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Abstract— This paper presents an adaptive optimal control algorithm to minimize membrane fouling and energy to deal with 

model uncertainty and disturbances in the characteristics of the water to be filtered. The Membrane BioReactor under interest is 

operated at constant flux and the objective is to minimize energy requirements such that the quantity of water filtered over a given 

period of time tf equals p*. The algorithm is based on the iterative application of the optimal strategy initially proposed in [1] to 

account on input water characteristics changes. With such a modified control approach, it is shown in simulations that the ratios 

between filtration and backwash time periods adapt over the time to take account on unknown water input variations. 

I. INTRODUCTION 

Membrane BioReactors (MBR) are more and more used in the wastewater industry due to their high treatment performance 
and the recent and continuous decrease in their investment and functioning costs, [2]. However, their main drawback remains 
the risk for membrane fouling which must be managed. A number of strategies and technologies have been proposed to deal 
with this problem for both systems functioning at constant flux (and variable TransMembrane Pressure) or at variable flux (and 
constant TMP). Among others, methods based on models, and notably optimal controls have shown to exhibit very interesting 
results in practice, cf. for instance [3-5]. With respect to other methods, these approaches are interesting because they allow to 
quantify, for the simplified models used, how far the actual functioning evolves from the theoretical optimum. 

Dealing with such model-based approaches require using models of MBR. Such models can be obtained from data (as in our 
approach) or from mass-balance models coupling biokinetics models (based on the well-known ASM models) with models 
describing the dynamics of membrane fouling, cf. for instance [6]. In this work, such detailed models are used for simulating the 
actual system (as a "virtual process") while a simple control design model is obtained using the data generated with the detailed 
model. In such a way, the detailed model is seen as a virtual process that can be used to evaluate the control approaches and their 
robustness prior to apply them in real life. 

This paper is organized as follows. First, the optimization problem when the systems inputs are constant is recalled together 
with its general solution. Then, its adaptive form to deal with varying inputs is proposed. For testing the adaptive optimal control, 
a virtual process coupling a biological process model with a model describing the fouling dynamics is proposed. Then, the 
proposed control algorithm is applied to this virtual process: the results obtained are compared to those obtained assuming 
constant inputs. Finally, conclusions and perspectives are drawn. 

II. OPTIMAL CONTROL OF FILTRATION SYSTEMS 

A. Optimal time control with a constant input flux 

In this section, we recall the optimal control problem that has been solved in [1]. Let us consider a membrane system 

operated at constant flux. It is supposed that the dynamic of the system may be characterized by a hidden variable x(t) – for the 

sake of simplicity let interpret it as the quantity of matter attached onto the membrane - this dynamic being modeled as: 
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where u in [-1,1] is the control (by convention, u=1 during filtration phase and u=-1 in backwash phase). 

The dynamic of the water produced over time is given by: 
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(2) 

where Lp and Lr are the fluxes during filtration and backwash respectively. 
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 It was further assumed that the total energy demand is the sum of the energy needed during the filtration phase and the one 

required during the backwash phase: this energy, denoted ET depends on x(t) and is expressed by (3): 

𝐸𝑇(𝑥0, 𝑢(. )) = ∫ (
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where x0 is the initial state while lp and lr are functions modeling the required energy during the filtration and the backwash 

phases, respectively. 

 Under appropriate general hypotheses and using the Pontryagin Maximum Principle, Aichouche et al. solved analytically 

the problem of minimizing the total energy ET to attain a given quantity of water treated at the free final time tf in computing 

the best sequence of filtration and backwash phases, and their optimal lengths for the specific following functions (available 

studies show that first-order functions are good candidates, [1]): 

fp=apx+bp    (4) 

fr=arx    (5) 

lp=cpx+dp    (6) 

lr=crx+dr    (7) 

 Formally speaking, the following problem was solved: 
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subject to (1) and (2) with 𝑢 ∈ [−1,1] and where tf is the first entry time in the target : 

𝑇 = {(𝑥, 𝑝)  𝑠. 𝑡.  𝑝 ≥ 𝑝∗} 
where p* is the desired quantity of water to be treated at tf. 

 In the most general case, it was shown that the optimal control consists in first applying either filtration or backwash 

(depending on the position of the initial condition x0 with respect to a specific value 𝑥, which only depends on the parameters 

of the model) until a singular arc is attained (corresponding to a specific value 𝑢), then stay on this singular arc until a specific 

instant (which also only depends on the model parameters), and finally apply a filtration phase until the desired quantity of 

water p* be attained. Notice that such a strategy involves a singular arc: it means that the system is assumed to be able to 

function at a value of u which is neither -1 (backwash) nor +1 (filtration). Since a filtration system can only function physically 

in these two distinct modes, applying a singular arc in practice on a given period of time is equivalent in fixing the filtration 

over backwash times ratio and alternating between these two controls as often as possible. This theoretical optimal strategy is 

illustrated in Figure 1. 

Remark: Figure 1 presents the very general optimal control synthesis for the problem considered. Notice however that for some 

very specific initial conditions, the optimal control consists in switching from -1 to +1 instead of staying on the singular arc 

(cf. [1]). This case corresponds to the yellow curve, which is called a “switching curve” in optimal control theory. In practice, 

this case is very particular and in most cases does not occur, unless at initial time the variable p is relatively close to p* while 

x is already large, which makes not really sense in real applications. 

 More precisely, for the functions (4-7) it was shown that the optimal control parameters to minimize ET are given by: 
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𝑢 =
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 (9) 



  

 
Figure 1. Optimal synthesis for the considered parameters in the (p; x) plane. The singular arc is in green and the switching curve in yellow (from [1]) 

B. Main contribution: an adaptive strategy to deal with uncertainty and input disturbances 

 Notice that the above recalled optimal control parameters (the ratio of filtration/backwash phase lengths and the switching 

instant) only depend on the initial condition and on the model parameters. It should be underlined here that these parameters 

are supposed to be constant. Of course, functions fp and fr in (1) do depend on input concentrations. In other words, the proposed 

control is feasible and indeed optimal as long as the input water characteristics are constant. Thus, such a strategy is of interest 

when the filtration system is considered as an unitary separation system. However, it is the rule rather than the exception that 

input water characteristics change in time, notably its concentration in total suspended solids (TSS). It is notably the case when 

the filtration system is coupled with a biological process and form a MBR treatment process. This situation was well motivated 

in [6] where it is mentioned: “[...] such a system cannot be modelled by a “biological compartment” followed by a model 

describing the physical behavior of the membrane: the coupling of both must be necessarily taken into account to finally come 

up with what will be named hereafter an “integrated model”. Thus, when the inputs of the whole system vary with time, the 

parameters of the functions fp and fr in (1) would also change with time. This makes most of the optimal control approaches 

developed in the literature for the optimal control of MBR – and that are often applied in open loop - not very robust with 

respect to process inputs. 

 To deal with these characteristics, the following adaptive optimal control is proposed. This adaptive control is still based 

on the previously recalled algorithm: however, instead of computing control parameters once and for all, model – and control 

parameters - are re-identified after each filtration/backwash sequence assuming the TMP is measured online. That way, the 

control continuously adapts control parameters to the actual fouling dynamics in case of input changes. It is an important step 

forward with respect to the initial work proposed in [1] since instead of an open-loop control, the optimal control works now 

in closed-loop. 

 The hereabove described algorithm is modified as follows: 

 The initialization of the control is unchanged: a first identification is realized using data available during one (or more) 
filtration/backwash sequence(s). Then, based on the identified kinetics, the computation of the optimal control parameters is 
realized and one obtains in particular 𝑥. At that instant, we apply 𝑢0 = +1 (filtration) if 𝑥 < 𝑥 or 𝑢 = −1 (backwash) if 𝑥 >
𝑥 until 𝑥 = 𝑥 (and we denote 𝑡𝑒 the corresponding instant); 

 At 𝑡𝑒, using the last available data, we identify again the model dynamic and compute a new control 𝑢1. To allow for the 
system to attain a pseudo steady state, the new computed control is applied for a number of cycles, typically 3 (and we denote 
𝑡𝑐 one cycle length); 

 From that time (𝑡𝑒+3𝑡𝑐) until the time at which the objective will be attained (a given quantity of treated water has been 
produced), we i) re-identify the dynamics of the system, ii) re-identify control parameters and iii) apply it to the system after 
each cycle period. 

 This algorithm is schematically represented in Figure 2: 



  

 
Figure 2. An adaptive optimal control of the filtration membrane system to adapt the optimal control in the presence of input variations 

Remark: Notice that the variations of the parameters over the time are not known in advance. Therefore, the optimization 

problem under uncertainty could be defined under some statistical knowledge of the uncertainty and then consists in optimizing 

in average, or as a robust optimization "in the worst case", which might be very conservative. Here, we implicitly assume that 

the variations of the parameters are slow so that we expect that applying the optimal feedback law as if the parameters were 

constant would not be so far from the optimal solution as if the variations of parameters were known in advance. Of course, we 

do not have a mathematical proof of this property, but we show the efficiency of the approach as a proof of concept. Let us 

underline that this approach is possible because we have a control strategy in feedback loop. 
To test this new adaptive algorithm, a model coupling the biological and fouling dynamics is necessary. We present such a 

coupled model in the following section inspired from the model initially proposed in [7] and further validated by [8]. 

II. A VIRTUAL PROCESS: COUPLING A BIOLOGICAL PROCESS MODEL WITH A FILTRATION MODEL 

A. Model of a virtual Anaerobic Membrane BioReactor 

To simulate the functioning of a biological system, we chose to couple a biokinetic model of the anaerobic digestion 

including the dynamics of the SMPs (cf. [9]) to a fouling model initially proposed in [7]. This model describes the dynamics 

of a simple two step model of the anaerobic digestion that has been validated several times on real data, including the dynamics 

of the so-called Soluble Microbial Products (this model is named hereafter "AM2b", cf. [8]). An interesting point is that this 

last model potentially allows us to take into account the influence of both the Total Suspended Solids that attach onto the 

membrane (the "cake") and the SMP (that are smaller components and that can block the pores of the membrane). 

Based on a mass balance for the different model components, the dynamic equations of the coupled system, during the 

filtration phase, are given by: 
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where Qin is the input flow rate (L/h), Qout the permeate flow rate (L/h), X1 the acidogenic biomass concentration, X2 the 

methanogenic biomass concentration, S1 the COD concentration, S2 the VFA concentration,  𝑘𝑑1 and 𝑘𝑑2 are the mortality of 



  

X1 and X2, respectively (h-1), 𝑘𝑖 , 𝑖 = 1. .3 and 𝑏𝑖 , 𝑖 = 1. .4 are yields coefficients (g/g), 𝜇1 the growth rate of the acidogenic 

biomass growing on S1, 𝜇𝑃𝑀𝑆 the growth rate of acidogenic biomass growing on the SMP, 𝜇2 the growth rate of methanogenic 

biomass growing on S2, 𝜇𝑚𝑎𝑥1 the maximum growth rate of X1 on S1 (h-1), 𝜇𝑚𝑎𝑥2 the maximum growth rate of X2 on S2 (h-1), 

𝜇𝑃𝑀𝑆𝑚𝑎𝑥,  the maximum growth rate of X1 on the SMP (h-1), K1 the semi-saturation constant associated to S1, K2 the semi-

saturation constant associated to S2, K3 the semi-saturation constant associated to the SMP and Ki the inhibition constant 

associated to the consumption of S2. 

The contribution of the soluble (ST=S1+S2 and SMP) and particulate components (XT=X1+X2) to the membrane fouling is 

supposed to be modeled by two different phenomena, that are the cake formation (mostly by particulate components but also 

by soluble components) and the pores blocking (mostly by the SMP but also by other soluble components) following the 

dynamics: 

𝑚̇ = 𝛿𝑄𝑜𝑢𝑡(∑ 𝐶𝑆𝑖𝑆𝑖𝑖 + 𝐶𝑆𝑀𝑃𝑆𝑀𝑃 + ∑ 𝐶𝑋𝑖𝑋𝑖𝑖 ) (19) 

𝑆̇𝑝 = 𝛿′𝑄𝑜𝑢𝑡(𝛽𝑆𝑀𝑃 + 𝛽′𝑆𝑇) (20) 

where 𝐶𝑆𝑖, 𝐶𝑋𝑖, 𝐶𝑆𝑀𝑃, 𝛽 and 𝛽′ are weighted functions while 𝛿 and 𝛿′ are parameters used to balance the rates of the two fouling 
phenomena. 

B. Dynamic of the system during the backwash 

 During backwash, the only phenomena of importance is supposed to be the detachment of the attached matter. Under the 

assumptions i) that the dynamics of biological phenomena are supposed to be very slow with respect to the dynamics of the 

detachment and ii) that the mass of matter detached is small with respect to the matter present in the reactor, the dynamic 

equations for the backwash period are simply given by: 

𝑚̇ = −𝑓𝑚(m) = −𝑤.𝑚 (21) 

𝑆̇𝑝 = −𝑓𝑠(𝑆𝑝) = −𝑤
′. 𝑆𝑝 (22) 

where w and w’ are the backwashing efficiencies related to cake layer and to pores blocking, respectively. 

C. Open loop simulation: Effect of an input step concentration on the simulated state 

 In this section, the model is simulated using an open-loop strategy (e.g. with constant filtration and backwash time periods). 

It is simulated over a time horizon of 68 hours. The filtration and backwash periods lengths are 36 minutes and 3 minutes 

respectively. The model inputs together with the parameter values used for the simulations are given in the following Table. 
TABLE 1. INPUT AND MODEL PRAMETER VALUES USED FOR THE SIMULATIONS 

Input/parameter   unit Value 

𝜇𝑚𝑎𝑥1, 𝜇𝑚𝑎𝑥2, 𝜇𝑚𝑎𝑥𝑆𝑀𝑃  (1/h) 1.2; 1.5; 0.14 

K1, K2, K3, Ki                    (g/L) 10; 5; 3; 15 

𝑘𝑖 , (𝑖 = 1. .3)  - 25; 15; 16.08 

𝑏𝑖 , (𝑖 = 1. .4) - 40; 0.6; 3; 1.3 

kd1=kd2 (1/h) 0.18 

𝑄𝑖𝑛, 𝑄𝑜𝑢𝑡, 𝑄𝑤 (L/h) 10; 8.5; 1.5 

V (L) 50 

𝐶𝑥1 = 𝐶𝑥2 
𝐶𝑠1 = 𝐶𝑠2 = 𝐶𝑆𝑀𝑃  

- 0.05; 0.005 

𝛽,  𝛽′, 𝛿, 𝛿′ - 0.6; 0.04; 0.7; 0.06 

w, w’ - 10; 1 

In Figure 3, the input substrate concentrations S1in and S2in vary from 90 to 180, and from 20 to 60, respectively, at time 

t=33h30min. 

 



  

Figure 3. Open-loop simulations of the MBR with step input concentrations. S stands for Sp.“Oscillations” (high variance) observed on some signals are due 
to the succession of filtration/backwash cycles which have more important repercussions on some variables than on others. 

Even if the filtration/backwash length were initially optimally computed (assuming inputs were known), in the presence of 

such unknown input changes, the constant control will not be optimal anymore. 

III. NUMERICAL APPLICATIONS OF THE OPTIMAL CONTROL 

In this section, we apply the adaptive optimal control presented in Section II.B to the model recalled in the previous section. 

The control designs are performed with unknown input concentrations. The available measurement is the variable m. In 

practice, this measurement is not possible. It is thus assumed here that this “hidden” variable is simply proportional to the TMP. 

This measurement is known to be very robust not really subject to noise. To concentrate on the main important point of the 

paper (comparisons of the performances of the three control strategies) the simulations shown were realized without any noise. 

A. Adaptive optimal control of membrane fouling for constant input concentrations 

Recall that even if the input substrate concentrations are constant, they can be unknown. The algorithm described in Section 
II.B is applied to the MBR. The inputs substrates S1in and S2in are constant and equal 90 and 20 respectively. The closed loop 
control system is simulated over 68h and 15 minutes. The first three filtration/backwash phase lengths, used for initial system 
identification are constant (tF=36 minutes and tbw= 3 minutes). 

Figure 4 shows the automatic adaptation of the ratio of the length of the filtration phase over the length of the backwash 
phase (on the left Figure). On the right Figure, it is observed that the length of the backwash phase increases until the beginning 
of the 16th hour of the experiment and then stabilizes around 216 seconds. The stabilization observed is due to the convergence 
of the system towards a pseudo-steady state. 

B. Adaptive optimal control of membrane fouling in the presence of input disturbances 

Now, we simulated the closed-loop control of the MBR in the presence of input steps. At t=50, S1in and S2in vary from 90 to 
180, and from 20 to 60, respectively. As can be seen in Figure 5, the control adapts to these changes in automatically increasing 
the backwash phase length. 

 

Figure 4. Adaptation of the optimal lengths of the filtration and backwash phases in the presence of unknown constant input substrate concentrations. On the 
left the ratio (tF/tbw), on the right tbw (in seconds) 



  

 

Figure 5. Adaptation of the optimal lengths of the filtration and backwash phases in the presence of an unknown magnitude step in the input substrate 
concentrations. The ratio (tF/tbw) is plotted on the left and tbw on the right (in seconds) 

IV. PERFORMANCE ANALYSIS 

In order to evaluate the performance of the new adaptive control, we compare three different strategies: 

 The first strategy consists in applying a constant filtration/backwash ratio as if inputs were not varying with time: it is a 

kind of industrial reference control (results plotted in blue); 

 The second tested strategy consists in applying the original optimal control proposed in [1] without updating model 

parameters over the entire operation time (results plotted in red); 

 The third control strategy consists in applying the actual adaptive optimal control approach (results plotted in green). 

A. Performance comparaison for constant input concentrations 

Again, consider constant inputs S1in=90 and S2in=20. The first open loop strategy is plotted in blue: it is obtained in applying 
constant filtration/backwash phase lengths (tF=36 minutes and tbw= 3 minutes) over a period of 132.6 hours. The second 
simulated strategy is open loop: the optimal control (the ratio of filtration phase length over backwash phase length) is constant 
over the whole time horizon, equal to the optimal value found after the very first identification of the system realized using the 
data acquired on the first three functioning phases. In the actual case, it was found to be ui=0.82, corresponding to a backwash 
duration for each cycle i (i>3) equal to 207 seconds.  

 
Figure 6. TMP simulations using the three control strategies with constant input concentrations (constant phase length open-loop control in blue, open-loop 

optimal control strategy in red and adaptive – closed-loop – control strategy in green) 

 



  

 
Figure 7. Simulations using the three control strategies with constant input concentrations. On the left the total energy requirements, on the right the total 

water filtered over the simulation time (constant phase length open-loop control in blue, open-loop optimal control strategy in red and adaptive – closed-loop 

– control strategy in green) 

Finally, the last strategy is the adaptive optimal control approach proposed in Section II.B. To compare the different 
strategies, we plotted in Figure 6 the TMP simulated for these three strategies (we only displayed the filtration and the very 
first instants of backwash dynamics for not having too large coloured areas) and in Figure 7 both the total energy required by 
the system over the total time period (on the left) and the total quantity of water filtered (on the right). 

B. Performance comparison for varying input concentrations 

Again, the three control strategies are simulated. However, instead of considering constant input strategies, a step in the 
input substrate concentrations arises at t=35h where S1in and S2in are varied from 90 to 180, and from 20 to 60. 

The total energy requirements are plotted in Figure 8 for each strategy. 

 
Figure 8. Simulations using the three control strategies with a step at t=35h in the input concentrations. On the left the total energy requirements, on the 

right the total water filtered over the simulation time (constant phase length open-loop control in blue, open-loop optimal control strategy in red and 

adaptive – closed-loop – control strategy in green) 

C. Discussions 

First, it is observed that the TMP is greater during the whole simulation time when the durations of the phases are not 

optimally controlled. This leads to the fact that The energy requirements when applying the open loop control strategy is greater 

than the two other control strategies. In addition, when using such an open loop strategy, not only the energy requirement is 

greater but the quantity of water filtered over the experimental time horizon is smaller. Second, notice that the closed-loop 

optimal control strategy gives better results than the open loop optimal control. It is due to the fact that using only the data 

acquired over the first three filtration/backwash periods is not enough to have a satisfying representation of the system over a 

long period of time. In fact, whatever the input substrate concentrations are varying or not, it is better to use the adaptive control 

strategy since it is able to better adapt to unknown inputs than the open loop control. In total, the adaptive optimal closed-loop 

control approach allows to treat 10% more than the optimal open-loop control approach while requiring about 10% less energy. 

V. CONCLUSION 

In this paper, a new closed-loop adaptive optimal control for membrane fouling control when the system operates at constant 
flux is presented. It is based on the iterative application of an optimal control strategy initially proposed in [1]. This new control 
allows to minimize the process energy requirements while accounting for unknown input substrate concentrations. Using 



  

simulations, it was shown that this new control is indeed able to minimize energy requirements while maximizing the volume 
of treated water over a given period of time in adapting the ratio of the filtration and the backwash phase lengths. 

The actual control is based on the assumption that the fouling only depends on the formation of a cake onto the membrane. 
In practice, it is known that there exist other fouling mechanisms such as pore blocking. In such phenomena, the role of the 
SMP is recognized as being major. Thus, in the future, we will investigate the robustness of the proposed adaptive controller 
with respect to different kinds of fouling mechanisms and try to develop new optimal controllers for more detailed membrane 
fouling models. 
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