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Abstract. Leaf area index (LAI) is a crucial parameter for characterizing vegetation canopy structure and en-
ergy absorption capacity. The Moderate Resolution Imaging Spectroradiometer (MODIS) LAI has played a
significant role in landmark studies due to its clear theoretical basis, extensive historical time series, extensive
validation results, and open accessibility. However, MODIS LAI retrievals are calculated independently for each
pixel and a specific day, resulting in high noise levels in the time series and limiting its applications in the regions
of optical remote sensing. Reprocessing MODIS LAI predominantly relies on temporal information to achieve
smoother LAI profiles with little use of spatial information and may easily ignore genuine LAI anomalies. To
address these problems, we designed the spatiotemporal information compositing algorithm (STICA) for the
reprocessing of MODIS LAI products. This method integrates information from multiple dimensions, including
pixel quality information, spatiotemporal correlation, and the original retrieval, thereby enabling both “repro-
cessing” and “value-added data” with respect to the existing MODIS LAI products, leading to the development
of the high-quality LAI (HiQ-LAI) dataset. Compared with ground measurements, HiQ-LAI shows better per-
formance than the original MODIS product with a root-mean-square error (RMSE) or bias decrease from 0.87
or −0.17 to 0.78 or −0.06, respectively. This is due to the improvement of HiQ-LAI with respect to capturing
the seasonality in vegetation phenology and reducing abnormal time-series fluctuations. The time-series stability
(TSS) index, which represents temporal stability, indicated that the area with smooth LAI time series expanded
from 31.8 % (MODIS) to 78.8 % (HiQ) globally, and this improvement is more obvious in equatorial regions
where optical remote sensing cannot usually achieve good performance. We found that HiQ-LAI demonstrates
superior continuity and consistency compared with raw MODIS LAI from both spatial and temporal perspec-
tives. We anticipate that the global HiQ-LAI time series, generated using the STICA procedure on the Google
Earth Engine (GEE) platform, will substantially enhance support for diverse global LAI time-series applications.

Published by Copernicus Publications.
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The 5 km 8 d HiQ-LAI datasets from 2000 to 2022 are available at https://doi.org/10.5281/zenodo.8296768 (Yan
et al., 2023).

1 Introduction

In recent years, the monitoring and assessment of vegetation
parameters have gained increasing importance in the con-
text of global climate change and the emphasis on ecosys-
tem functions (Fang et al., 2019). Leaf area index (LAI),
which is a basic parameter affecting the processes of plant
water balance, radiation absorption, and photosynthetic ac-
tivity (Knyazikhin et al., 1998; P. J. Sellers et al., 1997;
Fang et al., 2019), is commonly defined as the one-sided
green leaf area per unit ground horizontal surface area of
broadleaf canopies and as the projected needle area of conif-
erous canopies (Chen and Black, 1992). LAI plays a cru-
cial role in vegetation monitoring, agricultural management,
and ecological modeling (Richardson et al., 2013; Zhu et al.,
2016; De Wit et al., 2012). With advancements in remote-
sensing technology (e.g., large-scale and continuous obser-
vation) and improved data acquisition capabilities, LAI esti-
mation and spatiotemporal dynamic monitoring have become
more accurate and comprehensive (Fang et al., 2019; Gan-
guly et al., 2010).

Among the various LAI time-series products with global
coverage, the Moderate Resolution Imaging Spectroradiome-
ter (MODIS) LAI product has been among the most exten-
sively utilized LAI datasets. MODIS LAI offers clear theo-
retical foundations, extensive historical time series, satisfac-
tory validation result outcomes, and an open-access policy
(Yan et al., 2016b, 2021a). Additionally, it does not rely on
other LAI products as input data, ensuring complete inde-
pendence (Myneni et al., 2002). It is often utilized as a train-
ing dataset for other products (Baret et al., 2013; Ma and
Liang, 2022) and as reference data for comparison (Xiao et
al., 2013; Yan et al., 2016b). The long-time-series MODIS
LAI dataset has made significant contributions to landmark
studies on the “Greening the Earth” phenomena, the possible
causes of large-scale vegetation dynamics, and the relation-
ship between vegetation dynamics and global climate change
or human activities (Mao et al., 2013; Chen and Dirmeyer,
2016; Zhu et al., 2016; Chen et al., 2019). From this perspec-
tive, the high quality of the MODIS LAI product is of the
utmost importance.

The MODIS LAI operational algorithms comprise the
main algorithm based on the three-dimensional radiative
transfer theory and a backup algorithm based on the empir-
ical relationship between the normalized difference vegeta-
tion index (NDVI) and canopy LAI (Myneni et al., 2002; Pu
et al., 2020; Yan et al., 2018). The main algorithm utilizes
a look-up table (LUT) inversion strategy and introduces the
biome classification map as prior knowledge to reduce un-

certainties associated with ill-posed inversion problems. By
modeling the photon transfer process, the surface spectral
bidirectional reflectance factors (BRFs) are linked to struc-
tural and spectral parameters of the vegetation canopy and
soil. Based on atmospherically corrected BRFs and their un-
certainties, the algorithm identifies candidate LAIs by com-
paring observed and modeled BRFs stored in biome-specific
LUTs (Knyazikhin et al., 1998; Knyazikhin, 1999). When the
uncertainty of the input BRFs falls within a point on the red
NIR plane and an area, all canopy or soil patterns are con-
sidered as the candidate solutions, and the mean LAI values
of these solutions are used as the output values of the main
algorithm. The backup algorithm is triggered when the main
algorithm fails, such as when the uncertainty of input BRFs
exceeds a threshold or when there are inaccuracies in BRF
simulation due to deficiencies in the radiative transfer model.
The best retrievals are then selected using the temporal com-
positing method, and the 4 d or 8 d product is generated from
the daily retrievals. Therefore, MODIS LAI retrievals are cal-
culated independently for each pixel and day. Differences
in adjacent observational conditions lead to significant un-
certainty in the LAI time series. Specifically, atmospheric
conditions (e.g., cloud cover, snow, and aerosol pollution),
sensor malfunctions, and the inherent uncertainties in the re-
trieval algorithm all introduce challenges, resulting in poor
spatiotemporal consistency and high noise in MODIS LAI
products (Brown et al., 2020; Fuster et al., 2020; Yan et al.,
2021b). Consequently, inconsistency and excessive noise im-
pose limitations on its practical applications in research in-
volving yield estimation, crop growth monitoring, terrestrial
carbon monitoring, and global ecosystem dynamic simula-
tion (Li et al., 2017; Xiao et al., 2009; Chen et al., 2020).

Many methods have been proposed to reprocess MODIS
LAI products (ranging from Collection 4, C4, to Collec-
tion 6, C6) to improve their quality. A pressing need ex-
ists for continuous, high-quality, and easily accessible LAI
datasets to better facilitate investigations in land surface pro-
cess simulation, climate modeling, and global change re-
search. Fang et al. (2006) proposed a spatiotemporal filter-
ing (TSF) method that integrates the multi-seasonal aver-
age trend (background) and seasonal observations to gen-
erate spatially and temporally continuous MODIS LAI C4
products for the North American region to fill in and im-
prove the gaps and poor quality values caused by cloud
cover, seasonal snow cover, and instrument problems. Gao
et al. (2008) utilized TIMESAT to process the MODIS LAI
C4 product, aiming to fit the LAI time-series profile by in-
corporating sufficient high-quality data and replacing low-
quality or missing observations, thereby obtaining a high-
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quality, spatiotemporally continuous LAI time series for the
North American region to produce temporally smoothed and
spatially continuous biophysical data for the North Ameri-
can Carbon Program. Aiming to generate a continuous in-
put dataset for global climate models, Yuan et al. (2011) im-
proved the Fang et al. (2006) method and proposed the mod-
ified TSF (mTSF) method to conduct simple data assimila-
tion for relatively low-quality data and used post-processing
TIMESAT and Savitzky–Golay (SG)filtering to obtain the fi-
nal improved MODIS LAI C5 product. Recently, Hua Yuan’s
group (Lin et al., 2023) reprocessed MODIS LAI C6 prod-
ucts using a similar procedure. While these methods effec-
tively utilize temporal and QC layer information, they fre-
quently overlook the utilization of spatial information or rely
on spatial correlation as an alternative and place a greater
emphasis on leveraging temporal information. Consequently,
although the LAI profile may appear smoother, genuine land
surface LAI anomalies (e.g., caused by forests fire) may be
artificially removed.

To address this issue, we proposed a spatiotemporal infor-
mation compositing algorithm (STICA) in a previous study
(Wang et al., 2023). This algorithm directly introduces prior
multiple quality assessment (MQA) information and spa-
tiotemporal correlation information into the MODIS LAI
C6.1 product. Firstly, we carefully assessed the quality of
MODIS LAI retrievals to obtain MQA information. Sub-
sequently, the quality, spatiotemporal information, and rel-
ative original observational records are fully utilized, and
these pieces of information are weighted and averaged ac-
cording to our fusion strategy. More robust results are ob-
tained by considering multiple dimensions of information to
compensate for the limitations of using a single information
source and by preserving LAI anomalies that are as realistic
as possible. The advantages of our approach are as follows:
(1) ensure consistency with existing MODIS LAI products
while preserving the unique benefits of MODIS that maintain
the original physics-based (radiative transfer model, RTM)
production process; (2) leveraging pixel quality information
to improve MODIS LAI retrievals with poor quality, facil-
itating the reprocessing and value-added data of the exist-
ing product. We anticipate that the high-quality LAI (HiQ-
LAI) product effectively addresses regions with quality is-
sues while maintaining good consistency with the original
MODIS product, holding significant implications for the de-
velopment of other LAI/FPAR (fraction of photosyntheti-
cally active radiation absorbed by vegetation) products.

We implemented the entire algorithm process using the
Google Earth Engine (GEE) cloud computing platform
(Gorelick et al., 2017) to reprocess MODIS C6.1 LAI, re-
sulting in the production of the HiQ-LAI dataset covering the
years from 2000 to 2022 on a global scale. The accuracy of
HiQ-LAI was evaluated through ground-based validation and
compared with MODIS LAI at a global scale and across dif-
ferent biome types. The temporal consistency and trends of
global LAI products were analyzed, with in-depth compara-

tive assessments conducted for regions exhibiting significant
quality issues.

2 Materials

2.1 MODIS Land Cover map: MCD12Q1

The biome classification map serves as an auxiliary dataset
for MODIS LAI, primarily aimed at reducing uncertainty in
the retrieval algorithm. In the MODIS retrieval algorithm,
parameters are configured based on the biome classifica-
tion map to establish an accurate relationship between satel-
lite observations and ground parameters (Knyazikhin, 1999).
The MODIS Land Cover Type product (MCD12Q1) pro-
vides global land cover maps at annual time steps and a
500 m spatial resolution from 2001 to the present. The prod-
uct was created using supervised classification of MODIS re-
flectance data for a total of 13 scientific datasets. MCD12Q1
adopts an LAI legacy classification scheme, including B1
(grass and cereal crops), B2 (shrubs), B3 (broadleaf crops),
B4 (savanna), B5 (evergreen broadleaf forest, EBF), B6 (de-
ciduous broadleaf forest, DBF), B7: (evergreen coniferous
forest, ENF), and B8 (deciduous coniferous forest, DNF)
(Yan et al., 2016a; Sulla-Menashe and Friedl, 2018). Figure 1
illustrates the approximate global distribution of biome types
based on the land cover in 2021.

2.2 MODIS LAI/FPAR product: MOD15A2H

The standard MODIS LAI C6.1 product suite (MOD15A2H)
offers global coverage with an 8 d temporal resolution and
a 500 m spatial resolution (Yan et al., 2016a) spanning from
February 2000 to the present. Typically, there are 46 com-
posites per year, but some composites may be missing due
to factors such as sensor issues or other anomalies (e.g.,
in 2001, 2016, and 2022). This LAI product is projected
onto a sinusoidal grid and distributed as a standard Hierar-
chical Data Format (HDF) file. Each file contains six sci-
ence datasets (SDSs): fraction of photosynthetically active
radiation absorbed by vegetation (FPAR), LAI, FparLai_QC,
FparExtra_QC, FparStdDev, and LaiStdDev. The LAI, Fpar-
Lai_QC, and LaiStdDev layers store the LAI retrieval, qual-
ity control information, and retrieval uncertainty, respec-
tively (Knyazikhin et al., 1998; Yan et al., 2016a; Myneni,
2020). Therefore, for this study, we utilized these three SDSs.

2.3 Ground LAI reference

With the increasing availability of Earth observation prod-
ucts, increasing attention has been paid to the product un-
certainty assessed by verification based on ground measure-
ments (Baret et al., 2006; Fang et al., 2012; Wenze et al.,
2006). To evaluate the performance of the HiQ-LAI product,
we utilized the Copernicus Ground-Based Observations for
Validation (GBOV) LAI, DIRECT 2.1 LAI, and the BEnch-
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Figure 1. Geographical distribution of the selected sites. The background color indicates the biome types of the 2021 MCD12Q1 classifica-
tion scheme. The maroon hexagons, yellow triangles, purple dots, and red frame represent the GBOV sites, DIRECT 2.1 sites, BELMANIP
2.1 sites, and equatorial regions, respectively.

mark Land Multisite ANalysis and Intercomparison of Prod-
ucts 2.1 (BELMANIP 2.1) as ground site references (Bai et
al., 2019; Baret et al., 2006; Morisette et al., 2006).

2.3.1 GBOV

The GBOV service, which is part of the Copernicus Global
Land Service (CGLS), is dedicated to the development and
distribution of robust in situ datasets from various ground
monitoring sites for the systematic and quantitative valida-
tion of land products (Bai et al., 2019; Brown et al., 2020). A
comprehensive GBOV reference measurement database has
been established through quality control and reprocessing of
raw measurements obtained from existing in situ sites. This
database includes canopy reflectance, surface albedo, LAI,
FPAR, cover area, 5 cm soil moisture, and surface temper-
ature. Currently, 29 available sites provide LAI references
from 2013 to 2022. The data from this database are freely
accessible to the scientific community through the GBOV
portal (https://gbov.acri.fr, last access: 20 April 2023). In this
study, we used the Land Products 3 (LP-3) leaf area index as
the reference LAI.

2.3.2 DIRECT V2.1

We also employed the DIRECT V2.1 ground measure-
ment reference to validate satellite-based products. This
validation dataset was curated from a collection of sites
that followed the Committee on Earth Observation Satel-
lites (CEOS) Working Group on Calibration and Validation
(WGCV) Land Product Validation (LPV) guidelines for col-

lecting and processing ground survey data (Morisette et al.,
2006; Garrigues et al., 2008). Mean values of LAI, the maxi-
mum fraction of photosynthetically active radiation absorbed
by vegetation (FPAR), and vegetation cover (FCover) over
a 3 km× 3 km area were compiled from the DIRECT V2.1
database. According to the CEOS WGCV LPV LAI good
practices (Fernandes et al., 2014), the ground data were up-
scaled using an empirical “transfer function” between high-
spatial-resolution radiation data and biophysical measure-
ments to appropriately account for the spatial heterogeneity
of the site. The DIRECT V2.1 database constitutes a major
effort of the international community to provide ground ref-
erences for the validation of LAI and FPAR Essential Cli-
mate Variables (ECVs). It currently encompasses 176 sites
across seven major biome types around the world, with
280 LAI values, 128 FPAR values, and 122 FCover values
spanning from 2000 to 2021 (https://calvalportal.ceos.org/
lpv-direct-v2.1, last access: 21 March 2024).

2.4 BELMANIP V2.1

The BELMANIP site network was designed to represent the
global variability in vegetation types and climatological con-
ditions, independent of ground-based experimental measure-
ments (Baret et al., 2006). The network primarily incorpo-
rates sites from existing experimental networks (FLUXNET,
AERONET, VALERI, BigFoot, etc.) supplemented by sites
from the Global Land Cover 2000 (GLC2000) land cover
map. The BELMANIP V2.1 that we used was constructed
using the GlobCover vegetation land cover map derived from
Medium Resolution Imaging Spectrometer (MERIS) images
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in 2009. Site selection was conducted for each band of lati-
tude (10° width), ensuring that the selected sites represented
the same proportion of biome types as the entire latitude
band. These sites are characterized by a uniform and nearly
flat topography within a 10 km× 10 km area, with a min-
imum proportion of urban areas and permanent waterbod-
ies. The updated BELMANIP V2.1 dataset (Fig. 1) added 25
sites corresponding to bare land (desert) and tropical forests,
resulting in a total of 445 sites (https://calvalportal.ceos.org/
web/olive/site-description, last access: 21 March 2024). It is
important to note that most of these sites do not have ground
reference measurements. Consequently, the network is pri-
marily used for comparative analysis among sites rather than
direct validation.

3 Method

3.1 Proposed spatiotemporal information compositing
algorithm

We proposed a spatiotemporal information composition al-
gorithm (STICA) aimed at reducing noise fluctuations and
improving the overall quality of the MODIS LAI product.
This algorithm directly incorporates the prior spatiotempo-
ral correlation information and multiple quality assessment
(MQA) information into the existing MODIS LAI product.
The detailed algorithmic process can be found in the article
published by Wang et al. (2023). The algorithm consists of
four main steps: multiple quality assessment, employing spa-
tial correlation information, employing temporal correlation
information, and multiple information compositing.

Satellite remote-sensing observations are often subject to
uncertainties arising from climatic factors, sensor malfunc-
tions, and other sources, resulting in varying levels of un-
certainty for individual pixels. To address this issue, this ap-
proach employed multiple indicators to evaluate the uncer-
tainty for each pixel (referred to as MQA hereafter). These
indicators encompass the algorithm path, LAI standard devi-
ation (SD), and relative time-series stability (TSS). The al-
gorithm path (AP) is a crucial quality index, distinguishing
between the main and backup algorithms. The main algo-
rithm offers superior quality and precision retrieval, and the
weight ratio of the main algorithm and backup algorithm has
been determined as 6 : 4 in a previous study (Wang et al.,
2023). The LAI SD reflects the retrieval uncertainty. The AP
and LAI SD are derived from the FparLai_QC and LaiStd-
Dev layers of the original MODIS data. The third indicator,
relative TSS (RE-TSS), indicates the fluctuation in a time se-
ries (Zou et al., 2022). Following the principle of assigning
a higher weight to smaller values, the LAI SD and RE-TSS
are incorporated into the retrieval with the main algorithm,
resulting in the generation of a new quality classification in-
dicator, the MQA. Subsequently, the inverse distance weight-
ing (IDW) method is utilized on the spatial scale to calculate
the weighted average of all eligible pixels (belonging to the

same land cover type) within the half-width of four pixels
and the power exponent of 2 (Wang et al., 2023) of the target
pixel. In this algorithm, the contribution of a pixel is deter-
mined not only by its spatial distance but also by its MQA
value. In a word, pixels with closer proximity and a higher
MQA value make a more significant contribution to the target
pixel. On the temporal scale, the simple exponential smooth-
ing (SES) method is employed to calculate the weighted av-
erage of all eligible pixels within the smoothing parameter of
0.5 and the half-length of 3 (Wang et al., 2023). Pixels that
are closer in time to the target pixel and possess higher MQA
values are assigned greater weights. Utilizing spatial/tempo-
ral correlation is based on spatial and temporal autocorrela-
tion, i.e., everything is related to everything else, but near
things are more related than distant things. The final step of
the algorithm is to take a weighted average of the original
MODIS LAI and the LAI calculated using spatial/temporal
correlation, with their respective weights quantified using an
indicator (TSS) that represents the temporal fluctuation in the
time series (Zou et al., 2022). All processes of the method
are implemented using the GEE cloud computing platform.
The reprocessed LAI dataset, namely the HiQ-LAI product,
has been generated with the help of the powerful cloud com-
puting capability of GEE, covering the period from 2000 to
2022.

3.2 Assessment of LAI datasets

In this study, we utilized the GBOV LAI measurements from
a total of 29 sites spanning from 2013 to 2021 as our ground
reference LAI (Bai et al., 2019; Brown et al., 2020). A
3 km× 3 km square centered on the site location was selected
as the study area (Fig. 1) so that the corresponding LAI prod-
uct of each site was 36 (6× 6) pixels. To enhance the credi-
bility of the ground truth LAI, we filtered the ground LAI ref-
erence of these 29 sites based on the criterion that the “effec-
tive pixel” exceeded 90 % and the input and output of the land
product value in the data aggregation process were within the
specified range. This filtering process yielded a total of 818
reliable verification data points. Contrary to previous stud-
ies (Wang et al., 2023) that utilized only 2018 data from the
GBOV site as a reference, this study expanded the timeline
from 2013 to 2021, increased the number of sites from 24
to 29, and raised the criterion for effective pixels from 80 %
to 90 %. These modifications were aimed at enhancing the
reliability of the ground LAI data. Additionally, previous re-
search focused on proposing and testing algorithms mainly at
the tile scale, but this study migrated the algorithm to GEE to
generate global long-term data series. Furthermore, the scope
of analysis was also broadened to a global spatial scale and
long-term time series. A comparative analysis was conducted
at the spatial scale to examine the global spatial distribution
of the LAI in February and July 2021. The mean LAI values
for latitude bands were then calculated at 1° intervals during
these specific months. Furthermore, we compared the global
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consistency of MODIS LAI and HiQ-LAI in 2021 using the
BELMANIP V2.1 sites (445 in total) (Baret et al., 2006).
Employing these sites not only reduced the computational
burden at a global scale but also mitigated additional un-
certainties arising from geometric registration bias and land
cover misclassification. Similar to the GBOV, we selected a
study area of 6 pixels× 6 pixels centered on each site lo-
cation (Fig. 1). The MCD12Q1 data in 2021 were utilized
to determine the biome type of each site, which was further
classified into pure pixels and hybrid pixels based on B1–
B7. The total number of data available for comparison was
16 420. Additionally, we used DIRECT V2.1 ground mea-
surements in this research (Morisette et al., 2006; Garrigues
et al., 2008). However, these data were not utilized for direct
validation due to the discontinuity in the observed time se-
ries at these sites. Instead, the DIRECT V2.1 sites provided
valuable reference values in Sect. 5.2. Similarly, a research
area of 6 pixels× 6 pixels was selected for each site, and we
compared the R2 and RMSE of the two products with sites
across different quality grades. The analysis involved deter-
mining the RMSE reduction percentage and R2 increase in
the percentage of HiQ-LAI relative to MODIS under various
quality grades.

In this study, the Theil–Sen slope (TS) method and Mann–
Kendall (MK) test (Suhartati, 2013; Theil, 1992) were em-
ployed to extract LAI trends from the two products. The TS
method computes pairwise slopes across the study period,
with the median slope representing the sign and magnitude
of the long-term trend. Unlike ordinary least-squares linear
regression, the TS trend is less susceptible to the influence of
outliers. Meanwhile, the MK test is utilized to determine the
significance of the trend (Kendall, 1948). The combination
of TS and MK forms a robust approach for identifying trends
in long-term sequential data. TS and MK are calculated as
follows:

TS=median
(
Xj −Xi

j − i

)
, 2000≤ i < j ≤ 2022, (1)

where Xj and Xi represent the LAI value of year j and year
i, respectively. Here, TS> 0 indicates an increasing trend,
whereas TS≤ 0 indicates a decreasing trend. Following this,
the MK test was applied to assess the annual mean trends for
MODIS LAI and HiQ-LAI from 2000 to 2022, ensuring the
statistical significance of the identified trends.

S =

n−1∑
i=1

n∑
j=i+1

sgn
(
xj − xi

)
, (2)

Var(S)=
n (n− 1)(2n+ 5)−

m∑
i=1
ti (ti − 1)(2ti + 5)

18
, (3)

Zs =


S−1
√

Var(S)
, if S > 0

0, if S = 0
S+1
√

Var(S)
, if S < 0.

(4)

Here, S represents the sum of step function values ob-
tained from the differences between any two distinct points
within the time series, n signifies the total number of data
points, m indicates the count of continuous groups in the
data (duplicate dataset), and ti refers to the associated count
(the number of repetitions in the ith range). Ultimately, we
calculate the test statistic Zs, when |Zs|> Z1−α/2 means re-
ject the null hypothesis (i.e., the absence of a trend), with
α representing the significance level. In our analysis, we
set α = 0.05, with Z1−α/2 = 1.96 (indicating significance at
90 % and 95 % confidence levels when equal to 1.65 or 1.96,
respectively).

The definition of TSS as follows:

TSS(t)=∣∣∣∣ (X (tn+1)−X (tn−1))× tn−X (tn)× (tn+1− tn−1)−
(X (tn+1)−X (tn−1))× tn−1+X (tn−1)× (tn+1− tn−1)

∣∣∣∣√
(X (tn+1)−X (tn−1))2

− (tn+1− tn−1)2
, (5)

where X(tn), X (tn+1), and X (tn−1) represent the LAI value
at target moment t , the adjacent time-series data obtained
at the previous moment, and the next moment, respectively.
TSS denotes the deviation of a value at a given point in time
from the linear interpolation line. In this study, higher TSS
values indicate greater variability over time.

4 Results and discussion

4.1 Validation based on ground LAI reference

Figure 2 depicts the validation results obtained from GBOV
ground reference LAI, highlighting the superior performance
of HiQ-LAI compared with MODIS LAI. From MODIS LAI
to HiQ-LAI, the R2 increases from 0.69 to 0.71, the RMSE
decreases from 0.87 to 0.78, the relative RMSE (RRMSE)
decreases from 26.63 % to 24.04 %, and the bias shifts from
−0.17 to −0.06. Notably, the fitted line of MODIS LAI de-
viated more prominently from the 1 : 1 line compared with
HiQ-LAI, indicating that HiQ-LAI exhibits higher accuracy
with the ground reference LAI. The two methods had neg-
ligible differences in LAI performance in terms of the pure-
grassland and mixed-grass biome types. However, MODIS
LAI exhibited a substantial overestimation for the pure-forest
type (Fig. 2, triangles). Incorporating data quality informa-
tion (MQA), we observed a correspondence between high
LAI values and low MQA values, and the majority of pure-
forest and mixed-forest sites show the phenomenon of low
MQA values. In contrast, the mixed savannas and forest
biomes (Fig. 2, pentagrams) displayed an underestimation
in MODIS LAI. Furthermore, MODIS LAI exhibited notice-
able abnormal retrieval values (Fig. 2, red pentagrams in the
upper left-hand corner), whereas HiQ-LAI effectively miti-
gated these issues. Comparing the LAI difference distribu-
tion among various vegetation types (Fig. 3) revealed that
HiQ-LAI exhibited a tighter concentration around the zero
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Figure 2. Scatterplots comparing MODIS LAI (a) and HiQ-LAI (b) with the GBOV LAI reference (29 sites and 818 measurements). Symbol
colors correspond to MQA values from 4 (poor) to 10 (good), and the shape of characters represents different biome types.

Figure 3. Accuracy comparison between two products and GBOV LAI under different vegetation types. The numbers at the top represent
the RMSE between the two respective products and the GBOV LAI reference.

value, resulting in a decreased RMSE across most categories,
except for the third biome type (grasses and shrubs). Mixed
savannas and forests emerged as the vegetation types with the
widest MODIS LAI difference range. The enhanced HiQ-
LAI notably narrowed this distribution range, although the
median and mean deviated further from zero. Notably, the
two biome types exhibiting the most conspicuous changes in
difference distribution were pure forest and mixed crops and
savannas. The verification analysis (Fig. 4), comparing both
products against GBOV LAI references across different sea-
sons, demonstrated that HiQ-LAI had superior performance
over MODIS LAI throughout all four seasons and also out-
performed the ground references. Analyzing the LAI density
distribution revealed that MODIS LAI (Fig. 4, green) skewed
towards higher values on the right-hand side compared with
HiQ-LAI (Fig. 4, black). This indicated that MODIS LAI
predominantly occupied high-value areas. Furthermore, the

RMSE and RRMSE of HiQ-LAI are always smaller than
those of MODIS LAI.

The LAI curve should exhibit stable annual and seasonal
fluctuations in response to seasonal changes. Nevertheless,
various factors such as harsh atmospheric conditions, sen-
sor hardware issues, and other technical challenges introduce
significant discrepancies between adjacent time windows of
MODIS LAI observations (Garrigues et al., 2008), leading to
abnormal fluctuations in the LAI time-series profiles. As de-
picted in the LAI time-series comparison diagram (Fig. 5 and
Fig. S1 in the Supplement), HiQ-LAI demonstrates improved
quality for different vegetation types. The time-series curves
generated by HiQ-LAI exhibit reduced abnormal fluctuations
and better alignment with expected phenological patterns
compared with the original MODIS LAI. Notably, the RMSE
values of all sites (totaling 29, as shown in Table 1 and Figs. 5
and S1) exhibit varying degrees of reduction, except for the
DSNY, JERC, JORN, and SERC sites. Four sites (MOAB,
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Figure 4. Scatterplot distribution comparison of MODIS LAI (green) and HiQ-LAI (black) with the GBOV LAI reference in different sea-
sons. Northern spring, summer, autumn, and winter include the months of March–May, June–August, September–November, and December–
February, respectively.

STER, VASN, and WOMB) were excluded from calculating
correlation coefficients due to the unavailability of validation
data after filtering. Note that, as in situ measurements may be
sensitive to all elements of the canopy, the resulting estimate
should technically be referred to as the plant area index (PAI)
(Brown et al., 2021). Studies have demonstrated that the PAI
may overestimate LAI by as much as 61 % in certain sce-
narios (Brown et al., 2021). Considering this, Figs. 2, 5, and
S1 illustrate that MODIS overestimates the LAI of forests to
some extent, which is a finding consistent with prior research
(Yan et al., 2016b, 2021a). However, HiQ-LAI corrects this
overestimation to a certain degree.

4.2 Comparison of global spatial distribution

Figure 6 displays the 5 km spatial distribution of global
MODIS LAI and HiQ-LAI for February and July. Over-
all, the two products demonstrate comparable spatial pat-
terns across global regions. However, notable distinctions are
shown in February, particularly in the Amazon rainforest re-

gion of South America. The mean LAI latitudinal profile for
both products shows remarkable similarity, indicating con-
sistent overall performance. Nevertheless, it is worth noting
that the standard deviation of HiQ-LAI (green shading in
Fig. 6c1 and c2) consistently falls within the range of the
standard deviation of MODIS LAI (red shading in Fig. 6c1
and c2). This suggests that HiQ-LAI exhibits more stability
at a global scale, indirectly implying superior data quality
and enhanced stability compared with MODIS LAI.

4.3 Biome-specific comparison at a global scale

To further assess the performance of HiQ-LAI across dif-
ferent biome types, we extracted MODIS LAI and HiQ-LAI
values from the BELMANIP V2.1 sites. A scatterplot (Fig. 7)
was constructed based on the biome type to evaluate the con-
sistency between the two products. The results demonstrate
that, except for B5, the R2 for other monocultural vegetation
types exceeds 0.88, and B1 and B3 surpassed 0.95. The con-
sistency of mixed pixels is also relatively high, as indicated
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Table 1. Comparison of MODIS LAI and HiQ-LAI over GBOV sites.

Biome type Site M_RMSE∗ H_RMSE∗ M_R2∗ H_R2∗ M_RRMSE (%)∗ H_RRMSE (%)∗ M_Bias∗ H_Bias∗

Grasslands CPER 0.44 0.40 0.21 0.22 75.90 69.32 −0.39 −0.37
KONA 1.26 1.19 0.47 0.68 102.32 96.31 −1.20 −1.16
MOAB – – – – – – – –
ONAQ 0.31 0.29 0.06 0.04 95.57 90.81 −0.20 −0.19
SRER 0.21 0.21 0.84 0.86 45.16 44.94 −0.11 −0.05
STER – – – – – – – –
WOOD 1.29 1.19 0.55 0.66 110.19 102.07 −1.24 −1.15

Forests HARV 0.82 0.53 0.72 0.83 19.37 12.41 −0.24 −0.15
TALL 1.29 1.14 0.77 0.81 38.72 34.10 −1.08 −0.96
TUMB 1.33 1.31 0.94 0.95 77.58 76.23 −1.19 −1.19

Grasses and shrubs JORN 0.06 0.16 1.00 1.00 14.95 35.91 −0.03 0.01
VASN – – – – – – – –

Crops and savannas BLAN 0.53 0.34 0.41 0.71 36.72 23.76 −0.44 −0.31
LAJA 0.32 0.17 0.99 0.20 25.31 13.42 −0.24 −0.13

Grasses and savannas GUAN 0.72 0.49 0.36 0.43 22.23 15.13 −0.59 −0.33
JERC 0.72 0.80 0.70 0.81 24.69 27.42 0.61 0.76
LITC 0.85 0.68 0.58 0.66 149.71 120.21 −0.83 −0.66
NIWO 0.49 0.31 0.68 0.64 66.89 42.19 −0.47 −0.30

Savannas and forests BART 0.75 0.46 0.80 0.89 19.60 11.87 −0.14 0.06
DELA 1.16 1.10 0.05 0.03 26.67 25.17 0.42 0.91
DSNY 0.76 0.89 0.75 0.86 30.34 35.54 0.75 0.89
HAIN 1.11 0.45 0.50 0.88 24.83 10.16 0.16 0.21
ORNL 0.73 0.68 0.44 0.55 18.50 17.05 −0.02 0.39
OSBS 0.45 0.42 0.85 0.74 18.44 17.24 0.20 0.30
SCBI 1.05 0.81 0.52 0.78 23.00 17.67 0.41 0.54
SERC 0.84 1.38 0.83 0.80 18.85 30.92 0.75 1.31
STEI 0.75 0.65 0.54 0.67 18.17 15.81 −0.20 0.42
UNDE 0.42 0.28 0.03 0.47 9.50 6.40 0.07 0.14
WOMB – – – – – – – –

∗ The metrics listed in the table are as follows: M_RMSE represents the RMSE between MODIS LAI and GBOV LAI; H_RMSE denotes the RMSE between HiQ-LAI and GBOV LAI; M_R2 and
H_R2 represent the R2 of MODIS LAI and HiQ-LAI, respectively; M_RRMSE and H_RRMSE represent the relative RMSE of MODIS LAI and HiQ-LAI, respectively; and M_Bias and H_Bias
represent the bias of MODIS LAI and HiQ-LAI, respectively.

by an RMSE of 0.42 and anR2 of 0.86. However, B5 exhibits
a significant disparity, with an R2 value of 0.15. The biome
of B5 is primarily grown in the Amazon rainforest region of
South America, Indonesia, and central Africa (Fig. 1). These
regions are affected by the long-term influence of thick cloud
cover, a high concentration of aerosol, and a saturation of red
NIR, resulting in the limited availability of high-quality ob-
servation data and the poor accuracy of the LAI retrieval (Xu
et al., 2018; Yan et al., 2016b). Consequently, it can be in-
ferred that HiQ-LAI and MODIS LAI are consistent in most
areas (different vegetation types) but inconsistent in local ar-
eas that suffer from quality issues.

Furthermore, we conducted a histogram of the numeri-
cal distribution (Fig. 8) of the two products under differ-
ent vegetation types globally in 2021 by season. A similar
phenomenon can be found in Fig. 7, with the most notable
discrepancies observed in the numerical distribution of type
B5. Moreover, substantial differences were noted across var-
ious seasons for B5, and the red vertical line representing
the mean of MODIS LAI is consistently positioned to the

left of the green vertical line representing the mean of HiQ-
LAI. The distribution of the B1–B4 biomes remained highly
consistent throughout different seasons with minimal vari-
ation. Conversely, the B6–B8 biomes displayed differences
in the numerical distribution between spring and summer,
demonstrating an opposite trend. In spring, the mean value
of MODIS LAI (red vertical line) was consistently higher
than that of HiQ-LAI (green vertical line), whereas the red
vertical line was always located on the right of the green line
in summer.

4.4 LAI trend comparison

To compare the vegetation change trend between MODIS
LAI and HiQ-LAI products on a global scale, we computed
the LAI mean from 2000 to 2022. By determining the slope
of the time series through the fitting and then utilizing the
Mann–Kendall (MK) test to discern the significance and
monotonicity of trends, we obtained the spatial trend change
map for this period (Fig. 9), revealing regions exhibiting
greening trends (positive slope) or browning trends (negative
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Figure 5. Comparison of LAI time series from 2013 to 2021 at six GBOV sites representing different biome types. The LAI values from
the MODIS C6 product and the newly proposed HiQ-LAI are shown as solid pink and purple lines, respectively. The LAI values from the
ground-based GBOV reference are denoted with green dots.
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Figure 6. Global spatial distribution of the mean MODIS LAI (a1) and HiQ-LAI (a2) values and a latitudinal profile distribution (c1) for
February 2021. Panels (b1), (b2), and (c2) are same as panels (a1), (a2), and (c1), respectively, but for July 2021. In panels (c1) and (c2), the
latitude interval is 1°, and the red and green lines denote MODIS LAI and HiQ-LAI, respectively.

slope) in vegetation. The spatial trend change map provides
valuable insights into the dynamics of vegetation across the
globe. Both products exhibit similar spatial patterns in green-
ing trends, particularly in global hotspots such as China and
India. Similarly, the browning trend is observed in similar
locations in both products. From MODIS to HiQ-LAI, the
proportion of insignificant change increased from 37.03 %
to 39.95 %. The greening trend and browning trend of the
two products were 60.24 % (MODIS) and 56.69 % (HiQ) and
2.73 % (MODIS) and 3.36 % (HiQ), respectively. The slight
difference between the two products is mainly concentrated
in high-latitude areas.

4.5 Improvements in time-series stability

Typically, the LAI exhibits continuous variations throughout
the year without significant fluctuations (Zou et al., 2022).
However, the annual seasonal variation curve of MODIS
LAI shows pronounced abnormal fluctuations (e.g., sudden
increases and decreases). This phenomenon is attributed to
the independent pixel-by-pixel daily inversion process of
MODIS LAI. When affected by atmospheric conditions,
sensor malfunctions, and retrieval algorithm uncertainties,
MODIS LAI experiences poor spatiotemporal consistency
and an accompanying increase in the noise level (Yan et al.,
2021b; Fang et al., 2019). Consequently, it fails to accurately
capture the long-term trend in LAI variations, thereby re-
stricting its application with respect to crop modeling and
prediction (Fang et al., 2011; Ines et al., 2013; Zhuo et

al., 2022), climate change and vegetation dynamics research
(Zheng et al., 2021; Chen et al., 2021), and long-term eco-
logical environment monitoring and assessment (Dhorde and
Patel, 2016; Mariano et al., 2018). From the ground-based di-
rect validation results (Sect. 4.1), it is evident that HiQ-LAI
effectively improves the data quality of the original MODIS
LAI. It reduces apparent error in the raw LAI retrievals and
generates smoother LAI time-series profiles that align better
with expected phenological patterns. However, the GBOV
site data are limited by spatial scale and resources, mak-
ing them insufficient for comparing temporal changes on a
global scale. Therefore, we utilize the TSS (Zou et al., 2022),
a quantifiable metric for time-series stability, to further un-
derstand the temporal stability performance of the two prod-
ucts. HiQ-LAI encompasses abundant smaller TSS pixels
(Fig. 10), particularly in regions near the Equator that are
characterized by the EBF vegetation cover type. The pro-
portion of low TSS values globally increases from 31.8 %
(MODIS) to 78.8 % (HiQ). This confirms that our proposed
HiQ-LAI product substantially improves the stability of time
series compared with the original MODIS LAI, resulting in
an overall enhancement in data quality. This will provide
more reliable data support for the research and applications
of ecology, climatology, land-use planning, and other fields.
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Figure 7. Density scatterplot comparison of MODIS LAI and HiQ-LAI in 2021 using the BELMANIP V2.1 sites (445 sites) for (B1) grass
and cereal crops, (B2) shrubs, (B3) broadleaf crops, (B4) savanna, (B5) evergreen broadleaf forest, (B6) deciduous broadleaf forest, (B7) ev-
ergreen coniferous forest, and (B8) deciduous coniferous forest.

4.6 Relationship between improvement and raw data
quality

Ground verification also reveals a consistent pattern between
low MQA values and high LAI retrievals. Regions with high
LAI values are mainly observed in tropical regions where
there is greater cloud cover and aerosol load, causing signal
saturation (Yan et al., 2016b; Samanta et al., 2012a). In the
first step of our algorithm, pixel quality is assessed based on
the algorithm path and LAI standard deviation of the main al-
gorithm, where the saturation phenomenon reduces the MQA
value. Thus, this phenomenon can be attributed to the over-
estimation of MODIS LAI retrievals due to signal satura-
tion (Heiskanen et al., 2012). Moreover, other studies have
confirmed that the main algorithm’s saturation tends to yield
higher MODIS LAI (Yuan et al., 2011; Lin et al., 2023). We
graded pixels according to the MQA value (Fig. 11) and ob-
served that the improvement effect on LAI retrievals became
more pronounced as the quality level decreased. In the poor-
quality level, HiQ-LAI exhibited a 17.81 % increase in the
R2 and an 18.99 % reduction in the RMSE compared with
MODIS LAI. However, the RMSE only decreased by 2.11 %

in the good-quality level. HiQ-LAI substantially enhances
the quality of LAI retrievals affected by observational con-
ditions and inversion algorithms while maintaining the same
pixels with good quality in the original MODIS LAI. This
highlights the effectiveness of our proposed algorithm with
respect to improving the spatiotemporal consistency of LAI
products.

4.7 Detailed analysis in equatorial regions

Due to the long-term effects of extensive cloud cover con-
tamination, high aerosols, and dense vegetation saturation,
the availability of high-quality observation data from optical
remote sensing in tropical regions is severely limited (Huete
et al., 2002; Yuan et al., 2011; Xu et al., 2018). Among these
regions, the Amazon forests, in particular, have a significant
impact on global climate (Cox et al., 2013; Jimenez et al.,
2018; Guimberteau et al., 2017) and carbon and water cy-
cles (Marengo and Espinoza, 2016; Poulter et al., 2014; Yang
et al., 2018). MODIS LAI retrievals are calculated indepen-
dently pixel-by-pixel and daily. The varying observational
conditions between adjacent time windows introduce more
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Figure 8. The numerical distribution ranges of MODIS LAI and HiQ-LAI for different vegetation types are compared in 2021. Panels (a),
(b), (c), and (d) represent spring, summer, autumn, and winter, respectively. The red and green vertical lines represent the mean value of
MODIS LAI and HiQ-LAI, respectively.

uncertainty, leading to relatively poor consistency in both
temporal and spatial dimensions. Spatial pattern changes
in MODIS LAI in short-term time series (Fig. 13) show
that some higher values suddenly decrease in the next pe-
riod, while some lower values suddenly increase. This phe-
nomenon is unusual in heavily vegetated tropical regions, as
previous studies have concluded that the LAI in Amazon for-
est areas is seasonal (Hashimoto et al., 2021; Samanta et al.,
2012b; Myneni et al., 2007). Correspondingly, regions with
sudden LAI changes exhibit lower MQA values, indicating
that our method effectively identifies retrievals with quality
issues.

The differences between the two products are mainly ob-
served in the Amazon forest regions of South America, In-
donesia, and central Africa. These areas are primarily char-
acterized by the EBF vegetation type (Fig. 1), which aligns
with the differences observed in the biome comparisons
(Figs. 7, 8). The spatial pattern difference between MODIS
LAI (Fig. 12a1) and HiQ-LAI (Fig. 12b1) at an 8 d resolu-
tion is the most pronounced. However, the spatial distribu-
tions of MODIS LAI and HiQ-LAI gradually become con-

sistent as the synthesis period increases (Fig. 12). The 8 d
relative difference (RD) density distribution shows a distinct
peak towards the leftmost side. Nevertheless, the peak flat-
tens out as the synthesis period increases, and the RD be-
comes more concentrated around zero. No significant spa-
tial distribution change was observed in HiQ-LAI with an
increasing synthesis period, and the 32 d synthesis data of
MODIS LAI exhibited a similar spatial pattern to the 8 d
product of HiQ-LAI. This evidence indirectly indicates that,
compared with the original MODIS LAI, our products ex-
hibit fewer abnormal fluctuations in the time series and
greater stability in product quality. In terms of time-series
stability and anomalies (Fig. 14), HiQ-LAI also outperforms
MODIS LAI. By comprehensively considering pixel qual-
ity information and prior spatiotemporal correlation infor-
mation, our algorithm effectively compensates for the abnor-
mal fluctuations caused by differences in observational con-
ditions. Through the optimization of MODIS LAI retrievals
with poor quality, our algorithm substantially improves the
quality of original MODIS LAI products and enhances their
applicability in tropical regions. The increased stability and
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Figure 9. Global maps of LAI trends between MODIS LAI (a) and HiQ-LAI (b) during 2000–2022. The Theil–Sen slope (TS) method
and Mann–Kendall (MK) test were used to calculate these results. Panel (c) presents the difference in LAI trends between MODIS LAI and
HiQ-LAI.

reliability of the HiQ-LAI product provide more reliable data
support for research in tropical regions.

5 Potential applications and limitation of HiQ-LAI

As one of the most widely used LAI products, MODIS LAI
possesses irreplaceable advantages. In this study, we em-
ployed an algorithm (STICA) based on the quality infor-
mation and spatiotemporal correlation to effectively identify
retrievals with poor quality and improve their quality while
also maintaining the original physics-based (radiation trans-
fer model, RTM) LAI generation process. The newly gener-
ated product, HiQ-LAI, is more reliable and consistent (both
spatially and temporally) compared with the original MODIS
LAI. Furthermore, the implementation of STICA solely re-
lies on MODIS products without additional data require-
ments, mitigating the added uncertainty associated with us-
ing multiple data sources. Long-term time series of LAI play
a crucial role in forest monitoring, climate model simulation
(Boussetta et al., 2013; Richardson et al., 2013; Tillack et al.,
2014), global water regulation, and carbon and energy cycles
(A. P. J. Sellers et al., 1997; Chen et al., 2020). HiQ-LAI
is expected to facilitate the advancement of these models by

providing more accurate and reliable data sources. Addition-
ally, due to the algorithm’s high adaptability, it can also be
applied to improve the data quality of other vegetation state
parameters, such as FPAR, NDVI, and enhanced vegetation
index (EVI).

We implemented the algorithm on the GEE cloud comput-
ing platform. Leveraging the powerful computing capabili-
ties of the platform, users can easily conduct long-term time
series and large-scale, or even global-scale, research and ap-
plications using this dataset. To facilitate users’ understand-
ing of the differences between the two products at the pixel
scale, we provide the absolute difference between the two
products as a data layer for users’ reference.

Despite our efforts to enhance the overall data quality
through spatiotemporal correlation, uncertainties still ex-
ist. This algorithm utilizes auxiliary MODIS Land Cover
data (MCD12Q1) to identify pixels with the same biome
type. Therefore, the classification uncertainty associated with
these auxiliary data can affect the algorithm’s accuracy. Ad-
ditionally, the limited availability of high-quality observation
samples in the high latitudes of the Northern Hemisphere,
constrained by solar zenith angle and environmental condi-
tions, poses challenges. Insufficient ground observation data
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Figure 10. Global spatial distribution of the cumulative relative TSS (RE-TSS) for MODIS LAI (a) and HiQ-LAI (b) for 2021 (containing
46 data periods).

Figure 11. Comparison of the improvement percentage of the
RMSE andR2 between MODIS and HiQ-LAI within different qual-
ity classifications (good: MQA≥ 9; moderate: 7≤MQA< 9; and
poor: MQA< 7) based on DIRECT 2.1 sites as a reference (99 sites
and 268 measurements).

in these regions further hinder accurate uncertainty assess-
ments. Another source of uncertainty arises from the calcu-
lation of MQA values. The weight assigned to each pixel is
not only influenced by its spatiotemporal proximity but also
closely tied to the MQA value. Increased observed informa-
tion provides more comprehensive information, enabling a
more accurate assessment of pixel quality. Thus, future itera-
tions of the product could incorporate additional pixel quality
information, including environmental variables (e.g., cloud
cover and aerosol) that substantially impact LAI.

6 Data availability

The high-quality leaf area index (HiQ-LAI) is now acces-
sible as an open dataset, providing two different spatial
resolutions. The HiQ-LAI product with a spatial resolution
of 500 m and a temporal resolution of 8 d is hosted on the
GEE platform (https://code.earthengine.google.com/?asset=
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Figure 12.

projects/verselab-398313/assets/HiQ_LAI/wgs_500m_8d,
Yan et al., 2024). Including this dataset on the GEE platform
will greatly benefit the GEE community, simplifying access
to and utilization of this valuable resource. The dataset with
a spatial resolution of 5 km and a temporal resolution of
8 d was derived by upscaling the original 500 m data using
the nearest-neighbor method and can be found on Zenodo
(https://doi.org/10.5281/zenodo.8296768, Yan et al., 2023).
The HiQ-LAI product encompasses five-layer scientific
datasets, containing LAI, original quality control informa-
tion, relative TSS of MODIS and HiQ LAI, and the absolute
difference between HiQ-LAI and MODIS LAI. For detailed
quality control information, readers are referred to the
MODIS Collection 6 (C6) LAI/FPAR Product User’s Guide
(Myneni, 2020). The original values have been adjusted to
integers considering the data storage size, and all layers are
stored as uint8 data types. The LAI layer has a valid range
from 0 to 100, where each value represents 1/10 of the orig-
inal value. The relative TSS of MODIS LAI and HiQ-LAI

have valid ranges spanning from 0 to 10, with each value
corresponding to 0.001 units. Lastly, the LAI difference
layer (LAI_Diff) applies a scale factor of −100. Moreover,
we utilized bicubic interpolation on a 500 m scale to create
the 5 km and 8 d dataset, which is available on the GEE plat-
form (https://code.earthengine.google.com/?asset=projects/
verselab-398313/assets/HiQ_LAI/wgs_5km_8d_Bicubic,
last access: 21 March 2024). This method involves con-
sidering information beyond just the nearest pixel and
incorporating additional data from surrounding pixels to
calculate new pixel values, which maximally preserves the
pixel-level details from the original scale. Additionally,
we aggregate the pixels by calculating the mean of a
5 km× 5 km window. Then, nearest-neighbor resampling
can be carried out on this aggregated dataset to re-project it
into the spatial resolution of 5 km. The final resulting 5 km
dataset has been successfully stored on GEE (https://code.
earthengine.google.com/?asset=projects/verselab-398313/
assets/HiQ_LAI/wgs_5km_8d_NearNei, last access:
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Figure 12. Spatial distribution of MODIS LAI (a1–a4) and HiQ-LAI (b1–b4) in the equatorial region within different composite days.
Spatial distribution of the RD (relative difference, c1–c4) and density distribution of the RD (d1–d4) in the equatorial region within different
composite days. The day of the year (DOY) for the first 8 d of data is 2021041 (DOY 41 of 2021).

21 March 2024). More details about HiQ-LAI can be found
on Zenodo https://doi.org/10.5281/zenodo.8296768 (Yan
et al., 2023). Users are encouraged to refer to the data
description document for guidance on value restoration.

7 Conclusions

The Moderate Resolution Imaging Spectroradiometer
(MODIS) leaf area index (LAI) retrievals are calculated
independently for each pixel and specific day. However,
cloud, snow, aerosol pollution, sensor failure, and uncertain-
ties in the retrieval algorithm lead to MODIS LAI products
having poor spatiotemporal consistency that is accompanied
by abnormally high noise. To address these limitations and
improve the quality and spatiotemporal consistency of the
existing MODIS LAI product at a global scale, we utilize the
spatiotemporal information compositing algorithm (STICA),

which leverages pixel quality information, spatiotemporal
correlation, and original observation information to improve
the MODIS LAI retrievals with poor quality. By considering
multiple dimensions of information to compensate for
the deficiency of using only temporal information, the
high-quality reprocessed MODIS LAI dataset (HiQ-LAI)
achieves better spatiotemporal consistency and provides
global coverage from 2000 to 2022.

Direct ground verification demonstrates that HiQ-LAI ex-
hibits higher accuracy and is closer to the ground references
compared with the original MODIS LAI. MODIS LAI tends
to overestimate LAI values for pure forests, especially in
areas with low multiple quality assessment (MQA) values,
due to signal saturation issues. When comparing the LAI
time-series profile, it becomes evident that MODIS LAI is
greatly affected by the observational conditions, resulting in
abnormal fluctuations in the time series. In contrast, HiQ-
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Figure 13. Spatial distribution of MODIS LAI (a1–a4) and MQA (b1–b4) values over the equatorial region.

LAI effectively mitigates these issues, generating smoother
LAI time-series curves that align well with expected pheno-
logical patterns. Based on the references from the DIRECT
2.1 sites, the improvement rate of LAI retrievals gradually
increased with the decreasing data quality. The global trend
analysis reveals a general greening trend in most vegetated
areas for both products. The MODIS LAI product has been
widely used due to its clear theoretical basis and satisfac-
tory verification results. Our original intention is to main-
tain consistency with the original high-quality MODIS LAI
while enhancing the accuracy of LAI retrievals with poor
quality. Our results confirm that both products generally ex-
hibit similar spatial patterns globally, but differences emerge
in certain regions, particularly near the Equator (e.g., South
America, Indonesia, and the Amazon rainforest region of
central Africa). These regions are characterized by evergreen
broadleaf forest (EBF) and are affected by thick cloud cover,
a high aerosol concentration, and NIR saturation through-

out the year, substantially impacting the accuracy of MODIS
LAI retrievals. Changes in observational conditions between
adjacent time windows introduce more uncertainty, leading
to the relatively poor spatiotemporal consistency of LAI. To
address this challenge, we introduced prior knowledge and
leveraged original high-quality observations and spatiotem-
poral correlation to optimize LAI retrievals with poor qual-
ity. The generated HiQ-LAI exhibits fewer abnormal fluctu-
ations in time series and more consistent spatial patterns in
regions with obvious differences, demonstrating a stronger
stability and reliability of product quality. These findings in-
dicate that our method effectively improves the spatiotem-
poral consistency of LAI products. The processing of HiQ-
LAI is based on the GEE cloud computing platform, which
provides users with easy access to long-term time series and
large-scale global research and applications. Moreover, we
plan to extend this algorithm to other MODIS products (e.g.,
FPAR and NDVI) that characterize vegetation state parame-
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Figure 14. The proportion of cumulative TSS (a) over 32 d and cumulative time-series anomaly (b) in 2021 between MODIS LAI and
HiQ-LAI in the equatorial region.

ters to offer more comprehensive and accurate data support
for vegetation monitoring and ecological research.
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