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GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet Tolosan, France.

Nathalie Vialaneix
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Summary. This article addresses a common type of data encountered in genomic stud-

ies, where a signal along a linear chromosome exhibits a hierarchical organization. We

propose a novel framework to assess the significance of dissimilarities between two sets

of genomic matrices obtained from distinct biological conditions. Our approach relies on

a data representation based on trees. It utilizes tree distances and an aggregation pro-

cedure for tests performed at the level of leaf pairs. Numerical experiments demonstrate

its statistical validity and its superior accuracy and power compared to alternatives. The

method’s effectiveness is illustrated using real-world data from GWAS and Hi-C data. Tree

distances; Cophenetic distances; Moderated t statistics; p-value aggregation.



2 P. Neuvial et al.

1. Introduction

Genetic information is carried by chromosomes and, consequently, is primarily orga-

nized along a linear and mono-dimensional genomic axis. Pairwise similarity measures

between genomic elements, such as the linkage disequilibrium for Single Nucleotide Poly-

morphisms (SNPs) or Hi-C interaction matrices for tridimensional chromosome confor-

mation (Dixon et al., 2012), are frequently structured in a specific way. Indeed, the

induced (symmetric) similarity matrix presents a pattern of nested diagonal blocks, usu-

ally named haplotype groups for linkage disequilibrium and Topologically Associating

Domains (TADs) for Hi-C data. Each of these diagonal blocks corresponds to strong

correlations between adjacent genomic elements. Tree structures have proved to be an

informative representation of such matrices in several genomic contexts (Fraser et al.,

2015; Weinreb and Raphael, 2016; Ambroise et al., 2019; Soler-Vila et al., 2020). They

have been frequently used to identify structures of interest in the genome, including

haplotype groups (Won et al., 2020) and TADs (Soler-Vila et al., 2020). However, their

potential for providing a robust summary of the hierarchical organization of the genome

for structure comparison remains largely unexplored.

The goal of this paper is to provide a statistical test to compare two datasets with

such a natural underlying hierarchical organization. Our approach thus relies on the

idea of representing the hierarchical organization of such matrices with trees. Existing

methods for statistical assessment on trees and families of trees (Mallows, 1957; Holmes,

2003b) are generally based on bootstrapping an (individual × descriptor)-matrix to

generate a distribution of similarity between elements. This is typically the case in

the field of phylogeny for instance (Efron et al., 1996; Holmes, 2003a). As such, these

methods cannot be used when the input data are similarities. Other approaches have

been designed to compare pairs of trees (Galili, 2015) or pairs of similarity matrices

(Fraser et al., 2015). However, by construction, these methods cannot account for within-

condition variability, which is essential to assess the significance of differences between

conditions.

Here, we introduce a tree-based method to test for significant differences between two

sets of similarity matrices obtained from different conditions. Our proposed method,
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hereafter referred to as “tree test”, proceeds in two steps. First, each similarity ma-

trix is mapped to a multivariate vector encoding the hierarchical structure. This vector

corresponds to the cophenetic distances obtained from an adjacency-constrained clus-

tering (Ambroise et al., 2019) of the input similarity matrix. Then, the resulting mul-

tivariate two-sample testing problem is addressed by aggregating univariate moderated

tests, in order to cope with the typical high-dimensional setting encountered in genomic

studies.

We perform extensive numerical experiments based on real GWAS and Hi-C data in

order to assess (i) the statistical validity of the approach and (ii) its ability to identify

true biological signal. In these experiments, our proposed method is compared to other

approaches in order to assess the relevance of the proposed tree-based representation of

the input data, and of the chosen statistical test.

The tree test is presented in Section 2. Related works about statistical tests on trees,

and multivariate two-samples tests are reviewed and discussed in comparison with our

method in Section 3. The results of our numerical experiments are reported in Section 4.

This section includes: a simulation study based on GWAS data under the null hypothesis

(Section 4.2), an application to a differential analysis of Hi-C experiments (Section 4.3),

and a comparison study for simulated biological and technical replicates generated from

the same Hi-C data set (Section 4.4). Final remarks are gathered in Section 5.

2. Method

We assume to be given n input B×B matrices, (Mi)i=1,...,n that correspond to a measure

of similarity or dissimilarity between genomic elements (genes, genomic intervals, SNPs,

...), with B the number of genomic elements and n the number of observations. Typically,

these elements are ordered along the chromosome, i.e., for j < j′ < j′′, the genomic

element j′ is between the genomic elements j and j′′ on the chromosome. As discussed in

Ambroise et al. (2019), such matrices frequently present a strong spatial auto-similarity

driven by the linear organization of the chromosome. This induces a typical hierarchical

structure, which is illustrated in Figure 1 (see also Figure 3 below or Figure 5 (left) in

Randriamihamison et al. (2021)).



4 P. Neuvial et al.

45° rotation
to visualize
upper-triangular half

j j′ j′′

column j′′
row j′

Mj′,j′′

M

j′

j′′

Mj′,j′′

Fig. 1. Genomic similarity matrix obtained from Hi-C data (Dixon et al., 2012). Left: (symmetric)

similarity matrix M . The matrix presents a hierarchical structure with nested squares centered

on the diagonal. Right: Upper triangular part of the same matrix, with a representation of

the linear chromosome underneath. In both panels, elements are ordered according to their

chromosomal positions.

The tree test approach proceeds in two steps:

(a) in order to capture relevant information about the hierarchical structure of the

input data, we use adjacency-constrained hierarchical clustering (Ambroise et al.,

2019) to map each matrix Mi to a dendrogram. This dendrogram is then repre-

sented by the vector Xi ∈ Rp (with p = B(B − 1)/2) of all cophenetic distances

between leaf pairs. This construction is described in Section 2.1;

(b) a multivariate two-sample test adapted to the specificity of the data (large p, very

small n, strong correlation structure in the multivariate vectors to be compared) is

proposed (Section 2.2).

2.1. Mapping similarity matrices to cophenetic distance vectors

In order to capture the hierarchical structure of the matrices (Mi)i=1,...,n, we perform

adjacency-constrained hierarchical clustering with Ward linkage (Ambroise et al., 2019)

on each matrix Mi, using the R package adjclust. As a result, we obtain a set of
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trees (τi)i=1,...,n with the same set of leaves j = 1, . . . , B corresponding to the original

elements. Note that we use the generic term “similarity” in the sense described in

Randriamihamison et al. (2021): it covers kernel-based approaches (e.g., correlation

measures) or more general dissimilarity or similarity data for which there exists a valid

extension of the above-mentioned hierarchical clustering algorithm.

For each tree τi, we then consider the vector Xi of cophenetic distances between all

pairs of leaves (j, j′). The cophenetic distance corresponds to half the length of the

shortest path between leaves j and j′. Equivalently, for a dendrogram, this corresponds

to the height at which these leaves are merged in the tree, as shown in Figure 2. As the

τ1 τ2

↓ ↓


...
x1,9(τ1)

...
x3,8(τ1)

...







...
x1,9(τ2)

...
x3,8(τ2)

...




Fig. 2. Mapping from two example trees τ1 and τ2, with B leaves each, to their corresponding

vectors x1 and x2 in Rp, with p = B(B − 1)/2. The mapping is induced by the cophenetic

distances between leaf pairs, which correspond to the height at which leaves are merged. Two

examples are highlighted with thicker and colored branches.

number of pairs of leaves, (j, j′), is equal to p = B(B − 1)/2, this representation maps
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the tree τi to Xi ∈ Rp. This “tree-to-vector” mapping is frequently used to define a

distance between trees, as discussed in Section 3.1. The initial matrix/tree comparison

problem can thus be rewritten as the search of significant differences between two sets

of vectors in Rp.

2.2. Multivariate test for tree structure comparison

Given a sample (Xi)1≤i≤n of n independent observations, we aim at comparing two

conditions denoted by C1 and C2, such that C1 ∪ C2 = {1, . . . , n} and C1 ∩ C2 = ∅.
Let µ1 ∈ Rp and µ2 ∈ Rp denote the true population means associated to C1 and C2,
respectively. Our goal is to test the null hypothesis H0: “µ1 = µ2” against the alternative

hypothesis H1: “µ1 ̸= µ2”.

To address this p-dimensional testing problem in a genomic context, the following

constraints must be taken into account:

(a) usually, genomic experiments are performed with very small sample sizes (typically,

n1 = n2 ≤ 10). This makes most permutation or resampling-based approaches in-

appropriate. Indeed, the number of possible permutations of the two conditions

between the n individuals is at most
(
n
n1

)
, which can be too low to obtain suffi-

cient statistical power due to granularity issues, as discussed and illustrated in our

numerical experiments;

(b) conversely, the typical number of genomic features considered is larger than 10

(hence, p ≥ 50), which leads to a high-dimensional problem (n < p or even n≪ p)

for which, standard parametric multivariate tests (e.g., Hotelling’s test; Hotelling

(1936)) are ill-defined because they rely on estimating an inverse covariance matrix;

(c) finally, since they are based on a tree structure, the Xi present a very specific and

strong correlation structure, which makes standard alternatives to Hotelling’s test

not relevant (see Bai and Saranadasa (1996); Chen and Qin (2010); Dong et al.

(2016) and further discussion and comparison in Section 3.2).

To handle these constraints, we choose to perform p marginal tests (one for each

entry of the cophenetic distance matrix), and summarize the results in a unique test

using p-value aggregation. This choice avoids the estimation of an inverse covariance



A two-sample tree-based test for hierarchically organized genomic signals 7

structure without having to assume independence between tests. Our proposed approach

is described below.

2.2.1. Individual statistics

Let j = 1, . . . , p indicate a leaf pair. We assume that, for k ∈ {1, 2},

Xij ∼ N (µkj , σj), i ∈ Ck. (1)

Noting H0j : “µ1j = µ2j”, we consider the standard two-sample Student test statistic

of H0j :

tj :=

√
n1n2

n
×

X
(1)
j −X

(2)
j

σ̂j
, (2)

where, for k ∈ {1, 2}, nk = |Ck|, X(k)
= 1

nk

∑
i∈Ck

Xi ∈ Rp and σ̂j is an estimate of σj ,

which is assumed to be identical in the two conditions in (1). Assumption (1) implies

that the statistic tj follows a Student’s distribution with (n− 2) degrees of freedom (df)

under H0j with σ̂2
j defined as the pooled estimate

σ̃2
j :=

1

n− 2

(∑

i∈C1

(
Xij −X

(1)
j

)2
+
∑

i∈C2

(
Xij −X

(2)
j

)2
)
.

In the case where many tests are performed with a common ground and a small

sample size (not fit for a good estimation of standard deviations), several authors have

advocated for a regularization of the estimator σ̃2
j (Tusher et al., 2001; Smyth, 2004;

Tong and Wang, 2012). We thus consider the moderated test statistic tj defined in

Equation (2) associated to a “squeezed” variance estimate σ̂2
j based on a combination

of all the empirical estimates (σ̃2
j )j=1,...,p introduced by Smyth (2004). We refer to

Appendix A for a complete and formal definition. Note that this variance moderation

step is performed at the level of the whole tested matrix (e.g., considering information

coming from (σ̃j)j=1,...,p)†.
Finally, following the original results of Smyth (2004), the p-value for H0j is:

πj = 2(1− Fν0+n−2(|tj |)), (3)

†More generally, if several sets of matrices are tested independently (e.g., several chromosomes

in the genome), variance moderation can be performed based on the empirical variance estimates

of all matrices together.
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where Fν is the cumulative distribution function of the Student’s distribution Tν with

ν degrees of freedom, and ν0 corresponds to additional degrees of freedom due to the

squeezed variance estimate. In practice, ν0 is estimated as initially proposed by Smyth

(2004) and implemented in the R package limma (Ritchie et al., 2015).

2.2.2. Tree-level p-value

Since H0 = ∩pj=1H0j , one can test the intersection null hypothesis H0 by aggregating the

corresponding individual p-values πj , j = 1 . . . p. Following Lun and Smyth (2014), we

use the Simes aggregation method:

πSimes := min

{
p
π(j)

j
, j = 1, . . . , p

}
, (4)

with π(j) the jth smallest individual p-value: π(1) ≤ · · · ≤ π(p). This aggregation

method produces a valid p-value for the test of H0 as soon as the Simes (1986) inequal-

ity holds. As such, it is valid not only when the p aggregated tests are independent,

but also more generally when the p-values associated to true null hypotheses satisfy

a technical condition called the Positive Regression Dependence on a Subset (PRDS)

condition (Benjamini and Yekutieli, 2001). While proving that the PRDS condition

holds for a particular applicative context is challenging, this condition is known as par-

ticularly robust to departures of independence (see e.g., Rødland (2006); Goeman and

Solari (2014)). In particular, this condition is the weakest known condition under which

the widely used Benjamini and Hochberg (1995) procedure controls the False Discovery

Rate (Benjamini and Yekutieli, 2001). While we cannot prove theoretically that this

condition generally holds for our test, the numerical experiments reported in Section 4

support the empirical validity of the resulting method.

The different steps of the tree test are described in Algorithm 1.

3. Relation to existing literature

In this section, we discuss relations between our tree test and state-of-the-art methods

for tree testing, and we compare our test with alternative multivariate testing methods.
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Algorithm 1 Tree-based two-sample test for hierarchically organized genomic signals

Require: (Mi)i=1,...,n ▷ n similarity matrices

Require: C = {C1, C2} ▷ partition of observations between conditions

1: for all i = 1, . . . , n do ▷ Map to cophenetic distance vector

2: τi ← adjacency constrained clustering(Mi)

3: Xi ← cophenetic distance(τi)

4: end for

5: for all j = 1, . . . , p do

6: σ̃2
j ← pooled variance estimate(X·j , C)

7: end for

8: for all j = 1, . . . , p do ▷ Individual tests

9: σ̂2
j ← moderated variance estimate((σ̃2

j′)j′ , C)
10: πj ← moderated t test(X·j , σ̂

2
j , C)

11: end for

12: πSimes ← Simes aggregation((πj)j) ▷ Global test

13: return πSimes
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3.1. Tests on trees

3.1.1. Probabilistic models on tree sets

Existing approaches designed to address the issue of comparing families of trees assume

a probabilistic distribution over the space of all possible binary trees with a given set

of leaves from which observed objects (here, trees) have been sampled. A statistic with

known theoretical distribution is then defined under the assumption that both sets of

trees have been sampled from the same initial distribution. Statistical guarantees can

then be derived from the comparison between the observed value of this statistic and its

expected distribution under the null hypothesis.

This is the path followed by Billera et al. (2001), who assume a probabilistic distri-

bution based on the choice of a distance δ between trees. Elaborating on previous works

by Mallows (1957) on ranking models, Billera et al. (2001) consider that the probability

of sampling a given tree, τ , is given by

f(τ) := Ke−λδ(τ,τ0), (5)

where τ0 is a fixed “central” tree in the set T (B) of binary rooted trees with B leaves,

1/λ is a dispersion parameter and K is the normalization constant. Billera et al. (2001)

have proposed a constructive iterative approach to compute the central tree τ0 for their

BHV metric.

An alternative to the parametric distribution of Equation (5) is the use of bootstrap-

ping, combined with a convenient tree distance, as proposed by Holmes (2003a). This

approach is tailored to cases like phylogenetic trees, where the trees are built from a

(observation × variable)-matrix, and the similarity between observations is calculated

from measurements on the variables. Bootstrap samples are then obtained by resam-

pling over the variables, and a nonparametric distribution of the trees is derived from

this resampling scheme. By construction, this type of approach cannot handle cases

where the input data are similarity matrices that are not obtained from observed mea-

surements on the variables, as is the case for Hi-C data among others. Therefore, such

a nonparametric approach is not suited to our case.



A two-sample tree-based test for hierarchically organized genomic signals 11

3.1.2. Tree distances

Coming back to the parametric probabilistic distribution described in Equation (5), we

pinpoint an interesting connection between our method and a specific distance between

trees. Our proposed method relies on the representation of a tree τ by the corresponding

vector X(τ) of cophenetic distances between all of its pairs of leaves, which is described

in Section 2.1 and illustrated by Figure 2. This representation defines a mapping from

T (B) to Rp. This mapping is also the basis of a distance between trees introduced by

Steel and Penny (1993): the “weighted Path Difference Metric” (wPDM) between two

trees τ1 and τ2, defined as

wPDM(τ1, τ2) := 2∥X(τ1)−X(τ2)∥2,

where ∥.∥2 stands for the Euclidean distance in Rp. Using the dissimilarity δ = wPDM2

in the tree distribution model of Equation (5), the tree distribution density can be

rewritten as

∀ τ ∈ T (B), f(τ) = Ke−2λ∥X(τ)−X0∥2
2 ,

with X0 = X(τ0). This probability distribution can also be seen as a distribution for all

vectors of Rp that can be obtained as cophenetic distances for a given tree. Relaxing

the latter constraint, it thus defines a distribution over the entire space Rp, which turns

out to be the Gaussian distribution Np (X0, 1/(2λ)Ip). Hence, our proposal can be

interpreted as a test assuming a distribution which is a relaxation of the probabilistic

framework of Billera et al. (2001) for wPDM.

This tight connection of the data representation used in our approach to wPDM is cen-

tral to benefit from other appealing features that wPDM possesses in terms of modeling

and computational properties. First, many other distances between trees that have been

considered in the literature, in particular edit distances, the Robinson-Foulds distance,

the Nearest Neighbor Interchange distance, or the Subtree Pruning and Regrafting dis-

tance (Robinson and Foulds, 1981; DasGupta et al., 1997; Bordewich and Semple, 2005)

allow to distinguish trees with different topologies (e.g., branching patterns), but they

cannot distinguish trees with identical topologies and different branch lengths. However,

this latter property is critical to properly compare trees in the numerous applications
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where branch lengths are meaningful, including the ones motivating the present paper.

To our knowledge, the only existing distances between trees that are able to make this

distinction are wPDM and the Billera-Holmes-Vogtmann (BHV) distance (see Holmes

(2003b); Chakerian and Holmes (2012) and the R package distory). However, wPDM is

fast to compute, especially when compared to BHV. Indeed, its computational complex-

ity is of the order of the number p of pairs of leaves, whereas the fastest known algorithm

for BHV is of the order of B4, i.e., O(p2), as shown in Owen and Provan (2011).

3.2. Multivariate tests

The test introduced in Section 2.2 can formally be used to compare two sets of multi-

dimensional vectors (Xi)i∈Ck
for k ∈ {1, 2} that do not necessarily come from similarity

data. The goal of this section is to compare our test with other approaches that have

been proposed to address this multivariate two-sample comparison problem, and to dis-

cuss the relevance of the associated model assumptions for the validity of these tests

in our genomic context. When p < n and under a Gaussian assumption, the problem

of comparing two sets of multidimensional vectors (Xi)i∈Ck
for k ∈ {1, 2} is usually

addressed using Hotelling’s test statistic (Hotelling, 1936), which is equivalent to the

generalized likelihood-ratio test for testing the hypothesis H0 against H1. The Hotelling

statistic is defined as

T 2 =
(
X

(1) −X
(2)
)⊤

Σ̂−1
(
X

(1) −X
(2)
)
, (6)

where Σ̂ is an estimator of the covariance matrix Σ between entries of the vectors,

assumed to be common to both conditions.

Note that one can interpret T 2 as the squared norm of the decorrelated vector(
X

(1) −X
(2)
)
Σ̂−1/2. By definition, Hotelling’s test requires p < n, otherwise Σ̂ cannot

be invertible. Thus, it is not adapted to the tree framework considered in this paper,

which frequently yields high-dimensional situations with p≫ n.

Two main directions have been considered to address the issue of the high dimension

in Hotelling’s tests: either accounting for the dependence between the entries of X and

using a modified decorrelation step as in Shen et al. (2011); Chen et al. (2011), or simply
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ignoring this dependence, as in Chen and Qin (2010); Dong et al. (2016). A tradeoff

between both solutions has also been proposed in Hébert et al. (2021).

Accounting for dependence generally requires the regularization of the empirical co-

variance matrix before decorrelation. This is done by replacing Σ̂ by Σ̂ + ηIp, for some

η > 0 large enough so that Σ̂ + ηIp is invertible. However, this approach does not come

with satisfactory statistical guarantees in high-dimensional situations. Indeed, Chen

et al. (2011) obtain a theoretical distribution under the strong hypothesis that n is of

the order of p and Shen et al. (2011) use a bootstrapping approach to obtain an estima-

tion of the distribution of their test statistic under H0, which is also not appropriate for

small sample sizes (e.g., n ≤ 10), as already discussed. This approach is compared to the

tree test in the numerical experiments reported below, where it is called “permutation

test”.

An extreme alternative would be to neglect the dependence between the entries of

X. Bai and Saranadasa (1996) derive a statistical procedure where Σ̂ is replaced by the

identity matrix Ip. This approach has been extended to the case of the large dimension

by Chen and Qin (2010). Dong et al. (2016) also assume independence, but account for

differences in variances between the entries of X. This leads to a diagonal Hotelling test

with Σ̂ = Diag(σ̂2
1, . . . , σ̂

2
p), where σ̂2

j is an estimate of the jth diagonal entry of Σ, the

covariance matrix of cophenetic distances. This approach still requires the regularization

of the estimation of (σj)j=1,...,p but is more suited to the large dimension because only p

parameters need to be estimated. In this case, Hotelling’s statistic can also be seen as a

weighted version of wPDM (between the two trees corresponding to averaged cophenetic

distance vectors in each group), where the jth entry of the cophenetic distance is weighted

by σ̂−1
j .

However, this independence assumption is unrealistic for cophenetic distance vectors.

Indeed, these vectors have many ties, leading to a specific dependence pattern (see an

illustration in Section 4.2, Figure 5 right). Ignoring this dependence could compromise

the control of type-I error in the test procedure. This approach is compared to the

tree test in the numerical experiments reported below, where it is called “diagonal tree

Hotelling”.
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4. Numerical experiments

4.1. Alternative methods

In experiments below, we compare the tree test to several alternatives. First, we have

tested different versions of Hotelling’s test adapted to large dimensional datasets, fol-

lowing the directions discussed in Section 3.2:

• a diagonal Hotelling’s test as Dong et al. (2016). For a fair comparison with the

tree test, we also used squeezed variances to implement this test, as described in

Section 2.2. We performed this test to compare the cophenetic distance vectors, as

done for the tree test, but also to compare the vectors of the original entries from

the upper part’s matrix. These two versions are named diagonal tree Hotelling

and diagonal matrix Hotelling, respectively;

• a permutation test to compare the cophenetic distance vectors. For this test, we

performed a standard (regularized) Hotelling test and estimated the p-value from N

permutations of the conditions accross samples. This test was implemented using

the R package Hotelling. Considering the computational burden of this approach

and its intrinsic lack of resolution for low sample sizes (see results in the following

sections), we only performed it on the matrix entries directly.

Additionally, we also used additional tests designed to work directly on the matrix

entries to assess the relevance of the tree model and the data representation described

in Section 2.1:

• a Mantel test to directly compare matrices. As this test only compares two

matrices, we summed the matrices within each condition before using it. Depending

on the application, this transformation either makes sense (as for Hi-C data, which

are count data, as in Section 4.3) or is probably not relevant (as for LD data, which

are correlations, as in Section 4.2);

• the equivalent of the test tree but applied to the entries of the matrices instead

of the cophenetic distances. The entries from the upper triangle are tested with

moderated Student’s tests and results are aggregated with the Simes’ procedure.

This test is referred to as matrix test hereafter.
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Table 1. Broad characteristics of the methods considered in the performance evaluation.

Method name Input data Testing procedure

tree test cophenetic Simes aggregation of moderated t tests

matrix test similarity Simes aggregation of moderated t tests

diagonal tree Hotelling cophenetic Hotelling test with diagonal covariance

diagonal mat. Hotelling similarity Hotelling test with diagonal covariance

permutation test cophenetic regularized Hotelling test + permutation

Mantel test similarity Mantel test between condition means

A summary of the main characteristics of the different tests considered in experiments

is given in Table 1.

4.2. Simulation study under the null hypothesis

To assess the control of the type-I error rate and the distribution of p-values under the

null hypothesis, we used real genomic data and randomly split them into two groups.

Consequently, no specific signal is expected between the two groups. More precisely,

we chose to use GWAS data from the international HapMap project (The International

HapMap Consortium, 2003) to perform realistic numerical experiments under the null

hypothesis (Figure 3).

Fig. 3. Linkage disequilibrium for a region of B = 100 randomly chosen SNPs (organized along

the horizontal axis) from the HapMap project. Only the upper triangular part of the matrix is

displayed (to avoid redundancy due to symmetry) and, in addition, it is cut to keep SNP pairs

that have no more than 19 SNPs between them.

The GWAS data file contains 603 contiguous SNPs spanning a one megabase region

on chromosome 22, in a sample of 90 Europeans. This dataset has been obtained from
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the snpStats R package. We sampled uniformly at random 60% of the individuals in the

initial sample n times to obtain n samples from the same original population. We also

randomly selected a region of B contiguous SNPs. Using these samples and the selected

SNPs, we built n LD matrices, which are expected to have approximately the same

hierarchical structure, because they were obtained from the same population. These

matrices were further split into two groups, each with B leaves (the SNPs), on which the

tests were performed. Since each split is arbitrary, we expect no true difference between

the two groups.

The simulation process was repeated 1,000 times in order to assess the test statistic

and p-value distributions. Different variations of the simulation settings (n and B) were

also investigated. Simulations were performed using 4 cores and 40Gb of RAM. Figure 4

displays the empirical cumulative distribution function (ECDF) for the p-values obtained

over 1,000 simulations, for various values of n and B. The expected behavior is that

the ECDF should be close to the diagonal, since we expect Uniform p-values under the

null hypothesis. An ECDF below the diagonal indicates that the corresponding test

controls the type-I error rate but is conservative and therefore expected to lack power.

An ECDF above the diagonal indicates that the corresponding test does not control the

type-I error.
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n = 6, B = 20 n = 100, B = 20

n = 40, B = 100

Fig. 4. GWAS: Comparison of the p-value ECDF for the different methods. p-value ECDF

for the different methods under a H0 setting. Each plot corresponds to a tested combination of

the parameters n (total number of trees in the two conditions) and B (number of leaves in the

trees).
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In all settings, the Mantel test and both diagonal Hotelling tests exhibit an excess of

false positive results (for a 5% risk, the Mantel test detects 100% of significant differences

over the 1,000 simulations for the three settings and the diagonal Hotelling tests detect

24.6-72.4% of significant differences over the 1,000 simulations). For the Mantel test,

this bad behavior could be attributed to the fact that the sum (or average) of correlation

values is not a relevant operation. However, the inability to deal with replicates within

condition is, per se, a strong limitation of the Mantel test.

For the diagonal tree Hotelling test, the bad behavior is arguably due to a strong

deviation from the diagonal (independent) setting. Among the two versions of the diag-

Fig. 5. Left: Dendrograms obtained for one simulation with parameters n = 6 and B = 20

(the simulation corresponding to the smallest p-value over the 1,000 simulations). The 3 den-

drograms at the top correspond to the first condition and the 3 at the bottom to the second

condition. Right: Subset of the empirical correlation matrix, Σ̂, for this simulation, based on

cophenetic distance entries of leaf pairs of the form {(j∗, k)}k=1,...,B for a fixed j∗ (highlighted

by a red dot on the dendrograms of the left panel and by a black line on the matrix of the right

panel).

onal Hotelling test, the one based on matrices is equivalent (setting n = 100, B = 20)

or much worse (other two settings) than/to the one based on cophenetic distances. This

illustrates the robustness of the tree model for this type of hierarchical data.

As expected, the permutation test controls the type-I-error. It is the closest to

uniformly distributed p-values under H0 in the setting “small trees – moderate sample
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size” (n = 100, B = 20). However, our experiments illustrate two major practical

limitations of this test: its computational time and its conservativeness at low sample

sizes. First, we were not able to perform this test for the “large trees – moderate

sample size” setting (n = 40, B = 100) because of an excessive computational time

(longer than 2 days). Indeed, this test requires the inversion of a matrix of dimension

p = B(B − 1)/2, and thus has a computation cost of the order O(B6). This complexity

is prohibitive even for moderate B, especially when several of these inversions have to

be performed as in a permutation test. In addition to a prohibitive computational time

even for a small number of permutations (see Figure 6 top left), this test also lacks

resolution in the standard “small sample size” setting. Indeed, the maximum number

of distinct permutations for a sample size of n is P =
(
n
n1

)
(P = 20 for n1 = n2 = 3).

Therefore, the permutation p-values are multiples of 1/P , as illustrated by the stepwise

ECDF in Figure 4 (top left). In particular, the smallest p-value that can be achieved

by a permutation test with P different permutations is 1/P (and even equal to 2/P =

0.1 for n1 = n2 = 3 because, in the balanced case, some permutations are exactly

symmetric). This lack of resolution implies that this test is overly conservative in this

setting: regardless of the data, it is not possible to declare a test significant at a level less

than 0.1. Note that this issue is even more problematic when several tests (on different

sets of matrices) are performed (as in Section 4.3): in such a situation, it is virtually

impossible for this test to detect signal due to the necessary multiple testing correction.

Finally, the results of the tree test and matrix test are very close. Both methods

appropriately control the type-I error rate except for the most challenging simulation

setting (n = 6 and B = 20) for which the number of p-values below 5% is, respectively,

9.9% and 10.8% for the tree test and matrix test. We note that, in these tests, the

p-value ECDF is systematically closer to the diagonal for the tree test compared to the

matrix test, suggesting that the matrix test is more conservative. However, no definitive

conclusion can be drawn from these simulations only assessing the type-I error rate (this

rate is smaller for the tree test in the n = 100, B = 20 simulation setting but larger in

the n = 40, B = 100 simulation setting; values shown in the companion code repository,

see information in Section “Data and code availability”).
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Figure 6 compares the computation times of the different methods‡, and shows that

computation times for the tree test and matrix test are comparable. Interestingly, this

indicates that the first step of the tree test (described in Section 2.1) comes at a negligible

computational cost. Note that the number of permutations for the permutation test

n = 6, B = 20 n = 6, B = 20 (without the permutation test)

n = 100, B = 20 n = 40, B = 100

Fig. 6. GWAS: Comparison of the computation time for the different methods. Each plot

corresponds to a choice of the parameters n (total number of trees in the two conditions) and B

(number of leaves in the trees). Only one plot includes the permutation test (top right) that has

a computation time very large compared to the other methods.

was set to 1,000, except for the case n = 6 where we only could use the 10 distinct

‡We did not represent the computation time for the permutation test in the n = 100, B = 20

setting because it was also much too large compared to the three other methods to be seen. Also,

we did not represent the computation time of the diagonal Hotelling test, because the results

of these tests can be directly derived from the computations performed for the tree test (so the

computation times are the same for both tests).
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permutations available. Even restricted to 10 permutations, it remained the method

with the largest computation time (∼ 8 times larger than the second one, see Figure 6

top left.).

Additional results (including p-value distribution and test statistics distribution for

all tests) are provided in the notebooks of our companion code repository.

4.3. Differential analysis of Hi-C experiments

To show how the tree test can be applied in the field of 3D genomics, we used Hi-C data

from a previous study (Marti-Marimon et al., 2021).

The Hi-C protocol aims to identify genomic regions that are located nearby in the

3D space within the cell nucleus, providing useful insights into fundamental biological

functions (Lupiáñez et al., 2015; Won et al., 2016; Zheng and Xie, 2019). The generated

information is a sparse square matrix whose entries correspond to the number of observed

contacts between any given pair of genomic regions (or “bins”). From a mathematical

point of view, Hi-C matrices can be interpreted as matrices of similarities between bins.

In this section, we used Hi-C matrices coming from 6 experiments performed on

muscle tissues from 6 different pig fetuses. Each experiment produced 18 Hi-C matrices,

one per pig chromosome (excluding X and Y). Here, the matrix resolution is 200 kb,

which means that chromosomes are segmented into 200, 000 bases long bins.

The 6 pig fetuses originated from two biological conditions related to their maturity

development at the end of gestation: 3 at 90 days of gestation and 3 at 110 days of

gestation. Important modifications of the genome conformation have been observed

between these two stages (Marti-Marimon et al., 2021), stressing the need for statistically

relevant comparison methods. To date, standard methods for differential analysis of Hi-C

data mostly proceed with tests at the bin pair level (Djekidel et al., 2018; Ardakany et al.,

2019; Stansfield et al., 2019; Cook et al., 2020) and return positive results scattered in

the similarity matrix, which are not easily interpretable biologically. In contrast, the tree

test focuses on the hierarchical organization of genomic regions that can cover several

contiguous bins, therefore capturing differences between large functional structures like

TADs for instance (Dixon et al., 2012).
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At the largest scale though, testing entire chromosomes for significant differences is

of limited biological interest due to the lack of resolution. In order to identify genomic

regions with significant structural modifications between the two stages, we applied the

tree test on this dataset for 743 submatrices (“clusters”) corresponding to a partition

of the original chromosome matrices (the same partition is used across experiments; the

way data were preprocessed and submatrices were chosen is described in Appendix B).

As a control for our test procedure, we performed the same test after permuting the

condition labels identically for all the bin pairs of the same cluster (different label per-

mutations were realized across clusters). Note that we performed one permutation per

cluster to assess the p-value distribution under permutation. This is not a permutation

test, where multiple permutations would be needed for each tested cluster. Further-

more, these 743 tests cannot be considered as independent, due to possible dependencies

between neighboring genome regions. This is quite different from the preceding section

where we performed independent replications of the same comparison in a controlled set-

ting. The empirical distribution of raw p-values for the original and permuted data are

shown in Figure 7 for all methods described in Section 4.1, except for the permutation

test. Indeed, as explained above (see Figure 4; top left), the granularity of the p-values

implied by the permutation framework makes the permutation test powerless for very

low sample sizes, especially in a multiple testing context. The figure also gives, for all

methods, the percentage of tests declared significant for adjusted p-values (Benjamini &

Hochberg (BH) procedure; Benjamini and Hochberg (1995)) smaller than 5%.

In accordance with the results of Section 4.2, Hotelling tests yield a large inflation

of false positives (from 21% to almost 100% of positive discoveries in the permuted

setting). On the contrary, the tree test and the matrix test both properly control the

type-I error rate. However, the number of positive detections in the non permuted case

is strikingly different between these two tests and suggests that the power of the tree

test is much larger than that of the matrix test. Indeed, the matrix test could not

detect any significant difference whereas the tree test declares approximately one third

of the genome (34.2%) as significantly different between stages. The latter conclusion is

consistent with previous findings in genome conformation plasticity (Dixon et al., 2015),
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and for this dataset in particular (Marti-Marimon et al., 2021), which suggests that the

tree test is more appropriate than the matrix test.
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Fig. 7. p-value distribution for the different differential analysis procedures: original data (left)

and permuted conditions (right). The percentage of tests declared significant is based on BH-

adjusted p-values smaller than 5%.
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To further confirm the validity of the the tree test, the empirical distribution of the

individual statistics (as in Equation (2)) was compared with their theoretical distribu-

tions under H0j . For the tree test, variance squeezing resulted in an increase of ν0 = 1.17

and 1.20 in the degrees of freedom for the original and permuted dataset, respectively.

The null distribution is thus expected to be a Student with df = 6+ ν0 = 7.17 and 7.20,

respectively. As the difference between these two distributions is negligible, empirical

test statistic distributions for the original and permuted data were both compared to

T7.17. The same was done for the matrix test and the comparison is displayed in Fig-

ure 8. As noted in the preceding paragraph, the underlying tests are most probably not

independent.

Fig. 8. Empirical distribution of bin pair statistics (as in Equation (2)), for the original data (red)

and the permuted data (blue) compared to the theoretical null distribution (black). Results for

the tree test are on the left and results for the matrix test are on the right.

This confirmed the consistency between the results of the tree test on the permuted

dataset with the theory, and supported the validity of positive results. In contrast, the

matrix test shows a more pronounced departure from the expected distribution under

the permutation setting, suggesting a possible unsuitability of the test to this type of
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data. On a side note, the observed statistics for the tree test statistics are shifted to the

left when compared to the theoretical distribution (the left panel of Figure 8), which

indicates that cophenetic distances are overall larger at 110 days of gestation than at

90 days of gestation. This suggests a higher degree of chromatin compaction at 90

days of gestation globally, which is again consistent with previous results from the same

dataset (Marti-Marimon et al., 2021).

4.4. Comparison study for simulated biological and technical replicates

To further investigate the differences between the tree test and the matrix test, we used

the same Hi-C data from Marti-Marimon et al. (2021) as before, but in a simulation

setting. Artificial technical and biological replicates were generated to assess the benefit

and robustness of the tree model. Various amounts of differences between replicates were

obtained as follows:

• 2 × 3 simulated technical replicates (TR) were generated by independently

removing 20% of the counts from the same original matrix (first replicate of the

condition “110 days”; uniform subsampling). These replicates were randomly as-

signed to two simulated conditions. No signal is expected between these conditions

because the generation process exactly corresponds to the inherent technical noise

of the data;

• 2×3 simulated technical replicates from any matrix (TRAll) were generated

using the same subsampling process on each of the original matrices separately.

These replicates were randomly assigned to two simulated conditions. Again, no

signal is expected between these conditions but this allows to maintain some of the

original variability across replicates;

• 2× 3 simulated biological replicates from the same condition (BR1cond)

were generated using the same subsampling process on two matrices from the same

condition (first and second replicates of the condition “110 days”). All matrices

obtained from one of the two original replicates were assigned to one of the two

simulated conditions. No strong signal is expected from this experiment since the
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generation process corresponds to the biological difference between two different

animals at the same developmental stage;

• 2 × 3 simulated biological replicates from the two different conditions

(BR2cond) were generated using the same subsampling process on two matrices,

one from each condition (first replicate of each condition). All matrices obtained

from one of the two original matrices were assigned to one of the two simulated

conditions. In this situation, a stronger signal is expected between conditions since

the generation process starts from animals at two different developmental stages;

• 2 × 3 simulated biological replicates from the two different conditions

using all original matrices (BR2condAll) were generated using the same sub-

sampling process on each of the original matrices separately, maintaining the same

condition assignment. In this situation, the same strong signal is expected be-

tween the two conditions but with a larger variability within conditions than in the

previous simulation.

The simulation process is illustrated in Figure 9. Simulations were conducted similarly

to Section 4.2 and 500 simulated experiments were generated on each of the 81 clusters

from chromosome 1 (whose sizes ranged from 6 to 27 bins). Within each simulation

type, run and method, adjusted p-values were computed using the BH procedure.

Figure 10 shows the p-value distribution for the tree test (top row) and the matrix

test (bottom row), across the five scenarios considered (in rows). The percentage of

“significant” tests is also indicated in each panel. For the H0 scenarios (TR and TRAll,

first two columns), we report the proportion of p-values below 5% with no multiple testing

adjustment, in order to assess type-I error control. Since the other three scenarios involve

comparisons between biological conditions, we expect differences between conditions to

be detected in these cases. Therefore, we report the proportion of BH-adjusted p-values

below 5%, in line with what would be done in real-life situation in order to control FDR.

These results show that:

• for the technical replicate (TR and TRAll) simulations, both the tree test and

the matrix test have a false positive rate below the expected value (5%). However,
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Fig. 9. Illustration of the simulation process from pig Hi-C data. For each setting, the left part of

the figure represents the real data (with 3 replicates in two conditions) and the right part of the

figure represents the simulated data (also with 3 replicates in two conditions). The straight lines

between these two parts represent the subsampling process within matrices.

the matrix test is overly conservative, with no false discoveries at all in the TRAll

setting for a thresholding of adjusted p-values at 5%. These results are consistent

with those obtained in Section 4.2;

• for the biological replicate (BR1cond and BR2cond) simulations, both tests ob-

tain a higher ratio of positive results, as expected. However, the matrix test behaves

similarly in both cases, whereas BR1cond is expected to show weaker differences

than BR2cond. At a more conservative threshold (0.1%), the difference between

the two tests is even more pronounced: the tree test detects 55.9% and 67.4%

of positive results for BR1cond and BR2cond respectively, whereas matrix test

continues to detect 100% of positive results in both settings. This indicates a high
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Fig. 10. Simulated data based on the pig HiC dataset. Distribution of adjusted p-values

and percentage of tests detected as positive by controlling either p-values (H0 settings TR and

TRAll) or adjusted p-values (other settings where some differences between the two conditions

are expected) at a level of 5%.

sensitivity of matrix test to differences between conditions and a possible inflation

of false positive detections when groups are particularly homogeneous;

• more importantly, in the BR2condAll setting, which is the closest to the true

situation, the matrix test detects no positive result whereas the tree test declares

about one fourth of tests as positive. This result is highly consistent with the

results obtained in Section 4.3 and suggests that, unlike the tree test, the matrix

test does not cope well with biological variability within a condition.

5. Conclusion

We have introduced a tree-based method to test for significant differences between two

sets of similarity matrices obtained from two different conditions. The data represen-

tation obtained at the first step of this method explicitly incorporates the hierarchical

structure present in the input matrices. Then, our procedure is the result of an aggrega-

tion of univariate moderated tests, designed to cope with the typical high-dimensional
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setting encountered in genomic studies. Unlike the multivariate approaches described in

Section 3.2, the tree test does not need to estimate the inverse of a covariance matrix

nor does it assume independence between tests. Moreover, it does not require intensive

computation since it is based on univariate parametric tests.

Methodological choices imply tradeoffs, and we acknowledge that our selected choices

may not always be optimal in all contexts, nor can we guarantee that the theoretical

assumptions ensuring the formal validity of our test, such as the Gaussianity of the

marginal distribution of Xj , and PRDS property for the test statistics, always hold.

In particular, it is not obvious a priori that our proposed approach is superior to non-

parametric alternatives (e.g., permutation tests), to multivariate tests, or to tests that

do not take the hierarchical structure of the input data into account. Therefore, the

extensive numerical experiments performed in Section 4 are an important contribution

of this work. These experiments illustrate the relevance of our choices as compared to

these alternatives, both in terms of type-I error control and in terms of statistical power,

in particular in the context of very low sample sizes, which are typical of genomic studies.

In practical situations such as the GWAS and Hi-C data analysis contexts that mo-

tivated this work, users might want to detect the largest or the smallest subset of leaves

leading to differential structures between the two conditions rather than only perform-

ing a test at the global tree level. In the Hi-C application described in Section 4.3, this

problem is addressed by performing tests on subtrees corresponding to pre-determined

clusters of the chromosome wide trees. Automatically detecting regions of interest to

test from the data could facilitate the adoption of our proposed test by the genomic

community. Such an extension raises challenging statistical and computational issues,

which constitute an interesting perspective for future works.
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Appendix

A. Moderated variance for Student’s tests

As initially proposed by Smyth (2004), we follow an empirical Bayes framework in which

σ−2
j is assumed to be a random variable with a scaled inverse χ2 distribution with

parameters ν0 and σ2
0: ν0σ

2
0/σ

2
j ∼ χ2

ν0
, where χ2

ν denotes a χ2 distribution with ν degrees

of freedom.
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The posterior distribution of σ2
j can be shown to also follow a scaled inverse χ2 with

parameters ν0 + n and (ν0σ
2
0 + (n− 2)σ̃2

j )/(ν0 + n). In particular, we have

E(σ2
j |σ̃2

j ) =
ν0σ

2
0 + (n− 2)σ̃2

j

ν0 + n− 2
. (7)

This result is already known (see e.g., Smyth (2004)) but we were not able to find a

proof for it in the literature so we give it below for completeness.

Proof. Let ν := νj = n− 2 be the number of degrees of freedom of the frequentist

Student’s statistic. We also introduce additional notations from Smyth (2004): For

j = 1, . . . , p, let βj := µ1j − µ2j , and β̂j := X
(1)
j −X

(2)
j its natural estimator.

Lemma 1. If, for k ∈ {1, 2}, (Xij)i∈Ck
are i.i.d. observations of N (µkj , σ

2
j ),

(a) the distribution of β̂j given βj and σ2
j is given by:

β̂j |βj , σ2
j ∼ N

(
βj ,

(
1

n1
+

1

n2

)
σ2
j

)
,

(b) the distribution of σ̃2
j given σ2

j is given by

σ̃2
j |σ2

j ∼
σ2
j

ν
χ2
ν .

See e.g., Saporta (1990) for a proof of Lemma 1.

In the Bayesian framework defined by Smyth (2004), Lemma 1 implies that:

• the likelihood of the model is given by p(σ̃2
j |σ2

j ). As the probability distribution of

X = aZ for a > 0 and Z ∼ χ2
ν is given by

pX(x) =
(1/2)ν/2

Γ(ν/2)
a−ν/2 xν/2−1ex/(2a),

we thus have that

p(σ̃2
j = x|σ2

j = y) = Ky−ν/2xν/2−1e−(νx)/(2y)

where K is a normalization constant not depending on x or y,

• the prior distribution of σ2
j satisfies 1

σ2
j
∼ 1

ν0σ2
0
χ2
ν0
, that is, σ2

j ∼ ν0σ
2
0 Invχ

2
ν0
. As

the probability distribution of Y = bZ ′ for b > 0 and Y ∼ Invχ2
ν0

is given by

2−ν0/2

Γ(ν0/2)
bν0/2 y−ν0/2−1e−b/(2y),
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we have that

p(σ2
j = y) = K ′y−ν0/2−1e−(ν0σ2

0)/(2y).

Omitting terms not depending on y, the posterior probability distribution is propor-

tional to

p(σ2
j = y|σ̃2

j ) ∼ Likelihood× Prior

= y−ν/2 e−(νσ̃2
j )/(2y) y−ν0/2 e−(ν0σ2

0)/(2y)

= y−(ν+ν0)/2 e−(νσ̃2
j+ν0σ2

0)/(2y)

= y−(ν+ν0+2)/2−1 e−(νσ̃2
j+ν0σ2

0)/(2y)

where we recognize the distribution of (νσ̃2
j + ν0σ

2
0)Invχ

2
ν+ν0+2.

Equation (7) is a consequence of this result, as the expectation of Invχ2
ν+ν0+2 is

(ν + ν0 + 2− 2)−1 = (ν + ν0)
−1.

Then, following Smyth (2004), we consider the moderated test statistic tj defined in

Equation (2) associated to the “squeezed” variance estimate σ̂2
j = E(σ2

j |σ̃2
j ) given in (7).

The distribution of this statistic under H0j is tj |µ2 = µ1 ∼ Tν0+n−2, where Tν is the

Student distribution with ν degrees of freedom. Thus, an “individual p-value” πj for

each H0j , j = 1, . . . , p is obtained as:

πj = 2(1− Fν0+n−2(|tj |)),

where Fν is the cumulative distribution function of Tν .
In practice, ν0 and σ0 are obtained using the first two moments of log(σ̃2

j ) and α0

using an average of the top order statistics of the tj , as initially proposed by Smyth

(2004) and implemented in the R package limma (Ritchie et al., 2015).

B. Preprocessing of the Hi-C matrices

Hi-C matrices used in Section 4.3 were processed by chromosome (the same prepro-

cessing was performed for the 18 chromosomes independently). First, the six matrices

were corrected for differences in sequencing depths across experiments using MA nor-

malization (Cleveland and Devlin, 1988; Ballman et al., 2004) resulting in six corrected

matrices for each chromosome.
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Then, the corrected matrices were divided into submatrices of interpretable sizes

using the procedure illustrated in Figure 11. The six matrices were first summed to

obtain a merged matrix (1st step) on which constrained hierarchical clustering (HC)

was performed (as implemented in adjClust; 2nd step). A relevant clustering was thus

obtained by a cut of the resulting dendrogram at the number of clusters obtained using

the broken stick heuristic (Bennett (1996); 3rd step).

The resulting submatrices (the red triangles in the six matrices at the bottom left side

of Figure 11) were then submitted to different tests as described in Section 4.3. In tests

using the moderated variance procedure, the variance was moderated at the genome-

wide level (e.g., using the variances computed for all clusters of all chromosomes) and

the cluster p-values were also corrected at the genome-wide level.

References

Ambroise, C., Dehman, A., Neuvial, P., Rigaill, G. and Vialaneix, N. (2019) Adjacency-

constrained hierarchical clustering of a band similarity matrix with application to

genomics. Algorithms for Molecular Biology, 14, 22.

Ardakany, A. R., Ay, F. and Lonardi, S. (2019) Selfish: discovery of differential chromatin

interactions via a self-similarity measure. Bioinformatics, 35, i145–i153.

Bai, Z. and Saranadasa, H. (1996) Effect of high dimension: by an example of a two

sample problem. Statistica Sinica, 6, 311–329.

Ballman, K., Grill, D., Oberg, A. and Therneau, T. (2004) Faster cyclic loess: normal-

izing RNA arrays via linear models. Bioinformatics, 20, 2778–2786.

Benjamini, Y. and Hochberg, Y. (1995) Controlling the false discovery rate: a practical

and powerful approach to multiple testing. Journal of the Royal Statistical Society

Series B, 57, 289–300.

Benjamini, Y. and Yekutieli, D. (2001) The control of the false discovery rate in multiple

testing under dependency. Annals of Statistics, 29, 1165–1188.



A two-sample tree-based test for hierarchically organized genomic signals 35

90 days

110 days

+

1st step: merged matrix

2nd step: constrained HC

3rd step: clustering (broken stick)

90 days

110 days

Fig. 11. Illustration of the sub-matrix definition for the Hi-C experiment conducted in Section 4.3.

For each chromosome, the MA normalized matrices were first summed to obtained a consensus

matrix. Using constrained hierarchical clustering combined with the broken stick heuristic, this

merged matrix allowed to define common contiguous clusters, used to obtain sub-matrices from

the six initial Hi-C matrices. This figure has been obtained using chromosome 7 of the dataset.



36 P. Neuvial et al.

Bennett, K. D. (1996) Determination of the number of zones in a biostratigraphical

sequence. New Phytologist, 132, 155–170.

Billera, L. J., Holmes, S. P. and Vogtmann, K. (2001) Geometry of the space of phylo-

genetic trees. Advances in Applied Mathematics, 27, 733–767.

Bordewich, M. and Semple, C. (2005) On the computational complexity of the rooted

subtree prune and regraft distance. Annals of Combinatorics, 8, 409–423.

Chakerian, J. and Holmes, S. (2012) Computational tools for evaluating phylogenetic

and hierarchical clustering trees. Journal of computational and Graphical Statistics,

21, 581–599.

Chen, L. S., Paul, D., Prentice, R. L. and Wang, P. (2011) A regularized Hotelling’s

t2 test for pathway analysis in proteomic studies. Journal of the American Statistical

Association, 106, 1345–1360.

Chen, S. X. and Qin, Y.-L. (2010) A two-sample test for high-dimensional data with

applications to gene-set testing. Annals of Statistics, 38, 808–835.

Cleveland, W. and Devlin, S. (1988) Locally weighted regression: an approach to re-

gression analysis by local fitting. Journal of the American Statistical Association, 83,

596–610.

Cook, K. B., Hristov, B. H., Le Roch, K. G., Vert, J.-P. and Noble, W. S. (2020)

Measuring significant changes in chromatin conformation with ACCOST. Nucleic

Acids Research, 48, 2303–2311.

DasGupta, B., He, X., Jiang, T., Li, M., Tromp, J. and Zhang, L. (1997) On distances

between phylogenetic trees. In Proceedings of the 8th annual ACM-SIAM Symposium

on Discrete Algorithms (SODA ’97) (ed. M. Saks), 427–436. New Orleans, LA, USA:

SIAM, Philadelphia, PA, USA.

Dixon, J. R., Jung, I., Selvaraj, S., Shen, Y., Antosiewicz-Bourget, J. E., Lee, A. Y., Ye,

Z., Kim, A., Rjagopal, N., Xie, W., Diao, Y., Liang, J., Zhao, H., Lobanenkov, V. V.,



A two-sample tree-based test for hierarchically organized genomic signals 37

Ecker, J. R., Thomson, J. A. and Ren, B. (2015) Chromatin architecture reorganization

during stem cell differentiation. Nature, 518, 331–336.

Dixon, J. R., Selvaraj, S., Yue, F., Kim, A., Li, Y., Shen, Y., Hu, M., Liu, J. S. and

Ren, B. (2012) Topological domains in mammalian genomes identified by analysis of

chromatin interactions. Nature, 485, 376–380.

Djekidel, M. N., Chen, Y. and Zhang, M. Q. (2018) FIND: difFerential chromatin IN-

teractions Detection using a spatial Poisson process. Genome Research, 28, 412–422.

Dong, K., Pang, H., Tong, T. and Genton, M. G. (2016) Shrinkage-based diagonal

Hotelling’s tests for high-dimensional small sample size data. Journal of Multivariate

Analysis, 143, 127–142.

Efron, B., Halloran, E. and Holmes, S. (1996) Bootstrap confidence levels for phyloge-

netic trees. Proceedings of the National Academy of Sciences of the United States of

America, 93, 13429–13434.

Fraser, J., Ferrai, C., Chiariello, A. M., Schueler, M., Rito, T., Laudanno, G., Barbieri,

M., Moore, B. L., Kraemer, D. C., Aitken, S., Xie, S. Q., Morris, K. J., Itoh, M.,

Kawaji, H., Jaeger, I., Hayashizaki, Y., Carninci, P., Forrest, A. R., The FANTOM

Consortium, Semple, C. A., Dostie, J., Pombo, A. and Nicodemi, M. (2015) Hierar-

chical folding and reorganization of chromosomes are linked to transcriptional changes

in cellular differentiation. Molecular Systems Biology, 11, 852.

Galili, T. (2015) dendextend: an R package for visualizing, adjusting, and comparing

trees of hierarchical clustering. Bioinformatics, 31, 3718–3720.

Goeman, J. J. and Solari, A. (2014) Multiple hypothesis testing in genomics. Statistics

in medicine, 33, 1946–1978.
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