns edges completely at random. This pro-

cess yields a network topology characterised by a binary matrix I i!j that denotes existing, ori-

ented connections from node i to j (I i!j ¼ 1). Within the fully-grown network, the out-degree

of node i is calculated as ki ¼
P

jI i!j. Weights Gi,j are then calculated as:

Gi;j ¼
di;j; if ki ¼ 0:

Gselfdi;j þ ð1 � Gself ÞI i!j=ki; otherwise ;

(

ð1Þ

where δi,j is Kronecker delta, which is 1 if i = j and is 0 otherwise, and Gself is the probability of

a vendor operating in a single market i, conditional on the out-degree ki being positive. Here

we set Gself = 0.8.

Global reaching centrality

GRC is defined based on the notion of local reaching centrality CR(i), which quantifies the pro-

portion of nodes reachable from node i through directed edges. Based on this definition, we

calculate GRC by subtracting CR(i) from the maximum observed value CmaxR ¼ maxi CRðiÞ, and

averaging over all nodes:

GRC ¼

XN

i
CmaxR � CRðiÞ
N � 1

: ð2Þ

PDN dynamics

Within simulations, actors follow a daily routine. Let t = 0, . . ., 23 indicate the time of the day

(each time step is 1 hour long). Unless otherwise stated, default parameters indicated in Tables

A-E in S1 Text are considered. LBMs open between Topen and Tclose; at t = Topen, vendors move

to LBMs, followed by middlemen. Middlemen then proceed to sell their cargo to frontline ven-

dors, i.e. those in the first LBM tier (L = 0). In the next time step (t = Topen + 1), some of these

move to another LBM and trade with second-tier vendors, who in turn sell chickens to vendors

in the tier after that, repeating the process until the last tier is reached. Vendor movements and

wholesaling are therefore resolved sequentially, in a tier-wise fashion, at time t = Topen + 1. In

contrast, retailing activities roll out between Topen + 1 and Tclose. At Tclose, both wholesalers and

retailers leave LBMs alongside any unsold chickens. Overnight, these chickens are stored in
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some other place, e.g. in a shed. Importantly, all chickens from the same vendor are stored in

the same place.

At some time t = Tfarm we update farms: empty farms may recruit a new batch of chickens,

while active farms may offer birds for sale depending on batch age. After that, always at t =

Tfarm, middlemen are updated: first, they decide whether to cover a different set of upazilas/

sub-districts. Then, they contact farms within covered upazilas/sub-districts in order to pur-

chase chickens. At this stage, middlemen only determine how many chickens to collect from

each farm; the collection may happen anytime between Tfarm and Topen on the following day.

Epidemic dynamics

In this work, we consider a general transmission model involving a generic number of strains.

Each strain, indexed by s, spreads according to SEIR dynamics. Infected chickens become

infectious only after a random latent period t̂E, sampled from a distribution Pðt̂EÞ with mean

TE. Analogously, infectious chickens recover after a random time t̂I , sampled from a distribu-

tion Pðt̂IÞ with mean TI. All epidemiological parameters are listed in Table F in S1 Text.

Here, transmission is assumed to occur through infectious contacts among chickens from

the same setting. Other transmission mechanisms, including external introductions and inter-

farm transmission, are described in S1 Text. During a time step, an infectious chicken i contacts

a single chicken j, chosen at random within the same setting, and transmits strain s with proba-

bility:

pinfect ¼ 1 � expð� bðs; iÞ � Sðs; jÞ � wXÞ ; ð3Þ

where β(s, i) denotes the transmissibility of strain s and S(x, j) is the susceptibility of chicken j to

s. The factor wX is a multiplier that depends only on the underlying setting type (F,MM,M,V).

In general, the transmission rate β(s, i) and susceptibility S(s, j) may depend on the immune

state of infector and infectee, respectively. Importantly, different functional forms of β(s, i) and

S(s, j) embody different assumptions about immune cross-reactions induced by previous expo-

sure to other pathogens/strains. In this work we consider uniform transmission β(s, i) = β, irre-

spective of immune state, and susceptibility S(s, j) = 0, 1, σ depending on whether j has already

been infected with s, is fully naive or was infected with some other strain s0 6¼ s, respectively.

The parameter σ 2 [0, 1] represents reduced susceptibility due to cross-immunity, and interpo-

lates between sterilising cross-immunity (σ = 0) and no cross-immunity (σ = 1).

Supporting information

S1 Text. Supplementary methods. File containing further details about data analysis as well

as model simulation and initialisation.

(PDF)

S1 Fig. Additional farm statistics from simulations. (A) Distribution of numbers of produc-

tion cycles completed per year. The simulated distribution (red) appears narrower compared

to empirical data (black) [27]. However, it should be added that several interviewed farmers

raised multiple batches simultaneously, and those that declared raising a single batch during

the interview may well have being managing 2 or more simultaneously during the previous

year. (B) Cumulative distribution of sizes of transactions involving farms and middlemen

(solid line). The dotted line represents the cumulative proportion of chickens sold in transac-

tions up to a given size. The corresponding distributions, denoted with ps and p0s respectively,

are related since p0s ¼ s � ps=
P

ss � ps. In other words, p0s is the size-biased version of ps. (C) Pro-

portion of chickens remaining unsold after a given time since being offered for sale for the first
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time by a farmer. Note that it is highly unlikely for a chicken to remain unsold for more than 5

days. Results are obtained from a single simulation with default settings as in Fig 2 in the main

manuscript.

(PNG)

S2 Fig. Additional middlemen statistics from simulations. (A) Proportion of upazilas visited

daily by one middleman during a single simulation. Note that a middleman may visit up to 4

upazilas per day, but visiting one or two is usually sufficient to complete a cargo. (B) Distribu-

tions of daily numbers of farms visited by one middlemen (cyan) and middlemen visiting one

farm (red). (C) Distribution of numbers of vendors trading daily with a middleman. (D)

Cumulative distribution of sizes of transactions involving middlemen and vendors (solid line).

The dotted line represents the cumulative proportion of chickens sold in transactions up to a

given size. Note that these transactions are typically smaller than those between farms and

middlemen (S1 Fig) since vendors deal with smaller amounts of chickens than other PDN

actors. Results are obtained from a single simulation with default settings as in Fig 2 in the

main manuscript.

(PNG)

S3 Fig. Additional vendor statistics from simulations. (A) Distribution of numbers of

wholesalers supplying a retailer (yellow), another wholesaler (blue) or any vendor (red) on a

daily basis. (B) Distribution of numbers of retailers (yellow), wholesalers (blue) or vendors

(red), regardless of type, purchasing from a single wholesaler on a daily basis. Note that (A)

excludes vendors buying chickens from middlemen, i.e. vendors operating in the first LBM

tier. (C) Distributions of daily amounts of chickens bought from retailers (yellow) and

wholesalers (blue) in simulations (lines) and data (markers) [18]. (D) Cumulative distribu-

tion of sizes of transactions involving middlemen and vendors (solid line). The dotted line

represents the cumulative proportion of chickens sold in transactions up to a given size.

Results are obtained from a single simulation with default settings as in Fig 2 in the main

manuscript.

(PNG)

S4 Fig. Distribution of marketing times. Each panel shows distributions of marketing times

for different average proportions of unsold chickens ρunsold and for increasing probability

pempty of a vendor selling all chickens in a single day (from left to right). The marketing time is

defined as the time interval elapsed since a chicken enters any LBM for the first time and is

sold to an end-point customer. Simulation settings are the same as in Fig 4 with only 10% of

vendors prioritizing the sale of unsold chickens.

(PNG)

S5 Fig. Sensitivity of persistence probability to duration of transmission chains. Lines show

how the probability of pathogen persistence varies with both TE and the minimum duration to

determine whether a transmission chain is persistent or not. The estimation of the probability

of persistence as well as simulation settings are the same as in Fig 6I.

(PNG)

S6 Fig. Viral mixing under complete cross-immunity. Results mirror panels B,C,E,F from

Fig 7 in the main manuscript, under the assumption of complete cross-immunity (σ = 0).

Increasing cross-immunity lowers strain richness in any setting as individual strains face

increased competition. Nonetheless, increasing cross-immunity does not significantly affect

overlap between LBMs.

(PNG)
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S7 Fig. Simulation time analysis. (A) Mean simulation time (seconds) as a function of the

number of farms and in absence of pathogen transmission. (B) Mean size of the chicken popu-

lation as the number of farms increases. (C) Mean simulation time in presence of pathogen

transmission for different combinations of within- and inter-farm transmission intensity

(parameters βF = β � wF and βFF, respectively). Here the number of farms is set to 1200. (D)

Mean pathogen prevalence in farms (proportion of infected farmed chickens) as a function of

the same parameters. Our findings indicate that simulation time increases linearly with the

size of the poultry population and non-linearly with pathogen prevalence when parameters βF
and βFF are varied. This happens because large values of prevalence can be achieved only if the

pathogen is able to transmit sufficiently well both within and across poultry flocks. Results are

averaged over 50 simulations from 5 different PDN realisations. In panels A,B, each simulation

is run for 6 years. In panels C,D, each simulation is run for 8 years and the pathogen is intro-

duced after 4 years. For simplicity, we consider transmission within settings other than farms

to be negligible (we set wMM = wM = wV = 0.001). Other PDN and epidemiological parameters

are set to default values.

(PNG)
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