
HAL Id: hal-04522903
https://hal.inrae.fr/hal-04522903

Submitted on 27 Mar 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Functional–Structural Plant Model “GreenLab”: A
State-of-the-Art Review

Xiujuan Wang, Jing Hua, Mengzhen Kang, Haoyu Wang, Philippe de Reffye

To cite this version:
Xiujuan Wang, Jing Hua, Mengzhen Kang, Haoyu Wang, Philippe de Reffye. Functional–Structural
Plant Model “GreenLab”: A State-of-the-Art Review. Plant Phenomics, 2024, 6, �10.34133/plantphe-
nomics.0118�. �hal-04522903�

https://hal.inrae.fr/hal-04522903
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Wang et al. 2024 | https://doi.org/10.34133/plantphenomics.0118 1

REVIEW ARTICLE
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It is crucial to assess the impact of climate change on crop productivity and sustainability for the 
development of effective adaptation measures. Crop models are essential for quantifying this impact on 
crop yields. To better express crops’ intrinsic growth and development patterns and their plasticity under 
different environmental conditions, the functional–structural plant model (FSPM) “GreenLab” has been 
developed. GreenLab is an organ-level model that can describe the intrinsic growth and development 
patterns of plants based on mathematical expressions without considering the influence of environmental 
factors, and then simulate the growth and development of plants in expressing plant plasticity under 
different environmental conditions. Moreover, the distinctive feature of GreenLab lies in its ability to 
compute model source–sink parameters affecting biomass production and allocation based on measured 
plant data. Over the past two decades, the GreenLab model has undergone continuous development, 
incorporating novel modeling methods and techniques, including the dual-scale automaton, substructure 
methods, the inverse of source–sink parameters, crown analysis, organic series, potential structure, and 
parameter optimization techniques. This paper reviews the development history, the basic concepts, 
main theories, characteristics, and applications of the GreenLab model. Additionally, we introduce the 
software tools that implement the GreenLab model. Last, we discuss the perspectives and directions for 
the GreenLab model’s future development.

Introduction

Food security is increasingly challenged worldwide due to cli-
mate change and the rapidly growing populations [1]. According 
to the World Population Prospects 2022 report released by the 
United Nations [2], the global population is expected to reach 
9.7 billion by 2050, making it crucial to assess the impact of 
climate change on crop yields and explore effective strategies 
for future agricultural sustainability [3].

To tackle the challenges of climate change, two main strate-
gies are generally taken. The first involves genetic improve-
ments aiming at developing new crop varieties that are better 
adapted to changing climate conditions and more efficient in 
the use of resources. The second strategy involves adjustments 
to crop management practices. However, it is crucial to quantify 
and assess the impacts of both genetic improvement and man-
agement adjustments on crop production [3]. Furthermore, to 
develop effective adaptation measures, it is essential to estimate 
how climate change will affect crop productivity and sustain-
ability [4].

The growth of crops is influenced by a combination of genetic 
factors (G), environment (E), and management measures (M) 
[5]. Crop models are specifically designed to simulate G × E × M 

interactions, which can assess the impact of climate change on 
crop production and identify appropriate adjustment measures 
to counteract any negative effects of climate change on yield [6]. 
As a result, crop models are considered a crucial tool for quan-
tifying the impact of climate change on crop yields [5].

Crop models can be categorized into two types: (a) statistical 
models (SMs), also known as data-based models, and (b) 
process- based models (PBMs), also known as knowledge-based 
models. The former directly establishes the relationship between 
environmental inputs and yield outputs without concerning the 
inherent growth processes of the crops [7,8]. The latter, on the 
other hand, focuses on describing the essential physiological 
and physical processes that influence yield formation [9–11].

SMs primarily include empirical regression methods, machine 
learning (ML) algorithms, and deep learning (DL) algorithms 
[12]. Compared to PBMs, SMs demonstrate relatively higher 
predictive capability when sufficient training data are available. 
However, this also means that they heavily rely on the data [13]. 
Due to the highly complex nonlinear relationships between 
crop yield and input variables, issues like overfitting, prolonged 
training, and relatively fewer hidden layers restrict their ability 
to address nonlinear problems and predict crop yields over 
large areas [14,15]. PBMs simulate various processes in crops, 
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such as photosynthesis and assimilate allocation. They primar-
ily use the leaf area index (LAI) to predict biomass yield per 
unit of land area and consider the influence of environmental 
factors like light radiation, temperature, and management prac-
tices (irrigation, fertilization, etc.). Common PBMs include 
DSSAT (Decision Support System for Agrotechnology Transfer) 
[16], TomSim [17], STICS (Simulateur mulTIdisciplinaire 
pour les Cultures Standard) [18], and APSIM (Agricultural 
Production Systems sIMulator) [19].

PBMs often consider different types of organs, focusing on 
the total fruit weight, leaf weight, etc., making it difficult to 
describe the influence of changes in crop structure on yield. 
During their growth, plants undergo various adaptive responses 
in terms of intrinsic physiology and external morphology 
by regulating their characteristics, such as size, number, and 
growth volume, to minimize adverse effects of the environment. 
Therefore, to accurately predict crop yield, crop models need 
to consider the environmental effects on plant structure. To 
better express the intrinsic growth and development patterns 
of crops and their plasticity under different environmental con-
ditions, functional–structural plant models (FSPMs) have been 
developed. This led to the development of organ-level FSPMs, 
which simulate crop morphological structure, biomass produc-
tion and allocation, and the inherent relationships between 
them [20,21]. These models operate at a finer scale, providing 
more detailed simulations of crop growth. Representative mod-
els in this category include ALMIS [22], LIGNUM [23], L-Peach 
[24], and GreenLab [25]. FSPMs simulate the two basic pro-
cesses of plant growth and development by combining physi-
ological functions to represent three-dimensional (3D) plant 
structure [20], and link the joint effect of internal growth and 
external environment with plant architecture [26].

The GreenLab model is one of the FSPMs, taking into 
account the characteristics of the sequential production of simi-
lar organs and adopting the concept of a common pool and 
source–sink relationship. It models plant growth at the leaf 
element (organ) scale while maintaining compatibility with 
PBMs (at the population level). To build the GreenLab model, 
an architectural model was coupled with a growth model with 
source–sink functions of individual organs [27]. This frame-
work formalized the organogenesis, photosynthesis, and mor-
phogenesis processes of plants. Unlike PBMs, which model the 
sink and source processes at the whole plant level, GreenLab 
models these processes at the level of individual organs, each 
having its age according to its position within the plant struc-
ture [28]. This allows a more detailed and accurate simulation 
of plant growth and development.

Based on the plant automaton, in the GreenLab model, a 
recursive algorithm is used to calculate the number of organs 
produced at each time step, and the biomass saved in the com-
mon pool is distributed to different categories of organs based 
on their age, the relative sink strength, and organ numbers. 
This process is described by mathematical formulas, eliminat-
ing the need to simulate the biomass allocation of each organ 
individually, making it faster and requiring less time, which is 
one of the advantages of the GreenLab model. The distinctive 
feature of GreenLab lies in its ability to compute model source–
sink parameters affecting biomass production and allocation 
based on measured plant data such as the weight of each plant 
organ. Additionally, the model’s effectiveness can be deter-
mined through simulation, which reduces the need for exten-
sive data collection [29]. Based on generic botanical and 

eco-physiological knowledge, the model has been applied to 
study over a dozen crops, such as corn, wheat, rapeseed, cucum-
ber, and tomato [30]. However, the GreenLab model simplifies 
the effects of environmental factors into a single environmental 
factor “E,” which cannot effectively simulate the effects of cli-
mate, soil, and management practices on crop yield.

This paper reviews the development course, the basic con-
cepts, the main theories and characteristics, the applications of 
the GreenLab model, and the software tools. The “The Develop-
mental History of the GreenLab Model” section presents the 
developmental history of the GreenLab model. The “The 
GreenLab Model” section introduces the concepts and assump-
tions used in the GreenLab model. The “Applications of the 
GreenLab Model” section presents the applications in crops and 
trees. The “Software” section presents the software tools imple-
mented based on the GreenLab model. The “Perspectives” sec-
tion gives the perspectives and future directions of the GreenLab 
model. The “Conclusions” section gives conclusions.

The Developmental History of the  
GreenLab Model
The GreenLab model originated from the AMAP (botAny and 
Modelling of Plant Architecture and vegetation) modeling 
approach, inheriting botanical concepts from AMAPsim [31,32] 
such as physiological age (PA) and reiteration growth, as well 
as the source–sink concept from AMAPHydro [33]. The AMAP 
plant library is based on the architectural models proposed 
by Hallé et al. [34], which ensures that the simulation of plant 
development is faithful to botanical principles [35]. This fea-
ture laid the foundation for the application of the model in 
agronomy.

To meet the need for growth process models, the simulations 
of biomass production and distribution were introduced into 
the AMAP models, and AMAPHydro was proposed, which uses 
water as the growth driver [33]. Since 1998, based on the Sino-
French Joint Laboratory (LIAMA), the cooperation be tween the 
Institute of Automation, Chinese Academy of Sciences (CASIA) 
in China and the International Cooperation of Agronomy 
Research and Development Centre (CIRAD) in France was 
established, leading to the development of the organ-scale FSPM 
“GreenLab” (Chinese name Qingyuan), which inherits key con-
cepts of the AMAP model series. Over the past 20 years, several 
institutes and universities have contributed to its development, 
including China Agricultural University (CAU), Chinese Academy 
of Forest (CAF) in China, and French National Research Institute 
for Digital Science and Technology (INRIA), Ecole Centrale 
Paris (ECP) in France, as shown in Fig. 1.

The architectural model in GreenLab is based on the con-
cepts of AMAPSim [31] and can simulate the 23 botanical 
architectural models [34,36]. It is designed to simulate complex 
plant structures, including trees, by organizing the model 
according to PA and using only a limited number of parame-
ters. This makes it easy for users to construct even very intricate 
plant structures. The functional model shares the hypothesis 
and concepts of PBMs, such as the common pool, the sink 
strength, and the sink variation. Therefore, the loop of plant 
growth is compatible with other PBMs.

GreenLab is a plant growth and development model that 
has been developed and refined over several levels of complex-
ity. The initial model, GL1, is deterministic and relies on pre-
defined rules for plant development [27]. The structure of 
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plants is fixed and unable to adapt to internal or external factors 
[27,37], which limits its applicability to single-stemmed species, 
such as maize and sunflower. The GL2 model incorporates sto-
chastic development and probabilistic bud outbreak to simulate 
the variation in plant structures [26,28,38], making it useful 
for assessing and comparing different cultivars or breeding 
programs aiming at developing plants with stable and repro-
ducible behavior (low variation among individuals). This mod-
eling strategy permits considering intra- and inter-individual 
variation and describing the statistical outputs of a population 
like mean and standard deviation rather than the results of 
individual plants. The GL3 model is deterministic, but the 
development is controlled by a state variable known as the 
supply- to-demand ratio [39], which creates a feedback loop 
between development and functioning that makes the model 
dynamics self-regulating. The GL4 model incorporates the 
feedback mechanism of supply-to-demand ratio as a determi-
nant of the stochastic plant development processes, resulting 
in a decrease in the root mean squared error [40]. A more 
systematic parameterization methodology of GL4 has been 
described by Letort et al. [29]. The GL5 model is a stochastic 
model with interaction between the development and growth 
of trees at a finer temporal scale, which can simulate multiple 
growth flushes of trees within a single growing season [25], 
making it useful for simulating the growth and development 
of perennial plants that undergo multiple growth cycles. 
Overall, the GreenLab model is a valuable tool for simulating 

plant growth and development, and its different versions offer 
a range of options for researchers to choose depending on their 
specific needs and research questions.

The GreenLab Model

Concepts and assumptions
The GreenLab model is a dynamic model that uses discrete 
simulation to model the production and allocation of biomass 
at the level of individual plant organs. It combines both func-
tional and structural descriptions of physiological processes, 
including phytomer-level structures, making it possible to study 
the model at both organ and stand levels.

The GreenLab model uses some important notions [25,26]: 
(a) temporal scale. Three distinct ages are used to characterize 
a meristem: chronological age (CA), which denotes the dura-
tion of organ/plant functioning since its creation; PA, which 
indicates its level of differentiation in the aging process; and 
ontogenic age (OA), which corresponds to the time of its cre-
ation within the plant structure. Chronological and ontogenic 
ages are measured in development cycles (DCs), which serve 
as the fundamental unit of duration that governs plant develop-
ment. During each DC, a meristem can produce either a phy-
tomer or a pause. The cycle is measured in thermal time rather 
than calendar time, as it regulates the overall development 
process. (b) Spatial scale. Three kinds of concepts are defined 
to describe the structure of plants: organic series, which is the 
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Fig. 1. Developmental history of the GreenLab model. The GreenLab model originated from the AMAP modeling approach, inheriting botanical concepts from AMAPsim and 
AMAPHydro, which was developed within the collaborative efforts of the Sino-French Joint Laboratory (LIAMA) in 1998. The GreenLab model progressed through various 
iterations, including GL1 (deterministic model), GL2 (stochastic model), GL3 (deterministic model with feedback mechanisms), and eventually GL4 and GL5 (stochastic model 
with feedback mechanisms). Notably, GL5 represents a fine time-scale model for trees, which can simulate the growth and development of trees within a year.
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dimension or weight of organs produced sequentially along an 
axis of development; cohorts are a set of organs of the same 
nature, created at the same time by the parallel functioning of 
meristems; and plant crowns (the combination of primary bear-
ing axes and secondary ramified axes).

The model incorporates eco-physiological concepts from 
crop models such as thermal time, light use efficiency (LUE), 
water use efficiency (WUE), and a common pool, among oth-
ers, as described by de Reffye et al. [25]. To combine plant 
organogenesis and plant photosynthesis, the GreenLab model 
uses plant architectural models defined by Hallé [34], duel-scale 
automaton theory [41], and substructure-based algorithm [42]. 
GreenLab uses a dual-scale automation approach to generate 
stochastic structures of plants, which integrates botanical 
knowledge, such as phytomers and growth units (GUs), to con-
struct topological and morphological structures of plants 
through a graph-based interface [43,44]. For more complex 
applications involving trees or plantations, the GreenLab model 
employs a strategy of substructures [45] for efficient construc-
tion of plants and yields calculation based on organ production. 
Using the same temporal scale for development and growth, 
the model simulates plant growth behavior recurrently and can 
be applied to a range of plant types, from herbaceous plants to 
trees. While the basic structure of the model is generic, cor-
responding submodules can be introduced for different plant 
species.

The GreenLab model employs compact mathematical equa-
tions with integrated parameters for plant growth simulation, 

allowing easy parameterization. Organs of the same features 
share the same function, without requiring a complex plant 
structure description that can be laborious. In the model, plants 
start from a seed, which provides the initial source, allocate 
biomass to existing organs based on the source–sink relation-
ship, make photosynthesis according to functioning leaf area, 
and determine the number and size of organs at different stages. 
The model iteratively simulates plant growth cycle by cycle until 
it ceases (Fig. 2), providing a comprehensive understanding of 
biomass production and partitioning. At the end of the simula-
tion, the plant’s architecture can be displayed in 2D or 3D for-
mat [29,46].

Modeling plant development and growth
Plant morphogenesis arises from two main phenomena: devel-
opment and growth. Development is facilitated by the function-
ing of meristems, which give rise to a plant structure comprising 
branched axes composed of phytomers in a series. On the other 
hand, growth is the process of biomass accumulation in the 
plant system through photosynthesis. This growth is regulated 
by source–sink relationships, where organs perform their func-
tional roles. It ensures the increase in biomass of the organs 
formed during development.

In this review, we will not give detailed descriptions of mod-
eling plant development and growth, which can be found in 
[25,30]. Instead, we will provide a concise overview of the 
important concepts used in the GreenLab model and highlight 
their roles.

Fig. 2.  A diagram depicting the simulation process of the GreenLab model. The green rectangles represent the development, and the blue circles represent the growth. The 
model outputs and the computed model parameters are given. Biomass production can be computed through photosynthesis (in orange).
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A botanical automaton to simulate the development
A phytomer is a fundamental unit in plant structure, consisting 
of an internode that terminates in a node where organs like 
leaves, fruits, and axillary meristems are attached. Depending 
on whether the flowering occurs at the axis or the tip, it can be 
axial or terminal. To simulate the growth and development of 
plant structures, it is sufficient to describe the rules that govern 
the PA of newly produced phytomers. To accomplish this, a 
dual-scale automaton approach using graph-based notations 
[36] was developed. Structures can be simple or compound, 
depending on whether meristems function continuously or 
rhythmically. In the latter case, mainly in trees, the automaton 
is on a double scale, with two temporal scales being considered 
and meristems setting up the GUs. The micro-temporal cycle 
corresponds to the creation of a phytomer, while the macrocycle 
represents the construction of a GU. Structural factorization is 
highly efficient in designing, understanding, or simulating plant 
architecture models [45]. Over recent years, there has been 
significant progress in extending the formalism to encompass 
stochastic cases. This has been achieved by introducing prob-
abilities to represent the likelihood of transition occurrences. 
Furthermore, this extended formalism has undergone valida-
tion across numerous plant species [25,26,29].

Modeling biomass production and partitioning
The GreenLab model, similar to other crop models, uses the 
concept of a common pool that stores synthesized biomass and 
distributes it to organ compartments [25]. The model uses a 
discretized beta law function to define the sink function [47], 
and the plant demand at a given age is calculated as the sum of 
the active sink organs. The number of phytomers produced by 
the botanical automaton determines the number of leaves, 
internodes, and fruits produced in each cycle.

To compute biomass production and partitioning, first the 
biomass supply is required. Like other crop models, it uses 
Beer–Lambert’s law to calculate biomass production per unit 
of cultivated area and per unit of time. Then, plant demand is 
calculated in each DC, and the biomass growth of an organ 
depends on the value of its sink and the ratio of the biomass 
supplied in the previous cycle to the current demand.

Model parameter estimation
As the GreenLab model consists of two modules, one for organ-
ogenesis (development) and the other for organ growth, its key 
parameters can be categorized into two parts as well. The 
first set of parameters for plant development, which includes 
branching rate, growth rate, and mortality rate, is computed 
using the measured number of phytomers along the stem from 
the top to the bottom, a method known as plant crown analysis 
[48]. On the other hand, the second set of parameters for organ 
growth, which includes the source parameters, such as seed 
biomass (Q0), projected surface (Sp), and resistance coefficient 
(r, related to LUE or WUE), and the sink parameters, such as 
sink strengths (Po, o represents leaf, internode, fruit, etc.) and 
the variations of sink strengths (Bo), are identified by fitting the 
measured organic series and controlling the functional model. 
As explained before, the description of each organic series 
contains all the necessary information for development and 
growth. Through adapted sampling within the organic series, 
effective targets for calibration of the source–sink parameters can 
be defined using experimental data. Organic series are constructed 
by sampling within the plant architecture, and measurements 

can be taken at multiple growth stages. Besides, some empirical 
parameters are needed, such as the expansion time and func-
tioning time of organs, and leaf thickness, which can be obtained 
according to the observed data during the growth of plants.

The process of identifying parameters in the GreenLab 
model involves three steps: (1) measuring the architecture of the 
plant, including the number of leaves, internodes, fruits, and the 
number of phytomers within the stem and branches, thus to 
know the topological structure of the entire plant (to know the 
development parameters) and also the times of expansion and 
functioning of each type of organs; (2) constructing target data 
(organic series and/or compartment data) by measuring dry or 
fresh weights of each organ (leaves, internodes, fruits, etc.); (3) 
fitting the target data and estimating functional source–sink hid-
den parameters. The developmental parameters, such as growth 
and branching rates, are determined using the crown analysis 
method as mentioned above. Model calibration can be done by 
single fitting, where only one stage of data is used to fit the 
organs, or multi-fitting, which involves using data from multiple 
growth stages to fit the organic series [47].

As such, the GreenLab model can simulate the dynamic 
progression of plant growth and development while relying on 
a stationary plant architecture (Fig. 3). By analyzing plant archi-
tecture data, GreenLab can compute the size and weight of 
organs at different stages, and then estimate source and sink 
parameters using the weighted least square method (WLSM) 
with measured data. Calibration of the model on real plants is 
a crucial step for its application, but it is a time-consuming and 
tedious process. Therefore, GreenLab defines a uniform data 
sampling scheme to simplify the measurements [25,26].

Applications of the GreenLab Model
Plant structures can be categorized into various architectural 
models based on different modes of meristem functioning 
(continuous/rhythmic/polycyclic, definite/indefinite), branch-
ing patterns (monopodial/sympodial), and flowering types 
(apical/lateral). These architectural models proposed by Hallé 
et al. [34] constitute a comprehensive set that covers all types 
of plants. By utilizing specific sampling strategies and appropri-
ate parameter estimation methods (WLSM), plant system 
parameters can be identified. This approach enables the effec-
tive modeling of many herbaceous and woody plants, as they 
can be accommodated within these architectural models.

The GreenLab model has been successfully applied to both 
temperate and tropical species, covering continuous growth 
and rhythmic growth, and accounting for the stochastic effects 
of phytomer development, branching, and viability. The devel-
opment and growth parameters of the model have been satis-
factorily estimated using crown and organic series analysis [25] 
for over 20 plant species; the description and the characteristics 
of development and growth for the main species are listed in 
Table 1. Figure 4 shows the 3D visualization of plants for vari-
ous species.

To calibrate the model for each species, the process involves 
a few steps. First, the PA, CA, leaf thickness, expansion time, 
and functioning time of organs are collected based on observa-
tions during growth. Second, the development patterns of 
plants are analyzed and set. If a plant’s development follows a 
stochastic pattern, the developmental parameters are deter-
mined through two methods: a “mask” file is used to specify 
the positions of branches and fruits, essentially treating them 
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as having deterministic development; alternatively, probabili-
ties of growth, branching, and mortality are calculated using 
crown analysis method if the development is considered sto-
chastic. Last, the source–sink parameters are estimated accord-
ing to the measured weights of organs at different developmental 
stages, using either single or multi-stage fitting techniques.

Modeling of field crops
For single-stemmed field crops, like maize, sunflower, and beet-
root, their development patterns are treated as deterministic and 
continuous. The GreenLab model can directly compute model 
parameters using measured organ weights. However, for plants 
with branching like cotton, rice, and wheat, their developments 
are stochastic and continuous. To address this, a “mask” file has 
been used to document branch and fruit positions, transforming 
their stochastic growth into a deterministic form for cotton and 
rice. In the case of wheat, considered as a stochastic plant, initial 
developmental parameters such as branching rate, growth rate, 
and mortality are determined from observed data. Subsequently, 
the model parameters are fine-tuned by matching them with the 
measured organ weights. In the case of maize, it has been con-
firmed that the sink parameters remain consistent across differ-
ent planting densities and growing seasons [49,50]. This stability 
in sink parameters holds significance for breeding efforts, as it 
allows for the identification of traits that remain unchanged 
despite fluctuations in the environment.

Modeling of horticultural crops
For horticultural crops, such as tomato [51,52] and cucumber 
[53], their development follows deterministic and continuous 
patterns. The GreenLab model has been used to calibrate model 
parameters specifically for single-stemmed plants. In the case 
of branched plants like pepper [54], a mask file has been used 
to document fruit positions, effectively converting their sto-
chastic growth into a more deterministic trajectory. These spe-
cies’ yield formation is primarily influenced by the quantity and 
size of their fruits, underscoring the importance of accurately 
simulating fruit sets within these crop models. The GreenLab 
model has established a relationship between the internal 
source-to-reservoir ratio and fruit set through parameter inver-
sion [51,55]. However, it is important to note that additional 
experiments are required to validate these predictions. In addi-
tion, studies have delved into understanding the variation in 
yield formation between different cucumber cultivars [53] and 
integration lines for tomatoes [52] using optimization algo-
rithms. Nonetheless, the accuracy of these predictions needs 
validation through an extensive array of experiments.

Modeling of herbaceous plants with inflorescences
The GreenLab model has specific adaptations for the growth 
and development of herbaceous plants with inflorescences [56]. 
In these plants, phytomers are created as a result of meristem 
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Table 1. Plant species studied with the GreenLab model and the descriptions of the corresponding models

Plants pecies Plant description Developmental and growth patterns References

Field crops

Maize A single-stemmed plant, deterministic and 
continuous development. After an initial 
rosette stage, the stem lengthens and the 
development stops after about 20 phytomers 
(depending on varieties) following terminal 
flowering with the formation of a male flower.

Basic phytomer: an internode, a leaf made of a 
blade, and a sheath. 
Mask file: to note the position of the cob within 
the plant. 
Simple organic series: the blades, sheaths, 
internodes, and ears on the stem.

[47,49,50]

Sunflower A single-stemmed plant, deterministic and 
continuous development. 
After an initial rosette stage, the stem length-
ens and the development stops following 
terminal flowering (Capitulum).

Basic phytomer: an internode, a blade, and a 
petiole. 
Mask file: to note the position of the capitulum. 
Simple organic series: the blades, petioles, 
internodes, and caps on the stem.

[27,79,98]

Beetroot A single-stemmed plant, deterministic and 
continuous development.

Basic phytomer: a leaf. 
Simple organic series: the rosette of leaves and 
the tape root on the stem.

[91]

Wheat A branched plant, stochastic and continu-
ous development, characterized by an initial 
rosette-like stage, followed by an elongation 
of the stem which ends in an ear. A variable 
number of secondary stems, called tillers, are 
issued at the same time as the main stem at 
the rosette stage. Remobilization of leaves 
needs to be considered.

Basic phytomer: an internode, a leaf, and a 
sheath. 
Crown analysis: the probabilities of growth, 
branching, and mortality were computed. 
Simple organic series: leaf, sheath, internode, 
ear on the main stem; 
Compound organic series: compartments of 
each type of organ for tillers.

[99]

Rice A branched plant, stochastic and continu-
ous development characterized by an initial 
rosette-like stage, followed by an elongation 
of the stalk ending in a spike. Tillers are 
issued at the same time as the main stem at 
the rosette stage. Remobilization of leaves 
needs to be considered.

Basic phytomer: an internode, a leaf, and a 
sheath. 
Mask file: to note the positions of the tillers 
and fruits within the plant. 
Simple organic series: blade, sheath, internode, 
and terminal spike for the stem and tillers.

[100,101]

Cotton A branched plant, and the stems and vegeta-
tive branches of the plant have deterministic 
and continuous development. They have 
monopodial branching and bear fruiting 
branches with a sympodial structure.

Basic phytomer: an internode, a blade, and a 
petiole. 
Three PAs: the stem, its vegetative branches, 
and the fruiting branches. 
Mask file: to note the positions of the tillers 
and fruits within the plant. 
Simple organic series: blades, petioles, and 
internodes for the stem and branches.

[102–104]

Horticultural crops

Tomato A branched plant with a sympodial modular 
structure, but one of the branches is pruned, 
leaving a stem with a continuous develop-
ment at the beginning and after a rhythmic 
development. The expansion of fruits has a 
delay.

Basic phytomer: an internode, a blade, a peti-
ole, and a fruit. 
One PA: the stem, a single-stemmed plant was 
analyzed. 
Mask file: to note the position of the fruits. 
Simple organic series: blades, petioles, inter-
nodes, and fruits on the main stem.

[51,52,105,106]

Cucumber A single-stemmed plant whose stem, in the 
shape of a vine, has continuous development 
and growth. The expansion of fruits has a 
delay.

Basic phytomer: an internode, a blade, a peti-
ole, and a fruit. 
One PA: the stem, a single-stemmed plant was 
analyzed. 
Mask file: to note the position of the fruits. 
Simple organic series: blades, petioles, inter-
nodes, and fruits on the main stem.

[53,85,107]

(Continued)
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Plants pecies Plant description Developmental and growth patterns References

Sweet pepper A branched plant with stochastic and 
continuous development. After germination, 
the unbranched stem stops its development 
early because of an apical flowering that pro-
duces the first fruit. Two sympodial branches 
of equal vigor are born immediately under 
the last two phytomers of the stem. Their 
continuous development is limited to a few 
phytomers, after which branching becomes 
sympodial.

Basic phytomer: an internode, a blade, a peti-
ole, and a fruit.  
Three PAs: main stem, branches, and twigs.  
Mask file: to note the position of the branches 
and fruits.  
Simple organic series: blades, petioles, inter-
nodes, and fruits on the main stem, branches, 
and twigs (12 organic series). The topological 
structure of a plant is simplified to facilitate 
measurements and target preparation.

[55,108,109]

Herbaceous plants with inflorescences

Arabidopsis A single-stemmed plant at the vegetative 
stage with deterministic and continuous 
development. The beginning of the growth 
for the Arabidopsis is in a rosette form. At the 
generative stage, branching inflorescence 
appears.

Basic phytomer: a leaf.  
One PA: the stem  
Simple organic series: leaves.

[58,59,93]

Canola A branched plant with stochastic and 
continuous development. The beginning of 
the growth is in a rosette form. Following the 
emergence of the leaves, internodes of the 
main stem begin to elongate. At the growth 
end, the apical meristem of the stems trans-
forms into an inflorescence. Flower emer-
gence starts on the main inflorescence and 
develops basipetally to the lateral inflores-
cences, while the flowers within the inflores-
cence have an acropetal flowering sequence. 
Remobilization needs to be considered.

Basic phytomer: an internode, a leaf, and 
potentially a ramification.  
Two PAs: main stem and ramifications.  
Crown analysis: the development parameters 
rhythm ratio, branching rate, and growth rate 
are computed.  
Simple organic series: leaves, internodes, and 
fruits on the main stem; 
Compound organic series: the organs of the 
same type (leaves, internodes, fruits) are 
weighed separately for ramifications.  
Delay function: to simulate the basipetal pat-
tern of raceme development.

[60–63]

Chrysanthemum Chrysanthemum is a short-day plant with 
stochastic and continuous development, hav-
ing a basipetal flowering sequence.

Basic phytomer: an internode, a leaf, and 
potentially a flowering branch. 
Three PAs: main stem and ramifications. 
Simple organic series: leaves, internodes, and 
fruits on the main stem and ramifications. 
Delay function: to simulate the basipetal  
pattern of raceme development.

[56,57,64]

Spilanthes A branched plant with a stochastic and con-
tinuous development. The stem is short and 
the shoots spread. All axes end with a termi-
nal flower. After a minimal rosette stage, the 
stem elongates and places a small number 
of phytomers, then the apical flowering stops 
development, and the preformed lateral 
branches begin to expand with acropetal de-
velopment. If conditions allow, the preformed 
third-order branches begin their expansion 
with a basipetal development.

Basic phytomer: an internode, two leaves, and 
potentially two twigs. 
Three PAs: main stem, branches, and twigs. 
Crown analysis: the development parameters 
rhythm ratio, branching rate, and growth rate 
are computed. 
Simple organic series: leaves, internodes, and 
fruits on the main stem; 
Compound organic series: the organs of the 
same type of ramification are weighed sepa-
rately by compartments (leaves, internodes, 
fruits) for ramifications. 
Delay function: to simulate the basipetal  
pattern of raceme development. 

[40]

Table 1.  (Continued)

(Continued)
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activity, and organ expansion occurs following biomass accu-
mulation. Herbaceous plants with inflorescences show great 
architectural variability and undergo two primary developmen-
tal stages: vegetative and reproductive. During the initial vegeta-
tive phase, phytomers are established according to the rules of 
botanical automaton, but their expansion does not occur imme-
diately after creation. Instead, branches remain preformed until 
flowering initiation, with a delay influenced by creation time, 
branch type, and position within the topological structure gen-
erated by the development schedule. To model this delay in 
branch development, a delay function has been introduced 
[56,57]. The GreenLab model has been successfully applied to 
model herbaceous plants such as Arabidopsis [58,59], canola 
[60–63], chrysanthemum [56,57,64], and spilanthes [40].

Modeling of trees
The GreenLab model can simulate growth rings and estimate 
their parameters through inverse estimation. This feature is 
unique to the model and distinguishes it from other functional 
structure models for trees, which have been extensively cali-
brated. Growth rings are first considered as an organ that com-
petes with others, and the biomass allocated to them is then 
distributed to different internodes according to two different 
rules (e.g., Pressler law).

Apart from GreenLab, there are few FSPMs for trees that 
have been calibrated, meaning that the model parameters are 
determined based on tree measurement data to ensure that the 
calculated number of organs and biomass are consistent with 
the measured data. Representative model applications include 
a deterministic model for Pinus tabulaeformis [65], a stochastic 
model for Pinus sylvestris [38,66] (which can reflect the differ-
ences in individual structures and their impact on biomass), 
and a feedback model for Fagus sylvatica [67] (which establishes 
a relationship between the number of branches and the source–
sink ratio).

The temporal scale of GreenLab for trees is generally annual, 
but more recently, a fine time-scale model has been developed 
for multiple pruning of trees [68], which is adapted to more 
complex cases where tree architectural development and bio-
mass production occur simultaneously during long periods, 
where polycyclism, anticipated growth, or neoformation occurs. 
Periods of extension and rest can occur successively between 
GUs but also within GUs [68]. Indeed, GreenLab has been 
applied to several tree species, such as the simple structures 
like coffee and pine trees, and the complex structures like 
maple, teck [46], and khaya trees. Although we have not delved 
into the specifics here, it is worth mentioning that details 
regarding the results of maple and khaya trees are pending 
publication.

Plants pecies Plant description Developmental and growth patterns References

Trees

Coffee Coffee is a woody shrub plant with a stochas-
tic and continuous development. The stem is 
orthotropic, and each phytomer has 2 leaves 
with potentially 2 plagiotropic branches. 
At the young stage, there is no mortality or 
flowering.

Basic phytomer: an internode and two leaves. 
Three PAs: main stem, branches, and twigs.  
Crown analysis: the development parameters 
rhythm ratio, branching rate, and growth rate 
are computed. 
Simple organic series: leaves, internodes on 
the main stem. 
Compound organic series: leaves, internodes, 
and fruits on the branches.

[29,110,111]

Pine The pine tree is a conifer species with a 
stochastic and rhythmic development. Each 
year, the terminal meristems produce a new 
GU. The stochastic aspect only exists in the 
distribution of the number of branches per 
whorl.

Basic phytomer: an internode, a needle, and 
rings. The needles are considered as a single-
leaf organ. 
Two PAs: main stem and branches. The growth 
cycle is the year. 
Crown analysis: the development parameters 
branching rate was computed. 
Simple organic series: the leaves and inter-
nodes of the stem and branches.

[38,65,66,112,113]

Teak The teak is a tropical tree with stochastic 
and polycyclic development. It has polycyclic 
growth and branching. Its axes consist of a 
succession of GUs. Its flowering is terminal 
and generally occurs during the 5th year of 
growth. At the same time, the development 
of the axes, initially monopodial, becomes 
sympodial.

Basic phytomer: an internode, a leaf, and rings. 
GU: grouped according to their PA and CA and 
their ranks in the annual shoot. 
Four PAs: main stem and three orders of 
branches. 
Crown analysis: the development parameters 
branching rate was computed. 
Compound organic series: only the weights of 
the leaf and internode compartments per GU 
were measured.

[46]

Table 1.  (Continued)
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Analyses of Model Behaviors

In addition to being calibrated for various species, the Green-
Lab model has also been applied to the optimization of maize 
yield [69] and tree wood production [70], irrigation [54], and 
plasticity of trees under different light conditions [71] and 
wind effect [72]. Furthermore, sensitivity analysis of model 

parameters has also been performed with the GreenLab model 
[73–75].

The GreenLab model can be integrated with other models or 
methods, such as the simulation study by Letort et al. [76], which 
incorporated genetics into the GreenLab model. This approach 
provides access to more fundamental traits for detecting quantita-
tive trait loci (QTLs), offering potential tools for optimizing yield.

Maize SunflowerCucumber Sweet	pepper

Spilanthes

Rice

Canola

Co�onWheatTomato

Arabidopsis Chrysanthemum

Beetroot

Pine Poplar Coffee Teck Khaya

Fig. 4.  Plant species studied with the GreenLab model. The GreenLab model has demonstrated its versatility by successfully studying a wide range of plant species, including 
both temperate and tropical species with continuous growth and rhythmic growth. The development and growth parameters of the model have been effectively estimated for 
more than 20 plant species, including field crops, horticultural crops, herbaceous plants, and trees.

Table 2. Software tools and their specifications are developed based on the GreenLab model

Software Language Main developer Plant species Features

Visualplant C++ LIAMA, CASIA Crops and trees Deterministic, pure develop-
ment; 

Simulation;

Cornerfit C++ LIAMA, CASIA Single-stemmed crops Deterministic, single-stemmed; 
Simulation and fitting;

GreenScilab Scilab CASIA Crops Deterministic without feedback 
between growth and develop-
ment; Simulation and fitting;

DigiPlante C++ ECP Crops and trees Deterministic with feedback; 
Simulation and fitting;

dgpSDK libraries C++ ECP Crops and trees Deterministic with feedback; 
Simulation and fitting;

QingYuan C++ CASIA Crops and trees Deterministic with feedback; 
Simulation;

StemGL Matlab or Octave AMAP & Bioagressor, CIRAD Single-stemmed crops Deterministic without feedback; 
Simulation and fitting;

Gloups Matlab AMAP, CIRAD Crops and trees Stochastic and feedback; Simu-
lation and fitting;

XPlantGL Matlab CASIA Crops Stochastic without feedback; 
Simulation and fitting;

D
ow

nloaded from
 https://spj.science.org at C

irad D
ist on M

arch 22, 2024

https://doi.org/10.34133/plantphenomics.0118


Wang et al. 2024 | https://doi.org/10.34133/plantphenomics.0118 11

The GreenLab model can be integrated with ML methods 
to predict crop yield, like the study of Fan et al. [77]. They 
proposed a knowledge data-driven method (KDDM) by com-
bining GreenLab and neural networks to predict tomato yield 
under different greenhouse environmental conditions. This 
KDDM has also been utilized for predicting crop yield under 
a controlled ecological life support system (CELSS) by comput-
ing the interaction between carbon, plants, and gases [78].

Software
Since 2003, the software implementations of the GreenLab 
model have been made by different research teams that are 
available in different environments and have varying speci-
fications. These implementations can support deterministic or 
stochastic simulations, and/or fitting based on the measured 
data, and feedback between growth and development.

GreenLab formalism is deployed in various program-
ming languages and environments, including stand-alone 
simulation and calibration tools like Visualplant, Cornerfit, 
GreenScilab, Qingyuan, Gloups, StemGL, and XPlantGL. 
Table 2 provides a summary of these implementations and their 
specifications.

The initial software development focused on the generic 
simulation of plant architecture development using botani-
cal automaton (Visualplant software). The second software, 
Cornerfit, focused on the growth simulation of single-stemmed 
plants, such as corn, sunflower, tomato, wheat, and beetroot 
using the WLSM [79]. The subsequent software, including 
GreenScilab, Digiplante, QingYuan, Gloups, and StemGL, syn-
thesized the features of the first two software.

GreenScilab, the first complete open-source GreenLab soft-
ware, offers a user manual, an interface for parameter input, a 
source–sink solver for organic series, and 3D output simula-
tions. GreenScilab implements structural stochastic develop-
ment, continuous and rhythmic growth, and source–sink 
production simulation. It takes advantage of substructure fac-
torization for production and simulation and is particularly 
effective for plants with simple structures. The tool offers cali-
brated datasets on plants of agronomic interest based on field 
measurements [80,81].

StemGL is another open-source tool that focuses on single- 
stemmed plants and operates in both Matlab and Octave envi-
ronments [82]. Gloups is the most advanced implementation, 
which enables the applications of both deterministic and sto-
chastic models, but access to the tool requires a shared research 
project with specific terms of use [83]. For convenient applica-
tions, XPlantGL is developed only for crops; it can do simula-
tion and fitting, including branching and stochastic plants. 
These implementations include a set of tools for parameteriza-
tion, simulation, calibration, and optimization.

However, the specificity of scientific programming environ-
ments like Matlab or Scilab can limit scalability in terms of 
memory space and execution speed, prohibiting simulations 
of large numbers of phytomers that adult trees may present. 
To address this, versions designed in general-purpose lan-
guages like C, C++, and Java have been developed, such as 
Digiplante and QingYuan [84]. The Digiplante tool, piloted by 
the Digiplante team at École centrale Supélec, gives birth to the 
dgpSDK development environment that enables the simula-
tion and visualization of 3D scenes from the GreenLab model. 
The QingYuan simulator, piloted by CASIA [84,85], is developing 

a cloud-based interface to facilitate model-based training and 
competition.

Perspectives

Combing with plant phenotyping for crop breeding
Plant breeding involves a repetitive cycle of assessing multiple 
generations before introducing an improved cultivar. The chal-
lenges posed by a growing global population and changing 
climate demand sustainable food production solutions. This 
process of developing unique and advanced cultivars with 
desirable traits for crop plants is time intensive and can span 
many years [86]. Traditional breeding methods typically take 
around 10 to 15 years, involving about 3 to 7 years for the 
development of initial lines, followed by 4 to 5 years of field 
testing, and then an additional 1 to 3 years for the official release 
of new cultivars. By shortening the generation cycle, it becomes 
feasible to significantly reduce this lengthy timeline [87].

Speed breeding [88] is an emerging technology aiming at 
shortening the breeding cycle, thus accelerating crop research 
programs through rapid generation advancement techniques. 
However, it is important to note that speed breeding is indeed 
one of the more expensive techniques. It requires specialized 
infrastructure to maintain controlled environments and specific 
equipment for precise trait selection, both of which come with 
substantial expenses [87]. One approach to overcome this chal-
lenge is to concentrate efforts on plant varieties that are particu-
larly relevant to breeding goals and to integrate speed breeding 
with existing breeding techniques. Another avenue involves 
the use of crop models to support plant breeding efforts.

Crop models enable yield prediction and offer insights into 
the interplay between environmental factors and plant physi-
ological processes, influencing crop growth and development 
[3]. Integrating diverse crop models offers a way to enhance 
our understanding of crop behavior and fully unlock the poten-
tial of these models. The GreenLab model considers the effects 
of plant structure, allowing it to leverage phenotype data such 
as crop height, leaf area, grain number, and physiological and 
photosynthetic attributes for calibrating model parameters. 
With the rapid advancement of equipment and technologies 
for acquiring crop phenotype information, a wide array of traits 
can now be comprehensively gathered at various scales, ranging 
from individual organs to entire plants [89]. This accelerated 
data collection simplifies the process of obtaining plant growth 
information compared to conventional methods. However, the 
challenge emerges in effectively analyzing the substantial vol-
ume of acquired phenotype data [90]. By merging environmen-
tal data with phenotyping information, the GreenLab model 
can simulate plant plasticity under varying environmental and 
management practices.

The GreenLab model is highly compatible with PBMs. For 
instance, Lemaire et al. [91] used the GreenLab model to cal-
culate the projection area based on the weights of various plant 
organs, and the results were consistent with experimental find-
ings. Feng [92] combined the GreenLab model with a differen-
tial statistical method to explore the transition of yield from 
individual corn plants to populations. Notably, the calculated 
results were in concordance with population-level measure-
ments. These studies indicate that the GreenLab model can 
simulate the growth and development of various plant organs 
using organ-scale data. The model effectively bridges the 
gap between agronomic crop models and plant configuration 
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models, contributing to a more comprehensive understanding 
of plant dynamics.

Furthermore, based on environmental and phenotyping data, 
the GreenLab model can construct simulation models for dif-
ferent crop varieties and lines. Its generic nature and stability 
across diverse environments enable it to simulate the growth 
and development of various varieties under different environ-
mental conditions. Consequently, the model serves as a valu-
able tool for breeders, facilitating the selection of suitable 
varieties while reducing the need for extensive field experi-
ments and associated costs.

Combing with multi-level models for evaluating crop 
adaptation and yield prediction
The adaptation of crops to extreme climate conditions based 
on crop models needs to intuitively express the effects of fer-
tilization, irrigation, and other cultivation measures on the 
individual growth of crops. Based on the research from the 
population scale to the individual scale, it is possible to quickly 
simulate changes in crop morphology under different manage-
ment measures based on models without the need to adjust the 
size of each organ individually. Individual-scale plant models 
often include organ-scale submodels, which can be further com-
bined with genetic models at the micro-scale. As studied by 
Letort et al. [76], the GreenLab model was used to link growth 
model parameters to QTL. Virtual genes and virtual chromo-
somes were defined to build a simple genetic model that drove 
the settings of the species-specific parameters of the model. A 
genetic algorithm was implemented to define the ideotype for 
yield maximization based on the model parameters and the 
associated allelic combination. Combining the GreenLab model 
with micro-scale (genetic and cellular scales) models can simu-
late crop growth and development processes under different 
genetic combinations and predict yields. Chew [93] developed 
a multiscale model for Arabidopsis rosette growth by integrating 
four existing models. This integration enabled the connection 
of genetic regulation and biochemical dynamics with processes 
occurring at the organ and whole-plant levels. This approach 
proved to be invaluable in understanding how the interplay 
between internal genetic factors and external environmental 
influences impacts the growth of Arabidopsis. Furthermore, the 
GreenLab model can also be combined with PBMs on a popula-
tion scale, such as DSSAT or APSIM [94]. Individual-scale 
models can serve as a bridge, linking research efforts conducted 
across different scales. This cross-scale integration significantly 
facilitates more extensive model-driven research.

The integration of models operating at different spatial scales 
allows a comprehensive simulation of the intricate interplay 
between crop genetic traits, management practices, and envi-
ronmental conditions, as well as the dynamic process of growth 
and development across various plant organs within an indi-
vidual, facilitated by a profound comprehension of plant pro-
cesses. Furthermore, this integration allows for a detailed 
description of yield composition and permits a 3D visualization 
of crops, which can then be compared with phenotype informa-
tion. This fusion of different scale models not only offers valu-
able insights into plant breeding and phenotype characterization 
but also serves as a resource for optimizing crop systems.

Combing with AI methods to produce simulated data
With the increasing adoption of sensor and communication 
technologies in agriculture, ML has emerged as a valuable tool 

for predicting yield and phenotyping. The GreenLab model 
stands to benefit from integration with artificial intelligence 
(AI) algorithms, such as the previously mentioned KDDM 
[77,78]. By leveraging sensor data, the KDDM simplifies model 
parameterization and improves yield prediction accuracy.

ML algorithms need abundant and high-quality data to 
enhance their performance. However, it is crucial to recognize 
that the quality and relevance of the data are as important as 
the quantity itself. The data used must accurately reflect the 
problem that needs to be addressed. Careful consideration of 
data collection, preprocessing, and augmentation techniques 
can maximize the use of available data, even when collecting a 
substantial amount of data is difficult. Simulation models based 
on mechanical principles can play an important role in generat-
ing additional data for refining training models, especially 
in situations where obtaining a significant volume of real-world 
data proves difficult.

Furthermore, the integration of AI algorithms with the 
GreenLab model or other crop models holds the promise of 
extending these models to broader scales, ranging from farm 
level to regional and even global level. An illustration of this 
potential is found in the work of Jeong et al. [95], who intro-
duced a method for predicting rice yield at the pixel level 
by combining crop models with DL models like long short-
term memory (LSTM) and 1D convolutional neural networks 
(1D-CNNs). Feng et al. [96] integrated the APSIM with regres-
sion models such as random forest or multivariate linear regres-
sion to dynamically predict wheat yield in southeastern Australia. 
Chen and Tao [97] combined remote sensing-derived leaf area 
index (LAI), weather predictions, and physiological crop models 
to forecast winter wheat yield over several years in the North 
China Plain. This convergence of AI algorithms with crop mod-
els bears tremendous potential to expand the boundaries of 
crop modeling, enabling simulations across various scales and 
domains.

Conclusions
Over the past two decades, the GreenLab model has undergone 
continuous development, incorporating novel modeling meth-
ods and techniques, including the dual-scale automaton [41], 
substructure methods [42], the inverse of source–sink param-
eters [79], crown analysis [48], organic series and potential struc-
ture [26,29], and parameter optimization techniques [52,69,72]. 
Moreover, studies have explored the quantitative relationships 
between model parameters and genetic factors [76], the integra-
tion with the ML method [77], and the link with APSIM [94].

Functioning at the organ scale, the GreenLab model excels 
in simulating the growth and development of individual plant 
organs. It boasts the advantage of accounting for the feedback 
effects of structure on crop growth while also allowing param-
eter calibration using measured data. This flexibility makes it 
compatible with micro-scale genetic models [76] and photo-
synthesis models [71], leading to a more profound understand-
ing of how genetic and physiological processes interact to 
influence plant growth and development [93].

Additionally, the GreenLab model can be combined with 
population-scale process models, allowing for a more compre-
hensive analysis of plant populations within different environmen-
tal conditions [94]. By bridging the gap between different scales 
of modeling, the GreenLab model enables researchers to inves-
tigate the impact of environmental factors and management 
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practices on the productivity and sustainability of plant popula-
tions at various levels. In the era of phenomics, where substan-
tial crop growth data can be acquired, the calibration of the 
GreenLab model for various species and environments becomes 
even more viable. This adaptability positions the GreenLab 
model as a crucial bridge connecting genetic and physiologi-
cal aspects, thereby providing a wider range of research 
possibilities.
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