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Abstract: Pseudomonas aeruginosa and Klebsiella pneumoniae are notorious for their resistance to
antibiotics and propensity for biofilm formation, posing significant threats to human health. Epsilon-
poly-L-lysine (e-PL) emerges as a naturally occurring antimicrobial poly(amino acid), which positions
it as a prospective agent for addressing challenges linked to multidrug resistance. e-PL symbolizes a
promising avenue in the pursuit of efficacious therapeutic strategies and warrants earnest consid-
eration within the realm of clinical treatment. Thus, our objective was to determine the antibiotic
susceptibility profiles of 38 selected P. aeruginosa and ESBL-producing K. pneumoniae clinical isolates
and determine the ability of e-PL to inhibit biofilm formation. After PCR analysis, detection of genes
related to 3-lactamases was observed among the selected isolates of P. aeruginosa [blagpy (35.7%),
bluKPC (35.70/0), bZLZSHV (14.30/0), blaCTX-M (14‘30/0), bluOXA (14.30/0), blaTEM (7.10/0), blﬂPER (7.10/0), blllVIM
(7.1%), and blayyp (7.1%)] and K. pneumoniae [blactx.m (91.7%), blatpy (83.3%), blaxpc (16.7%),
blanpm (12.5%), and blagxa (4.2%)]. The results of testing the activity of e-PL against the clinical
isolates showed relatively high minimum inhibitory concentrations (MICs) for the P. aeruginosa (range:
8-64 ug/mL) and K. pneumoniae isolates (range: 16-32 ng/mL). These results suggest the need for
prior optimization of e-PL concerning its viability as an alternative to antibiotics for treating infections
caused by P. aeruginosa and K. pneumoniae of clinical origin. It is noteworthy that, in the context of
a low antibiotic discovery rate, e-PL could play a significant role in this quest, considering its low
toxicity and the unlikely development of resistance. Upon exposure to e-PL, P. aeruginosa and K.
pneumoniae isolates exhibited a reduction in biofilm production, with e-PL concentration showing an
inverse relationship, particularly in isolates initially characterized as strong or moderate producers,
indicating its potential as a natural antimicrobial agent with further research needed to elucidate
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optimal concentrations and application methods across different bacterial species. Further research is
needed to optimize its use and explore its potential in various applications.

Keywords: Pseudomonas aeruginosa; Klebsiella pneumoniae; antibiotic resistance; biofilm; Epsilon-poly-L-lysine

1. Introduction

Pseudomonas aeruginosa and Klebsiella pneumoniae are opportunistic gram-negative
pathogens that can colonize and cause human infections [1]. These pathogens are one
of the most common causes of nosocomial infections and are frequently responsible for
a variety of healthcare-related infections, including pneumonia, bloodstream, meningi-
tis, urine, and wound or surgical site infections, among others [2—6]. P. aeruginosa and
K. pneumoniae can potentially develop resistance to many classes of antibiotics, such as
carbapenems, and treating infections with these bacteria can be very challenging [7-9].
Multidrug-resistant (MDR) and extensively drug-resistant (XDR) Gram-negative bacteria
are major public health problems worldwide. The main difference between these two
bacteria is that P. aeruginosa is a glucose-non-fermenting and oxidase-positive bacteria,
and K. pneumoniae is a glucose-fermenting and oxidase-negative bacteria. Also, another
difference is their type of respiration, namely that K. pneumoniae is facultatively anaerobic
as opposed to P. aeruginosa, which is considered an aerobic bacteria. Consequently, biofilm
production and formation have different metabolic processes [10,11]. Biofilm formation is
a highly conserved mechanism of bacterial adaptation and is associated with developing
resistance to many antibiotics [12]. Thus, to combat multidrug-resistant P. aeruginosa and
K. pneumoniae, alternative treatment strategies for reducing MDR bacteria have become a
prominent research topic.

¢-PL is a hydrophilic cationic linear homo-poly-amino acid, generally composed of
25 to 35 identical L-lysine residues with a unique structure characterized by the peptidic
bonds between the e-amino and «-carboxy groups [13]. Within the scope of research
on ¢-PL, new modification strategies stand out for obtaining structures beyond linear
configurations, encompassing dendritic, hyperbranched, and functionalized forms of e-PL.
These variations aim to enhance specific characteristics, broaden applications, and meet
diverse needs [13]. e-PL can inhibit various microorganisms, such as most bacteria [14],
and it is “Generally Recognized As Safe” (GRAS) as a food preservative. The antimicrobial
activity of e-PL is closely related to the number of repetitive L-lysine residues. It has been
shown that more than 10 residues are required for e-PL to exert adequate antibacterial
activity. It has already been demonstrated that a-PL is a much less potent antimicrobial
compound than e-PL [15]. Studies testing the antimicrobial capacity of this peptide have
shown that it can be electrostatically adsorbed to the surface of the bacteria, followed by
the removal of the outer membrane. Consequently, this results in the abnormal distribution
of the cytoplasm, causing damage to the bacteria [16].

This study sought to investigate a group of specifically chosen P. aeruginosa and ESBL-
producing K. pneumoniae isolates sourced from urine samples. Our focus was to explore the
capability of these strains in forming biofilms and to assess the antimicrobial activity of
e-PL against these pathogens.

2. Materials and Methods
2.1. Samples and Bacterial Strains

Thirty-eight selected P. aeruginosa (n = 14) and ESBL-producing K. pneumoniae (n = 24)
isolates recovered from urine samples at the Medical Centre of Tras-os-Montes and Alto
Douro between September 2021 and June 2022 were included in this study. These strains
were identified using VITEK 2® COMPACT (bioMérieux, Auvergne-Rhone-Alpes, France),
and their identification was confirmed in the medical microbiology laboratory by seeding
P. aeruginosa and K. pneumoniae isolates on Pseudomonas Agar Base supplemented with CN
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(Liofilchem, Rosetodegli, Abruzzi, Italy) medium and HiCrome Klebsiella Selective Agar
Base medium (HiMedia Laboratories, Maharashtra, India), respectively. Both pathogens
were incubated at 37 °C for 24-48 h. The isolates were cryopreserved at —20 °C in skim milk.

2.2. Antimicrobial Susceptibility Testing

The phenotypic resistance characterization of the isolates was performed by the
Kirby-Bauer disk diffusion method following EUCAST standards (2022) [17]. Twelve
antibiotics were tested for P. aeruginosa (charge on disks): piperacillin (30 pg), ticarcillin-
clavulanic acid (75-10 ng), ceftazidime (10 pg), cefepime (30 pg), aztreonam (30 pg),
imipenem (10 ng), doripenem (10 pg), meropenem (10 pug), amikacin (30 pg), tobramycin
(10 pg), gentamicin (10 pg), and ciprofloxacin (5 pug). The minimum inhibitory concentra-
tion (MIC) by microdilution method was performed for piperacillin-tazobactam antibiotics
(resistant when MIC > 16 mg/L) since no breakpoints for disk diffusion method are avail-
able in the EUCAST guidelines. Thirteen antibiotics were tested for K. pneumoniae isolates
following EUCAST standards (2022): ticarcillin-clavulanic acid (75-10 ug), cefoxitin (30 pug),
ceftazidime (10 ng), cefepime (30 pg), aztreonam (30 pg), imipenem (10 pg), meropenem
(10 pg), ertapenem (10 pg), amikacin (30 pg), gentamicin (10 pg), ciprofloxacin (5 ng),
trimethoprim—sulfamethoxazole (1.25/23.75 pug), and chloramphenicol (30 pug). Three
antibiotics were tested for K. pneumoniae isolates following CLSI standards (2021) [18]:
cefotaxime (30 pg), nalidixic acid (30 pg), and tetracycline (30 pug).

2.3. Determination of Minimum Inhibitory Concentration

The microdilution method was used to determine the minimum inhibitory concen-
tration (MIC) of linear e-PL (~4700 g/mol; Handary, Brussels, Belgium). Briefly, each
isolate was seeded on Brain Heart Infusion (BHI) agar (Frilabo, Maia, Portugal) and in-
cubated at 37 °C for 24 h. Then, the bacterial cells were subcultured in tubes containing
Mueller-Hinton (MH) broth (Frilabo, Maia, Portugal) and incubated overnight at 37 °C with
150 rpm in the ES-20/60 Orbital Shaker-Incubator (Biosan, Riga, Latvia). The overnight
culture was diluted in fresh MH broth to a turbidity standard of 0.5 McFarland using a
spectrophotometer. Then, Epsilon-poly-L-lysine was diluted in sterilized distilled water at
different concentrations (0 ug/mL to 8182 pug/mL), and 75 uL of each concentration was
placed in a polystyrene flat bottom 96-well plate. Also, 75 uL of bacterial suspension was
placed in the same 96-well microtiter plate and incubated for 24 h at 37 °C with 150 rpm.
Bacterial growth was determined at 630 nm using a microplate reader, the BioTek ELx808U
(BioTek, Winooski, VT, USA). MIC was defined as the lowest concentration that prevents
bacterial growth.

2.4. Biofilm Formation and Biomass Quantification

The bacterial adhesion of all isolates was assessed using a microtitre plate-based assay
as previously described with some modifications [19]. Briefly, to perform the assay, one
colony from each bacterial culture that had grown overnight on brain heart infusion (BHI)
agar was suspended in Luria-Bertani (LB) broth (Ox0id®, Basingstoke, UK) and incubated
for 24 h at 37 °C. Then, the bacterial suspension was diluted to 0.5 on the McFarland scale
using Tryptic Soy Broth (TSB) (Ox0id®, Basingstoke, UK). Then, 100 uL of each dilution
was added to each well of a 96-well flat-bottom microplate. Pseudomonas aeruginosa ATCC®
27853 was included in all microplates as a positive control, and TSB without bacterial
inoculum was used as a negative control. The microplates were incubated for 24 h at
37 °C. For quantitative assays, eight replicate wells were used for each treatment. After
incubation, bacterial cells in suspension were removed by turning the microplates over,
and they were washed twice with distilled water. This step helps remove stray cells and
media components that may be stained in the next step, significantly reducing background
staining. Subsequently, 125 pL of a 0.1% (v/v) solution of crystal violet (CV) (Frilabo,
Maia, Portugal) was introduced into each well of the microplate, followed by an incubation
period at room temperature for 10-15 min. Post-incubation, the CV solution was decanted,
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and the microplates underwent 3—4 washes with distilled water. Following this, meticulous
drying of the plates was conducted using paper towels to eliminate any residual cells and
stains, after which they were left to air-dry overnight.

To determine the biomass of the biofilm, 125 pL of 30% (v/v) acetic acid was added to
each well of the microplate to dissolve the crystal violet. After an additional incubation
period at room temperature for 10-15 min, optical density readings were taken at 630 nm
(OD630nm) using a microplate reader (BioTek ELx808U, BioTek, Winooski, VT, USA). An
uninoculated well containing 30% acetic acid served as a reference blank.

Following the MIC results, the same protocol was utilized for the production of
biofilms, namely with the use of crystal violet, with one exception. Instead of 125 puL
of 0.1% (v/v) CV solution, we added 175 uL since each well once contained 150 uL of
liquid (75 uL of bacterial suspension and 75 puL of e-PL solution), and we wanted the
CV solution to cover all the biofilm that had eventually formed. The subsequent steps,
including incubation, washing, drying, and biomass quantification, adhered to the protocol.
Optical density was measured using a microplate reader (BioTek ELx808U, Lonza’s Vision
Zero), with an uninoculated well containing 30% acetic acid serving as the blank control.

2.5. Antimicrobial Resistance and Virulence Genes

All isolates were studied for the presence of antimicrobial resistance genes according
to the phenotypic results. DNA extraction was performed by following the boil method
protocol [20]. Briefly, three colonies of overnight-growth bacteria were placed in a test
tube containing 500 pL of distilled water and boiled for 8 min in a water bath. After, the
tubes were vortexed vigorously and centrifuged for 2 min at 12,000 rpm. Then, 490 uL of
the supernatant was recovered. Afterward, DNA concentration was determined using a
NanoDrop system, and polymerase chain reaction (PCR) was performed. For P. aeruginosa
isolates, the following resistance genes were tested: blatpm, blashy, blactx, blappr, blasme,
blaxpc, blagim, blasmp, blavim, blavim-2, blanpwm, blaoxa, acc(3)-1, aac(3)-11, aac(3)-111, aac(3)-1V,
and ant(2')-Ia. For K. pneumoniae isolates, the following resistance genes were tested: blargy,
blasyy, blactx, blakpc, blanpwm, blaoxa, acc(3)-11, aac(3)-1V, tetA, tetB, cmlA, catA, sull, sul2,
sul3, and dfrA [21-39].

2.6. Multilocus Sequence Typing

Multilocus sequence typing (MLST) for selected P. aeruginosa and K. pneumoniae isolates
was performed by PCR and sequencing of seven housekeeping genes (acsA, aroE, guaA,
mutL, nuoD, ppsA, and trpE for P. aeruginosa; gapA, infB, mdh, pgi, phoE, rpoB, and tonB for K.
pneumoniae). Allelic profiles and sequence types (STs) were compared with the PubMLST
and BIGSdb-Pasteur databases (http://pubmlst.org/paeruginosa/; https:/ /bigsdb.pasteur.
fr/klebsiella/, accessed on 28 April 2023).

3. Results and Discussion
3.1. Antimicrobial Susceptibility Testing

All phenotypic profiles of each P. aeruginosa and K. pneumoniae isolate are indicated in
Table 1. P. aeruginosa isolates included in this study showed, in most cases, resistance to
imipenem (85.7%). All P. aeruginosa isolates were susceptible to amikacin and colistin. On
the other hand, ESBL-producing K. pneumoniae isolates showed resistance to cefotaxime
(100%), cefepime (100%), and aztreonam (100%). Moreover, one of the K. pneumoniae isolates
showed phenotypic resistance to imipenem (4.2%), and five additional isolates showed
resistance to other carbapenems, such as ertapenem and/or meropenem (20.8%).
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Table 1. Phenotypic and genotypic characterization of resistance to different antibiotics in the selected P. aeruginosa (Pa) and K. pneumoniae (Kp) isolates.

Species Isolate MDR Phenotype of Resistance Resistance Genes

HU1 — IMI, MEM, LEV blaxpc
HU2 — IMI blﬂKpC
HU4 + PTZ, CAZ, ATM, IMI, MEM, DOR blaxpc
HU5 - IMI, MEM, LEV blaspy
HU6 - IMI blﬂKpc, blﬂspM
HU7 — IMI blﬂspM
HUS8 + PTZ, TTC, CAZ, ATM, CIP, bluCTX-M/ blﬂv[Mz, blﬂspM

Pa HU9 - ™I blasgry
HU10 - IMI blﬂSHV/ blaVIM
HU11 — IMI bluTEM, blaspM
HU12 — IMI bl”CTX-M/ blﬂOXA
HU13 TOB, CN aac(3)-1V
HU14 — IMI, CN blﬂpER, blﬂQXA, IMC(3)—IV
HU15 - MI blaxpc

HS2 + TTC, CAZ, CTX, FEP, ATM, CN, TET, CIP, SXT blactx-m, aac(3)-11, aad A1, sul2

HS8 + TTC, FOX, CAZ, CTX, FEP, ATM, CN, TET, CIP, NA, SXT blactx-m, blatem, blaspy, aac(3)-11, sul?
HS14 + TTC, CAZ, CTX, FEP, ATM, AK, CIP, NA, SXT blactxm, blatem, blaspy, aac(3)-11, sul2
HS17 + TTC, FOX, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT, CHL blactx-m, blatem, blaspyry, aac(3)-11, aadAl, cmlA, sul2
HS29 + TTC, CAZ, CTX, FEP, ATM, TET, CIP, SXT blactxm, blatem, blasyy, tetA, sul?
HS30 + TTC, FOX, CAZ, CTX, FEP, ATM, MEM, ERT, IMI, AK, CN, CIP, SXT blatgwm, blasyy, blaxpc, aac(3)-11, aad A1, sul2
HS34 + TTC, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT, CHL blactxm, blasyy, aac(3)-11, aad A1, cmlA, sul2
HS36 + TTC, FOX, CAZ, CTX, FEP, ATM, MEM, ERT, AK, CN, CIP, NA, SXT blactx-m, blatepm, blasyy, blaxpc, aac(3)-11, aad A1, sul2
HS42 + TTC, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT blactxm, blatem, blaspyy, aac(3)-11, aadAl, sul2, sull
HS50 + TTC, CAZ, CTX, FEP, ATM, ERT, AK, CN, SXT blactx-m, blatem, blasyy, aac(3)-11, aadAl, sull, sul2
HS54 + TTC, CAZ, CTX, FEP, ATM, ERT, CIP, SXT blatgpy, blasgyy, blanpm, sul2, sull

K HS55 + TTC, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT, CHL blactxm, blatem, blaspy, aac(3)-11, aadA1, cmlA, sul2

P HS56 + TTC, FOX, CAZ, CTX, FEP, ATM, MEM, ERT, AK, CN, CIP, NA, CHL blactxm, blaspry, blaxpe, blanpwm, aac(3)-11, aad A1, cmlA

HS57 + TTC, CAZ, CTX, FEP, ATM, TET, CIP, SXT blactxm, blatem, blasyy, tetA, sul?
HS58 + TTC, CAZ, CTX, FEP, ATM, CN, TET, CIP, NA, SXT, CHL blactxm, blaspry, aac(3)-11, cmlA, sull
HS67 + CAZ, CTX, FEP, ATM, CN, CIP, SXT blactx-m, blatem, blaspy, aac(3)-11, aad A1, sul2
HS77 + TTC, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT, CHL blactxam, blatem, blaspry, aac(3)-11, aad A1, sull, sul2, sul3
HS79 + TTC, FOX, CAZ, CTX, FEP, ATM, ERT, CIP bl”CTX-M/ blaTEM, blaKpc, blﬂOXA/ blﬂNDM
HS81 + TTC, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT, CHL blactxm, blatem, blaspy, aac(3)-11, aadAl, cmlA, sull, sul2, sul3
HS84 + TTC, CAZ, CTX, FEP, ATM, CN, CIP, NA, SXT, CHL blacrx-m, blatem, blasuy, aac(3)-11, aadAl, cmlA, sull, sul2, dfrA
HS87 + CTX, FEP, ATM, CIP, NA, SXT blactx-m, blatem, blaguy, sull, sul2, dfrA
HS91 + TTC, CAZ, CTX, FEP, ATM, CIP, NA, SXT blaCTx_M, blﬂlTEM, bluSHV/ Sllll, sul2
HS92 + TTC, CAZ, CTX, FEP, ATM, AK, CIP, NA, SXT blactxm, blatem, blaspyy, aac(3)-11, aad A1, sull, sul2
HS101 + CAZ, CTX, FEP, ATM, CN, TET, CIP, SXT, CHL blactxm, blatem, blasyy, aac(3)-11, aadAl, tetA, cmlA, sull, sul2

TTC—ticarcillin-clavulanate; FOX—cefoxitin; CAZ—ceftazidime; CTX—cefotaxime; FEP—cefepime; ATM—aztreonam; MEM—meropenem; ERT—ertapenem; IMI—imipenem;
AK—amikacin; CN—gentamicin; TET—tetracycline; CIP—ciprofloxacin; NA—nalidixic acid; SXT—trimethoprim-sulfamethoxazole; CHL—chloramphenicol; DOR—doripenem;
PTZ—piperacillin; TOB—tobramycin.
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3.2. Antimicrobial Resistance Genes

After PCR analysis, some (3-lactamase-related genes were detected in P. aeruginosa
isolates, such as blagpy (35.7% of isolates), blagpc (35.7%), blasryy (14.3%), blactxav (14.3%),
blLZOXA (14.30/0), blllTEM (7.10/0), blaPER (7.10/0), blaVIM (7.10/0), and blaVIM_z (7.10/0) (Table 1)
Multiple studies also report the presence of these genes in clinical P. aeruginosa isolates.
Recently, in 2020, Ahmed et al. reported that 51% of P. aeruginosa from cancer patients were
positive for the carbapenemase genes encoding VIM, GIM, and IMP enzymes, 38% for SPM
and AIM, 30% for BIC, 20% for NDM and TEM, 17% for KPC, and 15% for OXA [40]. The
first report of blay\, and blapggr.1 in Latin America was published in 2018 in a P. aeruginosa
strain recovered from a cerebrospinal fluid sample [41]. The emergence of these 3-lactamase
genes in P. aeruginosa is a major concern in treating infections caused by this bacterium
since they are associated with various resistance mechanisms to 3-lactam antibiotics. The
resistance to aminoglycosides expressed by two isolates was associated with the aac(3)-IV
gene. AAC enzymes are commonly detected in aminoglycoside-resistant strains, as well as
APH enzymes. Like the current study, Holbrook and Garneau-Tsodikova have also detected
the aac(3)-IV gene in 10.7% of the isolates, together with aph(3')-Ia (70.5%), aac(6')-Ib (41.0%),
and ant(2")-Ia (5.7%) [42].

Since all K. pneumoniae isolates were ESBL-producers, most of the isolates carried, as
expected, ESBL-related genes (Table 1). The most prevalent 3-lactamase genes detected
in our study were blactx.m (91.7%) and blagpy (91.7%), followed by blatgy (83.3%). All
the blactx-m genes confer an ESBL phenotype, although only some variants of blatpm
or blagyyy are related to the ESBL phenotype. All K. pneumoniae have an intrinsic SHV
resistance gene. However, in some cases, it could be mutated to an ESBL variant, or the
isolate could acquire a new ESBL-SHYV variant that can only be known by sequencing the
obtained amplicons. The presence of these 3-lactamases in K. pneumoniae continues to be
reported worldwide. Multiple studies keep detecting these genes and their variants [43-45].
Moreover, the blaxpc (16.7%) and blanpm (12.5%) carbapenemase genes were also found
among our isolates. The emergence and spread of carbapenemase genes among clini-
cal isolates is a significant concern since carbapenem antibiotics are often used as a last
resort for treating infections caused by multidrug-resistant bacteria. The most common
carbapenemase genes detected in K. pneumoniae are from the KPC [46,47], NDM [48,49], and
OXA-48 families [50,51]. Different -lactamase gene combinations were observed among
our isolates, but the most predominant was blactx-m + blatpm + blagpy (n = 12). Also,
one K. pneumoniae strain (HS79) showed a combination of five different 3-lactamase genes
(blactx-m + blatpm + blaxpc + blapxa + blanpm). In only one strain (HS50), no carbapen-
emase genes were detected, besides this strain being resistant to ertapenem. However,
other carbapenemase genes have also been reported in K. pneumoniae, such as VIM [52,53],
IMP [54,55], and GES [56,57], that may be conferring resistance to ertapenem in this isolate.
In relation to resistance to sulfonamides and trimethoprim, we detected sul2 (87.5%), sull
(41.7%), sul3 (12.5%), and dfrA (8.3%) genes among the studied isolates. Like our study,
Mbelle et al. also reported high rates of prevalence of sul2 (86%) and sull (78%) [58]. The
sul3 and dfrA genes are also commonly found in K. pneumoniae. Carvalho et al. [59] reported,
in 2021, the presence of sul2 in 10 K. pneumoniae clinical isolates and sul3 in 5 isolates, but no
dfrA was detected. However, the presence of dfrAl in four isolates and dfrA17 in one isolate
was reported by Yu et al. [60] after whole-genome sequencing of seven K. pneumoniae strains.
Relatively to aminoglycoside resistance, we verified the presence of aac(3)-II (75%) and
aadA1l (62.5%). The same was reported by Lomonaco et al. [43], who detected the presence
of these two genes in ten MDR clinical isolates of K. pneumoniae from the United States
of America. Moreover, tetA (12.5%) was the only gene detected that confers resistance to
tetracyclines. The absence of tetA or tetB genes was observed in certain tetracycline-resistant
isolates. This could be attributed to several factors, such as the presence of alternative
tetracycline resistance genes like tetC, tetD, or tetG [61] or the emergence of tetracycline
resistance through mutations in bacterial ribosomes or other cellular components indepen-
dent of specific resistance genes [62]. The resistance to chloramphenicol was proven by
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the presence of the cmlA gene (37.5%) (Table 1). The cmlA gene is a common mechanism
of resistance to chloramphenicol. It is often located on mobile genetic elements such as
plasmids, which can facilitate its spread between bacterial species and contribute to the
emergence of multidrug-resistant strains. cmlA-mediated resistance to chloramphenicol
has been reported in various bacterial species, including K. pneumoniae [53].

3.3. Multilocus Sequence Typing

After the biofilm production results, we selected seven K. pneumoniae and seven P.
aeruginosa isolates for sequence typing. The results are presented in Table 2.

Table 2. MLST types of seven clinical P. aeruginosa isolates and seven clinical K. pneumoniae isolates.

P. aeruginosa K. pneumoniae
Isolate ST Isolate ST
HU2 699 HSS8 307
HU5 X* HS29 348
HU6 X* HS34 15
HU7 1338 HS36 307
HU10 285 HS50 584
HU14 274 HS55 15
HU15 1404 HS58 307

* New allelic combination.

These sequence types (STs) are commonly found in K. pneumoniae strains: ST15,
ST307, and ST348 are known to be widespread and have been associated with hospital-
acquired infections [63-65], while ST584 is a relatively new ST that has been identified in
K. pneumoniae strains from clinical and environmental sources [66,67]. The STs found in
P. aeruginosa have been associated with hospital-acquired infections: ST285, 5T274, ST1404,
and ST228 have been identified in hospitals in several European countries. The other STs
have been reported in hospitals in Brazil, China, the United States, and Saudi Arabia [68].
Interestingly, we found two new allelic combinations for HU5 and HUS6 isolates. HU5
seems to be a single locus variant (SLV) of ST1228 with a different trpE allele. HU6 seems to
be an SLV of ST170/ST997/5T1315/5T2454 with a different mutL allele. The identification
of new allelic combinations in P. aeruginosa is not uncommon, as this bacterium has a high
level of genetic diversity [69]. SLVs are typically defined as strains that differ from each
other by a single nucleotide polymorphism (SNP) in one of the seven MLST loci, and they
are often considered to be related to each other in an evolutionary sense.

3.4. Determination of Minimum Inhibitory Concentration (MIC) for Epsilon-poly-L-lysine

In vitro activity of e-PL against the P. aeruginosa and K. pneumoniae isolates showed
relatively high MICs. MIC values ranged between 8 and 64 ug/mL in P. aeruginosa isolates,
with 64.3% having a MIC value of 32 ug/mL and between 16 and 32 pg/mL in K. pneumoniae
isolates, with 58.3% also having a MIC value of 32 pug/mL (Figure 1). The high MIC
values observed for e-PL against the tested P. aeruginosa and K. pneumoniae isolates suggest
that these bacteria have relatively low susceptibility to the antimicrobial effects of e-PL.
The results from the electron microscopy analysis of E. coli O157:H7 cells, reported by
Zhang et al. [70], suggest that e-PL can cause damage to the bacterial cell wall or membrane
even at concentrations lower (16 ug/mL) than those observed in our study. This supports
the idea that the relatively high MICs observed in the current study may be due to factors
such as the limited permeability of the bacterial cell wall or membrane to e-PL rather than
the inability of e-PL to exert its antimicrobial effects once inside the bacterial cell. However,
further studies would be needed to confirm this hypothesis. Moreover, the activity should
be tested in the future under different methodological conditions (media and bacteria
density, among others) to check if these variables could affect the activity of the agent.
In another recent study, it was observed that ¢-PL caused alterations in the morphology
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of P. aeruginosa cells, resulting in protrusions on the cell wall, as evidenced by scanning
electron microscopy [71]. Additionally, e-PL demonstrated the ability to depolarize and
permeabilize the bacterial membrane over time, which may enhance the effectiveness of
antibiotics. The MIC in the referred study turned out to be higher, around 50 pg/mL, using
the reference strain PAO1. Experiments also evaluated the efficacy of e-PL in combination
with imipenem against both sensitive and antibiotic-resistant strains of P. aeruginosa. A
synergy between e-PL and imipenem was observed, resulting in a significant reduction
in bacterial growth, especially against resistant strains. These findings suggest that ¢-PL
could be a promising option for treating P. aeruginosa infections, particularly those resistant
to conventional antibiotics. The ability of e-PL to increase bacterial membrane permeability
may enhance the effectiveness of antibiotics, making it a potential therapeutic adjuvant
against resistant bacterial infections. Regarding K. pneumoniae, this field of research remains
an enigma, thereby underscoring the significance of this study.

Pseudomonas aeruginosa Klebsiella pneumoniae

58%

64%

@8 pg/mL @16 pg/mL 032 pg/mL MW 64 pg/mL @16 ug/mL 032 ug/mL

Figure 1. Determination of minimum inhibitory concentration for Epsilon-poly-L-lysine against
P. aeruginosa (Pa) and K. pneumoniae (Kp) isolates.

3.5. Biofilm Formation and Biomass Quantification

We verified that all P. aeruginosa isolates (n = 14) were biofilm producers (100%), of
which five were moderate producers (35.7%) and nine were strong producers (64.3%)
(Figure 2A). Among K. pneumoniae isolates, we verified that 21 of them were biofilm
producers (87.5%), of which 5 were strong producers (20.8%), 13 were moderate producers
(54.2%), and 3 were weak producers (12.5%) (Figure 2B). After the exposure to e-PL, we
verified a decrease in biofilm production in 11 P. aeruginosa and 16 K. pneumoniae strains, i.e.,
in these strains, we verified that the concentration of ¢-PL was inversely proportional to
the production of biofilm, which means that the strains that were initially strong/moderate
biofilm producers at MIC values became weak/null biofilm producers (Figure 2). Several
studies have investigated the effects of e-PL on biofilm production in different bacterial
species. Some studies have shown similar results to the current study. For example, a study
conducted on Salmonella typhimurium showed that e-PL inhibits biofilm formation in a dose-
dependent manner. Additionally, e-PL at low concentrations did not affect the viability of
bacterial cells. This suggests that ¢e-PL may have a selective effect on biofilms, inhibiting
their formation while leaving bacterial cells intact [72]. Another study investigated the
effect of e-PL on the cell structure and biofilm formation in Cronobacter sakazakii. The results
showed that e-PL had a MIC of 256 ug/mL against C. sakazakii. e-PL was found to reduce the
surface hydrophobicity and motility of C. sakazakii, which affects the formation of biofilm.
e-PL also demonstrated a significant effect on the inhibition and eradication of biofilm,
and the removal efficiency of biofilm was significantly improved when combined with
physical oscillation. This means that e-PL destroyed the cell structure of C. sakazakii, and the
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bacteriostatic effect was achieved while inhibiting biofilm formation and removing mature
biofilm [73]. Overall, these studies indicate that e-PL may serve as a natural antimicrobial
agent that can hinder the formation of biofilms in diverse bacterial species. However,
further research is needed to determine the optimal concentration and application methods
for different bacterial species and to investigate the potential mechanisms of action of e-PL
on biofilm production. Surprisingly, one of the K. pneumoniae isolates (HS55) showed an
opposite relationship between ¢-PL concentration and biofilm production, moving from
non-producer to weak biofilm producer at 4 pug/mL of e-PL. It is not uncommon for some
bacteria to display different responses to antibacterial agents due to variations in their
genetic background or environmental conditions. For instance, a study reported that low
concentrations of triclosan, an antimicrobial agent, can promote the binding of S. aureus to
inanimate surfaces such as plastic and glass [74].

Number of isolates

Pseudomonas aeruginosa Klebsiella pneumoniae
10 20
[ 7]
81 m 2
< 15 ]
o o i Before exposure
ué i (0 pg/mL of &-PL)
4- x - After exposure
. E 5 H |_| (at MIC value)
0 T T T 0 |_|| T II_I
Weak Moderate Strong Weak Moderate Strong
Type of biofilm Type of biofilm
(A) (B)

Figure 2. Effect of the ¢-PL on the biofilm formation against 14 P. aeruginosa and 24 K. pneumoniae
isolates. (A) Before exposure to e-PL, the 14 P. aeruginosa isolates were strong and moderate biofilm
producers. After exposure to e-PL at the MIC value, a reduction in biofilm production was verified
in 11 isolates. The number of strong and moderate biofilm producers” isolates has reduced, and the
number of weak biofilm producers has increased. (B) Before exposure to e-PL, 21 K. pneumoniae
isolates were strong, moderate, and weak biofilm producers. After exposure to e-PL at the MIC value,
a reduction in biofilm production was verified in 16 isolates. The number of strong and moderate
biofilm producers’ isolates has reduced, and the number of weak biofilm producers has increased.

Another type of consideration that must be made is related to the potential of e-PL in a
clinical setting. e-PL, with its antimicrobial properties against Gram-negative bacteria like
P. aeruginosa and K. pneumoniae, holds significant promise as a potential therapeutic agent.
In a clinical setting, e-PL might be considered for topical application, where ¢-PL could be
formulated into creams, ointments, or gels for the treatment of localized skin infections or
wounds [75,76]. Additionally, e-PL could be utilized in medical devices such as catheters
or wound dressings to prevent bacterial colonization and biofilm formation [72].

Furthermore, ¢-PL could be explored in the future for the treatment of systemic infec-
tions caused by MDR bacteria. However, further research would be needed to determine
the potential side effects associated with systemic ¢-PL administration, as well as the op-
timal dosage and administration route. Overall, the successful translation of e-PL from
preclinical studies to clinical applications would require rigorous evaluation of its safety,
efficacy, and pharmacokinetic properties in human trials.
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4. Conclusions

In this study it was performed the genetic characterization of 3-lactamase genes in
the collection of P. aeruginosa and K. pneumoniae clinical isolates used as target for testing
the activity of e-PL agent; it has been shown the carriage of a wide range of relevant
-lactamases, including those related to ESBL and carbapenemases, according to the
phenotypes of the selected isolates.

On the other hand, this study found high MICs in isolates of both bacterial species
for e-PL, with the majority of P. aeruginosa and K. pneumoniae isolates having a MIC value
of 32 ug/mL. These MIC values suggest that these bacteria require relatively high con-
centration of e-PL compound to be inhibited under the studied conditions, emphasizing
the need for preliminary screening and/or optimization of the polymer, considering the
specificity of the intended application. Despite these values, it is important to note that
this natural polymer is highly customizable, demonstrating broad efficacy, low toxicity,
and a low probability of leading to the development of resistant strains. In the context
of this work and considering these properties, new multidisciplinary research efforts are
prompted to enhance its efficacy against P. aeruginosa and K. pneumoniae and to leverage its
clinical application.
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