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Abstract: A simple model is developed for membrane fouling, taking into account two main fouling
phenomena: cake formation, due to attached solids on the membrane surface, and pore clogging, due
to retained compounds inside the pores. The model is coupled with a simple anaerobic digestion
model for describing the dynamics of an anaerobic membrane bioreactor (AnMBR). In simulations,
we investigate its qualitative behavior: it is shown that the model exhibits satisfying properties in
terms of a flux decrease due to membrane fouling. Comparing simulation and experimental data, the
model is shown to predict quite well the dynamics of an AnMBR. The simulated flux best fits the
experimental flux with a correlation coefficient r2 = 0.968 for the calibration data set and r2 = 0.938
for the validation data set. General discussions are given on possible control strategies to limit fouling
and optimize the flux production. We show in simulations that these strategies allow one to increase
the mean production flux to 33 L/(h·m2),whereas without control, it was 18 L/(h·m2).

Keywords: anaerobic membrane bioreactor; identification; MBR modeling; membrane fouling; SMP;
wastewater treatment

1. Introduction

The anaerobic membrane bioreactor (AnMBR) is an interesting wastewater treatment
technology, which couples anaerobic digestion treatment of organic pollutants with a
physical separation between the sludge and liquid which improves the purification of the
produced effluent. To reach an optimal treatment efficiency, it is crucial to control both the
biological and the separation processes. Thus, it is important to model biological dynamics
and couple them to a membrane filtration model to predict membrane fouling, which
remains, by far, the main drawback of MBR technology [1–3].

Recent work established that models developed to describe the conventional activated
sludge process (Activated Sludge Models (ASM) [4]) and anaerobic digestion (Anaerobic
Digestion Model N.1 [5]) can be used to describe MBR dynamics when slightly modifying
the model parameters [6]. However, such models were developed above all for continuous
and homogeneous reactors and are not able to account for specific components such as
Soluble Microbial Product (SMP) dynamics that are known to play an important role
in membrane fouling [7–11]. In a conventional bioreactor, the matter recycling (due for
instance to biomass mortality) is not necessarily taken into account, because it can usually
be neglected with respect to the dilution rate. In MBRs, this hypothesis no longer holds,
and variables describing the dynamics of certain classes of molecules, such as the SMP
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produced during biomass growth and mortality, must be added to the model. For anaerobic
systems, simpler models than the ADM1 have been coupled to SMP dynamics. For instance,
we proposed an extension of the two-step anaerobic digestion model (AM2) [12], in order
to include their dynamics [13].

Regarding membrane fouling, many models have been proposed such as the resistance-
in-series model including the kinetics of SMP and extra-cellular polymeric substances
(EPS) [14] (a brief review on the Resistance-in-Series Model in MBRs was highlighted
in [15]), data-driven approach with membrane fouling control [16], machine learning tech-
niques for potential application in MBR [17], models based on a sectional approach [18]
and on the fractal geometry to describe the fouling cake permeability [19], models based
on the local pressure and flux variation leading to the uneven fouling cake up on the mem-
brane surface [20], and physical models which have been proposed to study fundamental
membrane properties [21–23]. Simpler models are proposed to describe fouling as the
result of only the cake formation mechanism or adding pores blocking phenomenon due to
soluble matter [24]. These models are purely physical ones; they describe the dynamics of
abiotic membrane parameters and completely neglect biological dynamics even if some
authors, such as [25], proposed to combine them to describe fouling in MBRs. Thanks to
advances in computer science, alternatives to mathematical modeling have been introduced
to model membrane fouling. In [26], an artificial neural network was used to predict the
transmembrane pressure of a large pilot-scale AnMBR reactor and to provide a suitable
model for intelligent control purposes. A prediction of the membrane fouling status before
reaching a critical condition using neural network modeling was carried out in [27], with
the aim to extend the membrane life.

The present study aims to describe the dynamics of the entire MBR process by coupling
the biological process dynamics and the membrane fouling models, and while numerous
integrated models have been proposed for aerobic MBRs (cf. for instance [14,28,29]), few
have been developed for anaerobic MBRs. In [30], authors developed a mathematical
model for MBR, by considering together reversible and irreversible fouling. Mixed liquor
suspended solids were assumed to be the major components of the reversible fouling layer,
and dissolved organic matter is thought to be responsible for the long-term irreversible
fouling. Ref. [31] proposed a filtration model based on the resistance-in-series model and
was able to reproduce the filtration process of a Submerged AnMBR (cake layer build-
up and consolidation during filtration; membrane scouring by biogas sparging; removal
of cake layer by back-flushing; and irreversible fouling consolidation). This model was
validated in the long-term under different operating conditions, using data obtained from
a SAnMBR demonstration plant [32]; while such models have high prediction capabilities,
they are usually too complicated for being used for control purposes. Ref. [33] proposed a
model for a Submerged MBR, with slow–fast dynamics, and they used this structure for
the parameter estimation procedure. Thereafter, the model is used to develop a nonlinear
predictive control.

In [13], the AM2b model was specifically proposed for control purposes. It is a simple
model which describes only the two main biological processes of the anaerobic digestion
while including the SMP dynamics. In the first step (acidogenesis), the acidogenic bacteria
X1 consume the organic substrate S1 to produce volatile fatty acid S2 (VFA), SMP and CO2,
while in the second step (methanogenesis), the methanogenic population X2 consumes
VFA and produces SMP, methane and CO2. However, this model was not coupled with a
membrane fouling model to completely describe the dynamics of an entire AnMBR in the
simplest way that we can think of for control synthesis purposes.

To summarize the state of the art about AnMBR models, one may say that available
fouling models are either not coupled to the biological models, or they are too complicated
to be used in process control [34]. This is precisely the aim of the present paper, where the
novelty is to propose a simple and generic membrane fouling model of which the usefulness
is illustrated in coupling it with biological model to completely describe an AnMBR and
to develop optimization tools and strategy. In addition, we consider only two fouling
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mechanisms for the membrane model, which depend on the biological model outputs
(measurements of the biological model are inputs for the fouling model). Contrary to
several research studies on fouling modeling, we assume that the total membrane open area
would decrease during the filtration process as well as after repeated filtration/cleaning
cycles, proportionally to the fouling layer mass developed on the membrane surface and
within its pores, resulting in irreversible fouling leading to partial membrane degeneration.
It is described in a very general way as a decreasing function of deposited matters onto the
membrane surface and retained into membrane pores.

The advantage of the model we propose is that it is a generic model, with enough
processes and parameters to reproduce just about all the data from all membrane filtration
processes. It is a good candidate model, more “reproductive” than “descriptive”, with
some parameter values guided by experimental data.

The paper is organized as follows. First, we present and discuss the assumptions used
to build the membrane model. Then, the dynamic equations of the model are presented
with respect to the specific functioning phases considered: filtration and cleaning phases.
Then, simulation results are presented in order to study the qualitative properties of the
model. To illustrate the easiness with which it may be coupled to a biokinetic model,
the fouling model is then coupled with the AM2b model and confronted to experimental
data. Thereafter, some techniques for fouling control are discussed and simulated. Finally,
conclusions and perspectives are formulated.

2. Mathematical Equations of the Proposed Membrane-Fouling Model
2.1. Model Development

Ref. [18] proposed a membrane fouling model including an explicit relationship be-
tween the mass of solid matter attached onto the membrane and the flux going through this
membrane. The dynamics of the solid attachment to and detachment from the membrane
were related to the filtration flux. Using a resistance-in-series model, they considered the
total fouling resistance to be caused both by the pore-clogging resistance due to the solute
deposition inside the membrane pores, the dynamic sludge-film resistance and the stable
sludge-cake resistance. However, the proposed model is not suitable for automatic control
purposes since it is too complicated. The aim of the present section is to simplify this model
to come up with a very simple fouling model while keeping realistic hypotheses. The idea
is to include a feedback of the decreasing flux due to membrane fouling into the actual
output flow rate Qout leaving the MBR. In other words, we propose to consider Qout as a
decreasing function of the total mass solids attached onto the membrane surface and of the
solute (as SMP) deposited inside the pores. As recalled in the introduction, as a matter of
fact, many studies in the literature agreed that SMP have a crucial role in the membrane
fouling, especially in pore clogging [7–11].

• Fouling mechanisms

It is well known that the fouling dynamics are different depending on the fouling
mode considered, namely pore constriction, cake formation, complete blocking and
intermediate blocking [22]. In our simple model, we consider only the two main
membrane fouling mechanisms, as defined in [21] (see Figure 1):

– The first one is caused by the mass mc(t) of solids which attach onto the membrane
surface, also called cake formation or cake fouling. According to the particles
concentration and solids attachment rate, particles are retained leading to a
decrease in the filtering area of the membrane.

– The second is due to the mass of particles mp(t) retained inside the membrane
pores as SMP, called hereafter pore constriction. Their size may be smaller than
the pore sizes, and they are known to progressively clog the membrane pores.
This phenomenon typically reduces the porous area of the membrane.

The proposed modeling approach allows us to decouple dynamically the different
fouling mechanisms (solids attached onto the membrane vs. SMP clogging the pores).



Membranes 2024, 14, 69 4 of 22

Using a resistance-in-series model based on Darcy’s law, the membrane fouling model for
plants operating at constant transmembrane pressure (TMP) is thus given by (1):

J(t) =
Qout(t)

A(t)
=

∆P
µ
(

R0 + R(t)
) , (1)

where Qout(t) is the output flow rate, A(t) is the membrane surface area, ∆P is the trans-
membrane pressure (assuming constant), µ is the permeate viscosity, R0 is the intrinsic
membrane resistance, and R(t) is the fouling resistance given by (2)

R(t) = Rc(t) + Rp(t), (2)

where Rc(t) and Rp(t) are the cake and the pore clogging resistances, respectively.

Solids mass mc(t)
(resistance Rc(t))

Membrane with area A(t)
(intrinsic membrane resistance R0)

SMP in the membrane
pores mp(t)

(resistance Rp(t)
Permeate flux J(t)

Tr
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em
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e
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Figure 1. Membrane fouling by cake formation and pores clogging.

• Models of membrane resistance and membrane area

Rc(t) and Rp(t) are typically dependent on masses mc(t) and mp(t), respectively, and
are modeled by (3) (adapted from [14])

Rc(t) = α
mc(t)
A(t)

, Rp(t) = α′
mp(t)
ϵA(t)

, (3)

where α and α′ are the specific resistances, and ϵA (0 < ϵ < 1) is the porous area which
is a fraction of the total useful surface area A (see Figure 2 for a flat sheet membrane
for instance).

Total membrane surface A(t)

Porous surface ϵA(t)

Membrane thickness em

Figure 2. Schematic representation of the total membrane surface A and the total porous surface ϵA.

Contrary to several studies on fouling modeling, we consider that the total filtering
membrane surface area A(t) is not constant during a filtration period nor after several
filtration/cleaning cycles. It is described by (4) in a very general way as a decreasing
function of mc(t) and mp(t) as follows:

A(t) =
A0

1 +
mc(t)

σ
+

mp(t)
σ′

, (4)

where A0 is the initial membrane surface, and σ and σ′ are parameters used to model
the contribution of mc and mp to the surface reduction. Such a function is well adapted
if we assume that the total useful filtration area is composed of two parts: a filtering
surface and a porous surface. If mp(t) increases, then the porous surface decreases,
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leading to the total loss of A(t) even if the cake fouling is not yet significant. Likewise,
if mc(t) increases then the filtering surface decreases because attached particles may
prevent the flux from circulating freely, even if the pore-clogging fouling reaches its
equilibrium or if it is not yet significant. In short, the membrane surface A(t) decreases
when mp(t) and/or mc(t) increase (mathematically, A(t) tends to zero as mc(t) and/or
mp(t) tend to infinity).
Function (4) is also able to model the fact that the initial filtering surface A0 is not
totally recovered after backwash or chemical cleaning. Theoretically, in Equation (4),
if mc(t) = 0 and mp(t) = 0 when we operate the MBR plant for the first time, or after
each perfect backwash of the membrane, then the area A(t) is equal to its initial value
A0. However, in practice, after each membrane backwash or cleaning, there is small
remaining quantities of mc(t) and mp(t) which are not detached, causing progressively
an irreversible fouling effect. In the long term, the surface A(t) continuously decreases,
leading to the membrane degeneration.

• Models of attached solids on the membrane surface and blocked SMP into pores

Both compounds mc(t) and mp(t) have their own dynamics: they increase during
the filtration phase and decrease during the relaxation (or backwash) phase. Since
it is assumed that the mixed liquor is homogeneous, we assume that all soluble
components (ST = ∑ Si, i = 1, 2, ... and SMP) and particulate components (XT = ∑ Xi,
i = 1, 2, ...) may contribute, at different degrees, to the membrane fouling by cake
formation (solids attachment). Thus, the dynamic of the mass mc(t) can be described
by (5)

ṁc = Qout(CsST + CxXT + CsmpSMP), (5)

where Cs, Cx and Csmp are weighting parameters used to model the contribution and
the rate of each variable to the cake formation. In practice, they must be adjusted
using calibration data (see the experimental results Section 4).
The membrane has selective rejection: particulate components (biomass) and large
solute compounds (as macro-molecules of SMP) are totally retained by the membrane
(their size being supposed to be greater than the pores diameter), while part of the
solute components (substrates and a fraction of SMP) go through the membrane
without retention (their size is assumed to be smaller than the pores diameter). We
propose the following dynamic model (6) for the pores clogging by mp(t):

ṁp = Qout

(
β1SMP + β2ST

)
, (6)

where β1 is a parameter used to calibrate the rate of pores clogging, by the fraction of
SMP leaving the bioreactor, while β2 is used to model the contribution of others solute
substrates to the pores clogging.
On the other hand, no back-diffusion of mc(t) and mp(t) to the bulk solution is
considered: we assume it is negligible with respect to the remaining attached and
blocked matter.

• Additional hypothesis: There is no biomass growth on the membrane surface, and
detached solids do not affect matter concentration in the bulk liquid.

For simplicity, we assume that the biological growth of the attached biomass on the
membrane (as well as in the pores) is neglected. This hypothesis is justified by the
fact that backwash or relaxation periods arise quite often. In addition, we assume
that if there are detached quantities of mc(t) and mp(t) during relaxation, which
return into the bioreactor, they can be neglected with respect to their corresponding
concentrations in the bulk liquid (see Figure 3). In many operated MBR, detached
matter by backwash is not returned into the reaction medium and is rejected elsewhere.
Finally, both fouling mechanisms are considered to be partially irreversible, but at
different degrees, i.e., fouling by pores clogging is more irreversible than fouling by
cake formation.
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Backwash

mc (t) and mp (t)

Particulate matter in the bulk

Soluble matter in the bulk

Figure 3. Detached matter by relaxation or backwash is neglected in the bulk liquid.

2.2. Fouling Model for the Filtration Phase

Starting from the previous equations and hypotheses, the complete fouling model
for the filtration phase (∆P > 0) is given by Equations (7)–(11). The output flow rate Qout
is a decreasing function: after a certain period of functioning when the permeate flux
has dramatically decreased, the process must be stopped and membrane cleaning must
be performed.

ṁc = Qout(CsST + CxXT + CsmpSMP), (7)

ṁp = Qout

(
β1SMP + β2ST

)
, (8)

R = α
mc

A
+ α′

mp

ϵA
, (9)

A =
A0

1 +
mc

σ
+

mp

σ′

, (10)

Qout = J·A =
∆P·A

µ
(

R0 + R
) . (11)

In Equation (7) the dynamics of mc(t) are proportional to the total soluble (ST and
SMP) and particulate matter (XT) deposited onto the membrane surface. If we can measure
separately the components of ST (S1, S2, ...) and/or those of XT (X1, X2, ...), where each
one contributes differently to the cake formation, then Equation (7) can be written by (12)

ṁc = Qout(∑ CsiSi + ∑ CxjXj + CsmpSMP), (12)

where Csi (i = 1, 2, ...) and Cxj (j = 1, 2, ...) are weighting coefficients.
In Equation (8), the dynamics of mp(t) are essentially proportional to the fraction

β1 · SMP crossing the membrane and blocked into the pores (macro-molecules of SMP
are retained by the membrane, see [13]). However, after a long enough filtration time,
porosity decreases, and pores clogging is also assumed to be dependent on small deposited
quantities of ST , but less significantly than SMP. This is modeled by β2 · ST , with β2 chosen
lower than β1.

The dynamics of mc(t) and mp(t) depend on the values of variables ST , XT , SMP and
Qout. For a bioreactor using organic tubular membrane with tangential crossflow (the case
of our studied AnMBR, see Section 4) and when the system operates at steady state, ST , XT ,
SMP and Qout reach their equilibria, and thus, mc and mp converge to their steady state
values, where their accumulation values are constant. Consequently, the fouling resistance
R(t) reaches its equilibrium corresponding to the maximum fouling. This interpretation
corresponds to reality since membrane fouling increases with time. For a long enough
filtration time, there is no longer attachment of matter onto the membrane, because of the
cake layer already formed: this equilibrium corresponds to a functioning mode in which
detachment by shear forces compensates the attachment of matter by permeation forces. In
fact, the tangential flow of the feed solution in a cross-flow system creates turbulence and
consequently shear forces near by the membrane, which would foster the back diffusion of
foulants polarized near to the membrane surface and the detachment of deposited foulants.
These phenomena would reduce membrane fouling. During the filtration process, foulant
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transport is controlled by both convective forces which attract them to the membrane and
the shear forces which repulse them away. Those forces are responsible for the set of an
equilibrium which leads to the stabilization of the deposit mass.

2.3. Fouling Model for the Relaxation (or Backwash) Phase

To clean the membrane by backwash, the feed of the MBR is stopped, and the trans-
membrane pressure is inverted (∆P < 0), so that permeate flow backs into the feed, lifting
the fouling layer from the pores and the surface of the membrane. In certain cases, MBR
are operated with a relaxation period instead of a backwash. In others terms, the flux
is simply stopped (∆P = 0) for a given short time allowing the natural detachment of
matters and particles, which can be modeled by Equations (13) and (14), with ω and ω′

positive constants to be adjusted with respect to experimental data, mcirr and mpirr positive
quantities to model irreversible fouling after cleaning operation (quantities of irreversible
mc and mp). For instance, we assume that we have x% of irreversible fouling after relaxation
or backwash, which means that after membrane cleaning, x% of mc and mp reached at the
end of the previous filtration period is irreversible.

ṁc = −ωmc + mcirr , (13)

ṁp = −ω′mp + mpirr . (14)

The relaxation (or backwash) time is neglected compared to the filtration time, and it
is expected that after this period, mc(t) and mp(t) are approximately equal to their initial
values. However, there is always a certain quantity of attached matter which may remain
on the membrane surface and/or blocked inside the pores, yielding irreversible fouling.
Using the hypotheses discussed above, one can also neglect concentrations of detached
matter returning to the reactional medium. It is important to emphasize that all (or part
of) model parameter values must be adjusted using experimental data. In the next section,
we choose arbitrary values of parameters for properties numerical investigation of the
systems (7)–(11), (13) and (14).

3. Simulation Results
3.1. Coupling the Membrane Fouling Model with the AM2b Model

The proposed integrated model combines a biological anaerobic model and the fouling
model for an homogeneous bioreactor as illustrated in Figure 4. For the biological compart-
ment, the anaerobic digestion model is not specified here. Unless the effects of SMP on
fouling are neglected as in [6], neither the ADM1 model [5] nor the AM2 model [12] are
good candidates since they do not include SMP dynamics. Instead, we suggest using the
AM2b model [13] which includes SMP dynamics and that has been precisely developed for
control purposes. In any case, to couple it with the proposed fouling model, soluble and
particulate matters must be related to state variables of the AM2b model. In addition, two
functioning phases are considered: filtration and relaxation or backwash. By convention,
∆P > 0 holds for filtration; ∆P = 0 holds for relaxation; and ∆P < 0 holds for backwash.

Influent

Qin

Permeate

Qout

Biogas

Biological model Fouling model

Biomass
withdraw

Qw

Volume V

Filtration
pump

Retentate

Figure 4. Schematic representation of the proposed AnMBR model.
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3.2. Investigating the Qualitative Behavior of the Model

In this section, we investigate numerically the model dynamics consisting of the
coupling of Equations (7)–(11), (13) and (14) with the anaerobic digestion model AM2b [13].
The AM2b model was developed to describe anaerobic digestion as a two step process,
including dynamics of SMP. In the first step (acidogenesis), the acidogenic bacteria X1
consume the organic substrate S1 to produce volatile fatty acid S2 (VFA), SMP and CO2,
while in the second step (methanogenesis), the methanogenic population X2 consumes
VFA and produces SMP, methane and CO2.

The integrated model is given by Equations (15) and (16), and it has been running in
simulation using the ode45 function of MatLab, with the set of parameter values given
in Table A1. Numerical simulations are performed for two cycles of filtration/relaxation
and for three distinct combinations of parameters values Cs, Cx and Csmp (for simulation,
their values are equal to 0.1, 0.4 or 0.7). Quantities of soluble and particulate matters CsS1,
CsS2, CsmpSMP, CxX1 and CxX2 attracted by permeation forces Qout/V are assumed to be
fully attached to the membrane surface. We consider that the relaxation period (5 min) is
negligible compared to the filtration period (2 h). During the relaxation or backwash period,
particulate and soluble matters partially re-injected into the bulk are taken into account in
the model (16) through the parameters C′

s, C′
x and C′

smp. Between two cleaning cycles, the
bulk volume V(t) is constant thanks to the volume dynamics equation and the flux balance
given in model (15). When Qout decreases, then Qin should decrease or Qw should increase
or both should vary. Experimentally, both Qin and Qw are judiciously fixed in such a way
that we obtain an optimal ratio of organic matters (COD)/mixed liquor volatile suspended
solids concentration (MLVSS)/day.

It should be noticed here that the precise adjustment of the filtration/relaxation (or
backwash) periods in MBRs is an open problem of control where an optimal solution must
be searched for. This problem is usually solved in applying short filtration sequences
followed by relaxation/backwash periods in such a way that the clogging is very limited.
However, it must be underlined that such sequences are not optimized and are probably
quite far from an optimal.

Coupled model for the filtration phase:

Ẋ1 =
(

µ1(S1) + µsmp(SMP)− kd1 − Qw
V − Qout

V Cx

)
X1,

Ẋ2 =
(

µ2(S2)− kd2 −
Qw

V
− Qout

V
Cx

)
X2,

Ṡ1 = Qin
V S1in −

(
Qout

V + Qw
V

)
S1 − k1µ1(S1)X1 −

Qout

V
CsS1,

Ṡ2 = Qin
V S2in −

(
Qout

V + Qw
V

)
S2 − k3µ2(S2)X2 +

(
k2µ1(S1) + b2µsmp(SMP)

)
X1

−Qout
V CsS2,

˙SMP = −
(

β Qin
V + (1 − β)Qw

V

)
SMP +

(
b3µ1(S1) + kd1 − b1µsmp(SMP)

)
X1

+
(

b4µ2(S2) + kd2

)
X2 − Qout

V CsmpSMP,

ṁc = Qout(CsST + CxXT + CsmpSMP),

ṁp = Qout

(
β1SMP + β2ST

)
,

R = α mc
A + α′

mp
ϵA ,

A = A0
1+ mc

σ +
mp
σ′

,

Qout = J·A = ∆P·A
µ
(

R0+R
) ,

Qin = Qout + Qw,
V̇ = Qin − Qout − Qw,
XT = X1 + X2,
ST = S1 + S2 + SMP.

(15)

Coupled model for the relaxation (or backwash) phase:
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Ẋ1 =
(

µ1(S1) + µsmp(SMP)− kd1 + C′
x

)
X1,

Ẋ2 =
(

µ2(S2)− kd2 + C′
x

)
X2,

Ṡ1 = −k1µ1(S1)X1 + C′
sS1,

Ṡ2 = −k3µ2(S2)X2 +
(

k2µ1(S1) + b2µsmp(SMP)
)

X1 + C′
sS2,

˙SMP =
(

b3µ1(S1) + kd1 − b1µsmp(SMP)
)

X1 +
(

b4µ2(S2) + kd2

)
X2 + C′

smpSMP,

ṁc = −ωmc + mcirr ,

ṁp = −ω′mp + mpirr .

(16)

Simulation results are reported in Figure 5, where we have plotted the dynamic
evolution of the attached mass mc(t) on the membrane surface, the blocked soluble matter
mp(t) (SMP in the majority) inside the pores, the fouling resistances Rc(t), Rp(t) and
R(t), the output flow rate Qout(t), the permeate flux J(t) and the membrane surface A(t).
Dynamic responses are simulated for three different combinations of parameters values Cs,
Cx, Csmp and β1 to emphasize effects of deposited and blocked matter rates on the fouling
dynamic. These rates depend on many parameters such as concentrations of soluble and
particulate matters, characteristics of mixed liquor and its viscosity or still temperature and
matters specific capability to contribute to fouling.
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Figure 5. Simulation results of the membrane fouling model for both phases (filtration and backwash),
with values of Cs = Cx = Csmp equal to 0.1 ( ); 0.4 ( ); 0.7 ( ). We have assumed that the
mixed liquor is homogeneous and, to simplify the simulation, ST , XT and SMP are assumed to
contribute equally to the cake formation, then we chose Cs = Cx = Csmp in each simulation.

The trajectories of the main variables are plotted in the case of rapid and strong fouling
due, for example, to a high concentration of solid matter. In such a case, if we define a
threshold flux Js, over which the process can operate, then the process will be stopped
very often and be switched in relaxation or backwash phases (at t f 1 for the first operating
cycle). Dashed plots correspond to a slower and softer fouling: the slower the fouling, the
longer the time period (t f 3) during which the process may operate without switching in
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a relaxation or backwash mode. Such simulations show that Cs, Cx, Csmp and β1 may be
adjusted to match a large range of experimental data.

During the first minutes of the filtration process, the fouling is fast and significant. All
variables have fast dynamics (increasing or decreasing) at the beginning and then attain
gradually their equilibrium. At steady state, quantities of the attached mass mc(t) on the
membrane surface (around 15 g per 1 m2 of area), and the SMP mass blocked into the
pores mp(t) (around 8 g) are sufficient to cause membrane fouling. Resistances of pore
blocking Rp(t) and cake formation Rc(t) are within the order of 1011. The useful filtering
surface area A(t), the output flow Qout(t) and the permeate flux J(t) decrease significantly,
especially during the first minutes of filtration as is often the case in practice. During the
relaxation (or backwash) phase, we have an exponential decrease in mc(t) and mp(t), with
detachment from the membrane surface and pores (shear-induced diffusion). We notice
that even after the relaxation (or the backwash), the permeate flux J(t) and the membrane
area A(t) are not equal to their initial values (see Figure 5), because of the irreversible
fouling taken into account in the model. From cycle to cycle, the total resistance R(t) has
increasing equilibrium values. After several cycles, it will be necessary to clean chemically
the membrane or to change it. Regarding these qualitative results, we claim that if we can
accurately predict fouling (accumulated mass on the membrane and in the pores) using the
developed model, then we can develop a control strategy to minimize fouling and run the
membrane for a long time, using an optimal filtration–relaxation sequence.

4. Experimental Results

In this section, we are interested in the calibration of the fouling models (7)–(11), by
using experimental data collected at the Center of Biotechnology of Sfax, Tunisia.

4.1. Pilot Plant (AnMBR) and Data Used for the Model Validation

The schematic representation of the pilot plan is shown in Figure 6. It was installed
at the “Center of Biotechnology of Sfax”, Tunisia, and it was used for the treatment of
municipal wastewaters. The system is composed of an anaerobic bioreactor coupled with an
ultrafiltration organic tubular membrane module, with tangential crossflow and a filtering
area of 1 m2 and 100 kDa cut-off. The working volume of the bioreactor is 50 L, and its
temperature is maintained constant at 37 ◦C. The cross-flow velocity is fixed at 3 m/s, and
the transmembrane pressure may vary until reaching 2 bars. The membrane was frequently
chemically cleaned, almost every 45 days, in order to maintain an acceptable flux and
avoid a critical clogging of the membrane (see Figure 7). The cleaning step was performed
for 1 h at 35 ◦C and was followed by water cycle. For more details on the experimental
process and analytical methods, the reader is referred to [35,36].

Two cycles of filtration/backwash are considered over 84 days in total: the first cycle
for the period [t = 1 to 39 days] and the second one for the period [t = 41 to 84 days],
with a backwash at the 40th day for the first cycle and at the 85th day for the second
cycle (Figure 7). Collected data of the total COD (ST and SMP) and the total biomass (XT)
are represented in Figure 8 (red markers), while data for the permeate flux are shown in
Figure 7 (red dots). The initial value of the flux in the first cycle is J(0) = 8.32 L/(h·m2) and
in the second cycle is J(0) = 8.1 L/(h·m2).

4.2. Experimental Identification and Validation of the Fouling Model
4.2.1. Parameters Estimation Procedure

In the present case, we apply the least-squares method for the parameter estimation
of the models (7)–(11). The objective function (17) is minimized in adjusting model pa-
rameters such that the simulated flux J̃(t) best fits the experimental flux J(t). A nonlinear
optimization algorithm was used (functions “fmincon” and “ode45” of matlab).

F =
N

∑
i=1

(
Ji(t)− J̃i(t)

)2
, (17)
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where N is the number of measurements.

Input

Output

Figure 6. Schematic diagram of the AnMBR installed at CBS for the municipal and abattoirs wastew-
ater treatment. 1: Anaerobic reactor, 2: Flow-meter, 3 Manometer, 4: Ultra-filtration membrane,
5: Permeate tank, 6: Permeate output, 7: Permeate recycling, 8: Column, 9: Tube, 10: Gas-meter.
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Figure 7. (Left): Data used to calibrate model parameters and simulated response of flux J(t).
(Right): Validation of the model using a second set data. Operating conditions: pressure: 1.5 bar;
temperature: 37 °C; cross-flow velocity 3 m/s (for more detail on experimental process and data
see [35,36]).
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Figure 8. (Top): Total COD data in the AnMBR. (Bottom): Total biomass data in the AnMBR.
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Before running the optimization algorithm, we must fix the values of some constants
of the model, as the intrinsic resistance membrane R0 of Equation (11). It can be estimated
from the initial value J(0), which corresponds to the flux obtained with clean water as long
as R(t) is still negligible by (18)

R0 =
∆P

µJ(0)
. (18)

For simplicity, we fixed arbitrarily some parameter values of the models (7)–(11),
notably ϵ (0 < ϵ < 1), σ and σ′ as given in Table 1. Parameters defined in the literature as
µ, α and α′ have default values reported in Table A1.

Table 1. Values of fixed parameters.

Parameter ϵ σ σ′

Value 0.7 10 10

Unit - [1/g] [1/g]

Model parameters to be estimated by the least-square method are Cs, Cx, Csmp and
β1. (Since SMPs are the main contributors to pores clogging, they firstly and significantly
contribute to pores blocking, thereafter the other solute components can contribute. So,
we have chosen β2 smaller than β1, for instance β2 = β1/15.) They are considered as key
parameters used to describe the rate of membrane fouling.

Indeed, in the generic model we have proposed, two sets of parameters are considered:
(1) the key parameters to be estimated from experimental data, and (2) the other parameters
which are known in the literature or fixed arbitrarily so that we obtain consistent simulations
whose best fit with experimental data. For example, we do not exactly know the porous
surface area of A, but we assume that it could be the majority, so we set ϵ = 0.7, which
allows us to simulate the case where a membrane has 70% porous surface area. In fact,
we did not have enough experimental data to estimate all the model parameters, so we
decided to fix the values of some parameters and estimate the values of others.

Our identification procedure consists of using a first part of data of the flux (16 mea-
sures for t = 1 to 39, see Figure 7 on the left) to estimate parameters Cs, Cx, Csmp and β1
and then the last part (18 measures for t = 41 to 84, see Figure 7 on the right) to validate
the model. Data of total COD (ST and SMP) and total biomass XT (Figure 8) are inserted
as inputs for the identification algorithm of the models (7)–(11), such that ST and SMP are
assumed to be as follows:

ST = 85%COD and SMP = 15%COD.

Let us emphasize here that this is a simplifying assumption based on what is proposed
in the literature, and that in practice, these proportions can change with time and according
environmental conditions [11,37,38]. Here, it is just essential that the sum of all soluble
matters equals the COD and that the sum of all particulate matters equals the XT . Further-
more, we notice that times and frequencies of COD and XT measurements are different
(29 measures of COD and only 13 measures of XT). To solve this problem, an interpolation
of COD and XT at the same times is performed by adding more intermediate points as
illustrated in Figure 8 (blue markers). Total interpolated data of 82 points and 80 points are
obtained for COD and XT , respectively.

4.2.2. Results and Discussion

Simulation and experimental results are plotted in Figure 7. On the left, the simulated
flux J̃(t) (solid line) is compared with the real measured flux J(t) (red dots) used for
calibration. There is a good matching of the model simulations and real data (measures
for t = 1 to 39), and an accurate correlation coefficient r2 = 0.968 is obtained. On the right,
the identified model is validated on the second data set (measures for t = 41 to 84), with
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a satisfactory correlation coefficient r2 = 0.938. Table 2 shows dimensionless parameter
values that have been estimated by minimizing the criterion (17).

Table 2. Values of estimated parameters.

Parameter Cs Cx Csmp β1

Value 0.1970 0.1116 0.9720 0.3999

Figure 9 shows the dynamic evolution of the estimated solids mass mc(t) attached on
the membrane surface and the estimated soluble matter mp(t) deposited inside the pores.
mc(t) and mp(t) increase significantly during the first days of the filtration process before
their slopes decline when the membrane becomes more and more heavily fouled. At the
end of the first filtration period (day 39), the estimated mass mc(t) is around 43 g/m2, and
it is about 45 g/m2 at the end of the second filtration period (day 84). Estimated quantities
of mp(t) are about 7.4 g/m2 and 7.75 g/m2 at the end of the first and the second filtration
periods, respectively. Moreover, the values of the parameters mc and mp simulated at the
end of the second filtration cycle were around 4% higher than the ones simulated at the
end of the first cycle. Similarly, the permeate flux simulation at the end of the second cycle
(84 days) showed a value of 2.64 L/(h·m2) which is lower by about 15% than the value
of 3.1 L/(h·m2) simulated at the end of the first cycle. As the permeate flux decline is
directly related to the increase in the deposited foulant mass mc and mp, we assume that
the obtained simulations are coherent.
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Figure 9. (Left): Simulated solid mass mc(t) attached to the membrane surface. (Right): Simulated
solute mp(t) deposited inside the membranes pores.

We emphasize that these values are just estimations of mc(t) and mp(t) by numerical
simulation during the calibration of the models (7)–(11) and that their experimental values
may be probably different from those simulated. Of course, if one has experimental
measures of mc(t) and mp(t), then one can use them to accurately calibrate more parameters
of the model.

Figure 10 represents the experimental and the simulated total fouling resistance R(t)
due to both mc(t) and mp(t). Experimental resistance values are deduced from flux data
using Equation (1). Resistance R(t) during the two filtration cycles has the tendency to
increase rapidly in the first period, before attaining values of about 12 × 1013 and 14 × 1013

at the end of the calibration and the validation period, respectively. If the system is
functioning with a long-term filtration, then R(t) should converge towards a quasi-constant
value (its equilibrium).

The proposed model is simple from the mathematical point of view, and it reproduces
quite well the fouling behavior of the AnBRM: it can then be used for control purposes.
However, the estimated parameters values and/or those arbitrarily selected could change
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with time. Thus, it is necessary to readjust them regularly. For example, one could re-
identify on a regular basis parameters in order to best fit the model for the last available
measurements (for instance using the last data for t = 41 to 84 days, see Figure 7, on the
left). Furthermore, if we decide to estimate the parameters of the biological model AM2b,
then we will need more informative measurements.
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Figure 10. Experimental and simulated resistance R(t) during (left): calibration period; (Right): vali-
dation period.

5. Discussions, Open Questions and Perspectives on the Process Control Using the
Proposed Model

Membrane fouling is the major drawback of MBRs, and one important challenge is to
propose new control strategies to minimize fouling and improve treatment efficiency. In
particular two important questions must be addressed:

• What parameters mainly influence membrane fouling? This is basically a modeling
question.

• How minimizing fouling (filtering conditions) can be seen as a control problem as
soon as a model describing the fouling dynamics is available.

If several fouling models have already been proposed in the literature, few were used
for minimizing fouling and optimizing treatment. One of them is proposed in [33], where
one used a model of SMBR with slow/fast dynamics to develop a nonlinear predictive
control. Control of the membrane fouling caused by cake formation in a submerged AnMBR
(SAnMBR) was investigated in [2] using biogas sparging. However, very often, the control
strategies are tuned heuristically and use available process actuators:

• Gas sparging: It consists of injecting bubbles (air for aerobic process or biogas for
anaerobic systems) for membrane scouring in order to limit attachment and promote
detachment of matter by shear forces. This control parameter is however costly
because it consumes energy. In addition, various parameters of gas sparging as the
intensity, the duration and the interval/frequency, may impact on membrane fouling
characteristics in the process [39].

• Intermittent filtration: MBR is operated in alternating filtration/relaxation cycles.
This functioning mode allows the detachment of matter responsible for the reversible
fouling. In [40], the effect of the intermittent filtration combined with gas sparging on
membrane fouling in a submerged anaerobic bioreactor was evaluated.

• Backwash: It must be used for a short time compared with the filtration time to detach
matter involved in irreversible fouling, and it is costly because it also needs energy.
Various scenarios of filtration/backwash for a submerged MBR were investigated
in [41] to determine an optimum one. A study in [42] focused on optimizing a
backwash frequency, filtration and relaxation strategy for the stable operation of a
ceramic tubular AnMBR.
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One common question for all these techniques is to find a good control sequence
ensuring good process performances while minimizing membrane fouling. In practice, it
can be seen as an optimal control problem, since we need to optimize the filtration flux, the
filtration time or still the energy consumption. A practical problem could be as follows:
what is the optimal sequence for intermittent filtration or for filtration/backwash cycles?
What is the optimal operating time and mode for bubbles injection?

A study was performed in [43] with the final aim to reduce by different strategies
the energy costs in MBR. In particular, authors investigated the influence of the aeration
intensity, the duration of filtration/backwashing cycles, and the number of membrane
cleanings on the MBR energy demand. However, the used model is integrated and com-
plicated, which it divided into a biological sub-model (19 biological state variables and
79 parameters) and a physical sub-model (membrane model). In the following, we investi-
gate in simulation the influence of the filtering parameters mentioned above on the flux
production and process performances, by using the simple model proposed in this paper.

5.1. Gas Sparging Effect

In this section, we investigate how gas sparging can be used for limiting membrane
fouling. To do so, we need to modify the proposed models (7)–(11) by adding negative terms
on the right sides of Equations (7) and (8). This way, the reversible and irreversible fouling
rates are reduced by gas sparging as illustrated by Equations (19) and (20). Functions f (mc)
and g(mp) are positive and represent the controller effect on the detachment of matter (gas
sparging, membrane scouring). In some fouling models, these terms are simply constants,
but by modulating their magnitude, our idea is to add them here as control parameters (as
mentioned above in the modeling section).

ṁc = Qout(CsST + CxXT + CsmpSMP)− f (mc), (19)

ṁp = Qout

(
β1SMP + β2ST

)
− g(mp). (20)

In other terms, efficient control consists to propose functions f (mc) and g(mp) depend-
ing on the intensity of gas sparging (parameter control). A first simple form of f (mc) and
g(mp) which is already used in the literature is kmmc and kpmp, which represent quantities
of mc and mp detached by shear forces caused by membrane scouring, where km and kp
depend on the intensity of injected bubbles used to detach fouling [2,44–46]. A higher
aeration intensity can have a positive effect on cake layer removal by shear force and
thus improves the membrane permeability [47]. Figure 11 illustrates the time evolution
of the flux J(t) with respect to different values of km (here, kp = 0, it is assumed that the
irreversible fouling detachment is neglected, since it is not significantly affected by gas
sparging). It can be seen that mc(t) and Rc(t) are inversely proportional to the control
parameter km, for higher values of this later, accumulated matter on membrane surface and
its corresponding resistance take small values. The output flow Qout(t) and permeate flux
J(t) are increasing proportionally to km. This is a classical result, but the given question is
how to optimally calibrate km (and kp) in order to best control the fouling with minimum
energy consumption?

On the other hand, one sees in Figure 11 that deposited matters mp(t) inside the
pores and its relative resistance Rp(t) are proportional to km and inversely proportional
to mc(t). If the value of this parameter increases, then the quantity of mp(t) and the value
of Rp(t) increase likewise leading to a flux loss especially at the end of the filtration time
(around steady-state). One can explain this result as follows: if the formed cake layer (mc(t))
represents a second biological membrane (which prevents pores from fouling (mp(t)) as
it is known in the literature [29,48,49]) then when this layer is detached by gas sparging,
more particles of different sizes go through pores and cause further fouling. So, a second
question of such a control strategy may be asked: how can we control and favor the cake
formation until acceptable level to protect pores from fouling, but at the same time, without
influencing permeate flux? This question actually remains open. The results shown in
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Figure 11 indicate no considerable effect of decreasing cake formation resistance (Rc) on
the permeate flux which effectively seems to be totally controlled by pore blocking. This
situation is usually encountered in the literature, especially when complete pore blocking
occurs, the removal of external fouling by increasing the shear rate would not have a
considerable effect on permeate flux decline [50,51]. Air sparging seems effectively not
useful in the simulated process, and other membrane cleaning process would be more
effective such as backwashing or relaxation.
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Figure 11. Results simulation of the membrane fouling model with control terms using (19) and (20);
( ): km = 0; ( ): km = 0.5; ( ): km = 5, (kp = 0).

5.2. Influence of the Number of Filtration/Relaxation (Backwash) Cycles per Time Unit

Membrane backwashing consists of injecting permeate in the opposite direction to the
filtration mode, which allows us to remove physically the foulants blocking the membrane
pores as well as the destruction of the cake layer. Moreover, relaxation operation consists
of halting the filtration process in order to eliminate the convective forces responsible for
the foulant attachment on the membrane surface. This operation would foster the back-
diffusion of attached foulants away from the membrane and consequently deconstruct
the fouling layer. The effectiveness of those two physical cleaning processes would be
higher as cleaning cycles increase. Our objective here is to verify if there is an optimal
number of filtration/relaxation or backwashing cycles allowing a higher mean value of
MBR output flux. Given a sufficiently large time horizon, what is the optimal number of
filtration/relaxation or backwash cycles allowing a higher mean value for the MBR output
flux (Figure 12).
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Figure 12. Cycles of filtration/relaxation or backwash per time unit.

To illustrate the importance of this operational functioning mode, we performed
numerical simulations by changing the number of filtration/relaxation cycles over a
given functioning period with a constant ratio between filtration time and relaxation time
αt = Tf iltr/TRelax for all cycles. On Figure 13, results are given for one cycle, two cycles,
five cycles and ten cycles of filtration/relaxation with a period of 2 h and αt = 7. We are
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particularly interested in the mean value Jmean of the produced flux on the given period.
Using the simulations, we computed the following:

• For 1 cycle of filtration/relaxation, Tf iltr = 105 mn, TRelax = 15 mn and
Jmean = 17.9 L/(h·m2);

• For 2 cycles of filtration/relaxation, Tf iltr = 52.2 mn, TRelax = 7.5 mn and
Jmean = 22.9 L/(h·m2);

• for 5 cycles of filtration/relaxation, Tf iltr = 21 mn, TRelax = 3 mn and
Jmean = 29 L/(h·m2);

• for 10 cycles of filtration/relaxation, Tf iltr = 10.5 mn, TRelax = 1.5 mn and
Jmean = 31.5 L/(h·m2).
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Figure 13. Results simulation of different numbers of filtration/relaxation cycles, with the mean flux
(solid horizontal line) on a given functioning period (2 h).

If the objective is to produce a maximum flux over the given period, then 10 filtra-
tion/relaxation cycles appears to be the best strategy. As a matter of fact, for a reasonable
number of filtration/relaxation cycles and a constant ratio αt between filtration time and
relaxation time for all cycles, we have an increasing mean production of flux. However,
if the number of intermittent filtration cycles is too large on the considered functioning
period, then it can damage the process by forcing it to operate in an On/Off mode with
a high frequency. Simulations show that multiplying the number of cycles is beneficial
but that this benefit does not increase anymore beyond 10 cycles. Obviously, increasing
the number of filtration/relaxation cycles is useful but the higher the frequency, the lower
the benefit.

It is thus suggested not to wait too long before proceeding to the membrane cleaning
by relaxation or backwash to find the best ratio operated time by benefit in terms of
flux produced.

5.3. Coupling Gas Sparging and Intermittent Filtration Controls

Figure 14 illustrates a control strategy based on gas sparging which is used at the
beginning of the considered period when the flux is still higher than a threshold flux
together with intermittent filtration as soon as the flux has reached the threshold flux.

Our idea here is to minimize the energy consumption when using gas sparging and the
flux loss (resp. the permeate loss) when the process is in relaxation mode (resp. backwash).
In others words, instead of using gas sparging and intermittent filtration simultaneously,
we propose to use them sequentially for the following reasons:

• Gas sparging is used to detach the matter deposited on the membrane: this phe-
nomenon occurs at the beginning of the filtration (fouling is soft and not yet dense).
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Here, one should control the gas sparging intensity, which may depend on differ-
ent parameters as the mixed liquor characteristics, the concentration of soluble and
particulate matters, . . .

• Intermittent relaxation is used to detach a denser fouling (strong), which can occur
after a long enough functioning time. These control parameters (typically the number
and frequency of filtration/relaxation (backwash) cycles) may depend on the fouling
characteristics as its irreversibility, its thickness. . .

To illustrate this idea, we performed numerical simulations plotted in Figure 14. The
system is first simulated without any control (black line). Then, this reference scenario is
compared with the proposed control strategy. It means that gas sparging is first applied
until the flux reaches the threshold flux (here Js = 18 L/(h·m2)). At this instant (t = 0.64 h),
we apply intermittent control with km = 5 in Equation (19), where f (m) = kmm with
four cycles.

Fl
ux

J(
t)

:L
/(

h·
m

2 )

Time [h]

Initial flux

Threshold flux Js
(mean flux without

any control)

Flux without

any control
Flux with only

gas sparging

control

Flux with coupled control

�
�	

Mean flux Jc with

coupled control

Intermittent filtration cyclesGas sparging

Flux > Threshold flux

Flux < Threshold flux

Accumulated fouling

Backwash (or relaxation)

Figure 14. Coupling control based on gas sparging and intermittent filtration.

Simulations show that this control strategy allows one to increase the mean production
flux to 33 L/(h·m2), whereas the mean flux without control was 18 L/(h·m2). As it is
noticed in Figure 14, when applying the gas sparging control, it has favorably increased
the permeate flux on the control period (until 0.64 h). It should be noticed that even if we
applied only the gas sparging all along the functioning period (without using intermittent
filtration cycles), the mean flux is 28.76 L/(h·m2), lower than the produced flux when the
two techniques are used together. Thus, intermittent filtration was an appropriate control
strategy to obtain over the whole functioning period of a maximum flux.

Our study on control strategy is obviously in line with other studies such as the work
presented in [43]. Their main purpose was to investigate and select the best operating
conditions in terms of aeration intensity, duration of filtration/backwashing cycles and
number of membrane cleaning to optimize energy demand and operational costs. Thus,
interesting further studies may focus on the optimization of the mean production flux,
while saving energy consumption and costs. The first results we established here show
that this could be achieved by using the simple control model, which integrates biological
and membrane compartments of the MBR and evaluating on the considered time unit an
appropriate criteria, as a function of the mean production flux, the energy demand and the
operational cost. This work is under investigation.

We emphasize that in [52], parameters of the developed models (7)–(11) were identified
using data generated by models proposed in [29,33] considered as virtual processes. It was
shown that our generic model can capture important properties of these two models, such
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as the mean value of the transmembrane pressure and the attached mass on the membrane
and their dynamics.

In the proposed model, the parameter describing suspended and soluble matter’s
rejection by the membrane was not expressed separately. The rejection coefficient of soluble
matter was included within the parameters β1, β2, Cs and Csmp expressing the contribution
of each soluble matter in cake formation and pore blocking. Moreover, the suspended
solids are assumed to be totally rejected by the membrane and would not contribute to
the internal fouling of the membrane. In this study, we have not focused on the purity of
produced permeate. The objective of this optimization work was mainly to improve the
permeate production. The estimation of the soluble matter which crosses the membrane
would allow us to estimate the variation in the permeate purity according to the studied
operating condition.

6. Conclusions

In this paper, we proposed a simple fouling model of anaerobic membrane bioreactor
(AnMBR). The model was developed under certain classical hypotheses on the membrane
fouling phenomena and was coupled with a reduced order anaerobic digestion model.
Two mechanisms of fouling were considered, cake formation on the membrane surface
and pores blocking. Contrary to many models of the literature which consider constant
membrane surfaces A, we assumed that the latter is a decreasing function of both the
attached matter mc(t) and the deposited matter mp(t) (notably SMP). Our main idea was
to introduce in the mass-balance model AM2b [13] a feedback of the decreasing flux due to
membrane fouling into the actual output flow rate of the process. We performed simulations
to investigate the qualitative behavior of the model, and we validated it on experimental
data. It was shown that the proposed model can predict quite well the fouling behavior
for the considered AnMBR. It fitted accurately the real flux in both phases of identification:
calibration phase and validation phase (see Figure 7). In a second part of the paper, we
improved numerical simulations to investigate and discuss the fouling control problem
in focusing on the optimal control of gas sparging and intermittent filtration. Preliminary
results were obtained about the results of different control strategies over a given time
period: at the beginning stage of the process functioning, it appeared useful to use the gas
sparging and the intermittent filtration at the end of the considered time period. Based on
these results, we proposed to couple control benefits in order to produce the maximum
mean flux over the total considered functioning period.

Perspectives of this work include (i) model extension to constant flux and variable TMP
filtration and, its validation using other experimental informative data, where parameters
identifiability should be studied, (ii) the design of an optimal control to minimize the
fouling effects on the system performances while minimizing the energy requirements,
(iii) the development of an optimization strategy to control and favor the cake formation
until an acceptable level to protect pores from fouling, but at the same time, without
influencing permeate flux, and (iv) the coupling of the fouling model with ADM1 model in
integrating SMP and possibly EPS (Extracellular Polymeric Substances) dynamics.
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Appendix A. Parameters Values Used in Simulations

Table A1. Parameters values used in simulations.

Parameter Meaning Value Unit Reference

α specific resistance of the sludge 5 × 1014 [m/kg]
α′ specific resistance of the sludge 1 × 1013 [m/kg]
β SMP fraction leaving the bioreactor 0.6 − [13]
β1 SMP fraction blocked into the pores to be estimated −
β2 S1 and S2 blocked into the pores smaller than β1 (=β1/15) − [13]
σ parameter to normalize units 10 [g]
σ′ parameter to normalize units 10 [g]
µ the permeate viscosity 0.001 [Pa.s]
ω detachment rate of mc during relaxation phase 25 −
ω′ detachment rate of mp during relaxation phase 25 −
∆P transmembrane pressure 1.5 [bar] [35]
A0 initial membrane surface 1 [m2] [35]
b1 yield degradation of SMP by X1 40 − [13]
b2 yield production of S2 from SMP 0.6 − [13]
b3 yield production of SMP from S1 3 − [13]
b4 yield production of SMP from S2 1.3 − [13]
Cs fraction of ST = S1 + S2 attached onto the membrane to be estimated [1/h]
Cx fraction of XT = X1 + X2 attached onto the membrane to be estimated [1/h]
Csmp fraction of SMP attached onto the membrane to be estimated [1/h]
C′

s fraction of S1 and S2 reinjected into the bulk during cleaning operation 0.001 [1/h]
C′

x fraction of X1 and X2 reinjected into the bulk during cleaning operation 0.01 [1/h]
C′

smp fraction of SMP reinjected into the bulk during cleaning operation 0.001 [1/h]
k1 yield degradation of S1 by X1 25 − [12]
k2 yield production of S2 from S1 15 − [12]
k3 yield degradation of S2 by X2 16.08 − [12]
kd1 decay rate of the biomass X1 0.2 [1/h]
kd2 decay rate of the biomass X2 0.18 [1/h]
K1 half-saturation constant associated with S1 10 [g/L]
K2 half-saturation constant associated with S2 5 [g/L]
Ki inhibition constant associated with S2 15 [g/L]
K half-saturation constant associated with SMP 3 [g/L] [13]
m1 maximum acidogenic biomass growth rate on S1 1.2 [1/h] [12]
m2 maximum methanogenic biomass growth rate on S2 1.5 [1/h] [12]
ms maximum acidogenic biomass growth rate on SMP 0.14 [1/h] [13]
Qin the input flow of the bioreactor varying [L/h]
Qout the output flow of the bioreactor varying [L/h]
Qw the withdraw flow from the bioreactor 1.5 [L/h]
R0 intrinsic membrane resistance 1.11 × 1013 (estimated from J(0)) 1/m
S1in the input concentration of S1 90 [g/L]
S2in the input concentration of S2 20 [g/L]
V the volume of the bioreactor 50 [L] [35]
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