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Abstract

We consider populations with time-varying growth rates living in sinks. Each population, when isolated,
would become extinct. Dispersal-induced growth (DIG) occurs when the populations are able to persist and
grow exponentially when dispersal among the populations is present. We provide a mathematical analysis
of this phenomenon, in the context of a deterministic model with periodic variation of growth rates and
migration.
Keywords Dispersal-induced growth - Periodic linear cooperative systems - Principal Lyapunov exponent
- Perron root - Metzler matrices - Sinks.
Mathematics Subject Classification (2010) 92D25 - 34A30 - 34D08.

1 Introduction
Many plant and animal populations live in separate patches, that are connected by dispersal. The study of
the interaction between organism dispersal and environmental heterogeneity, to determine population growth
is a central theme of ecological theory [1, 5]. A patch is called a sink when, in the absence of dispersion,
the environmental conditions lead to the extinction of the population. A surprising phenomenon is that of
populations that can persist in an environment consisting of sink habitats only as announced in the title of
[8]. In fact, this somewhat paradoxical effect of dispersal has already been pointed by Holt [6] on partic-
ular systems and called inflation [7]. Since it is possible for populations in a set of patches, with dispersal
among them, to persist and grow despite the fact that all these patches are sinks, this phenomenon was called
dispersal-induced growth (DIG) by Katriel [9]. This author considered the model of populations inhabiting
patches, and subject to time-periodic exponential growth rates in each patch and symmetric time-independent
dispersal between the patches. The aim of this paper is to present some of the results obtained in our pre-
vious work [4] in the determistic case, where we generalized most of the results of [9] to non symmetric
and time-dependent dispersal. Note that the results on the DIG phenomenon remain also valid in a stochas-
tic environment [2, 3, 4]. For further details and complements on the mathematical modelling of the DIG
phenomenon and the biological motivations, the reader is referred to [2, 6, 7, 8, 9] and the references therein.
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2 Results
We consider the model of populations of sizes xi(t) (1 ≤ i ≤ n), inhabiting n patches, and subject to time-
periodic local growth rates ri(t/T ) (1 ≤ i ≤ n), where it is assumed that ri(τ) are 1-periodic functions, so
that ri(t/T ) are periodic with period T > 0. The dispersal from patch j to patch i (i , j) is at rate m`i j(t/T )
where the parameter m ≥ 0 measures the strength, and `i j(τ), i , j, are 1-periodic functions, that encode the
topology of the dispersal network and the relative rates of dispersal among different patches: If `i j(τ) = 0,
there is no migration from patch j to patch i at time τ, if `i j(τ) > 0, there is a migration. We then have the
differential equations

dxi
dt = ri(t/T )xi + m

∑
j,i

(
`i j(t/T )x j − ` ji(t/T )xi

)
, 1 ≤ i ≤ n. (1)

This model extends the model considered by [9] where the migration is time-independent and symmetric.
The matrix L(τ) whose off diagonal elements are `i j(τ), i , j, and diagonal elements `ii(τ) are given by
`ii(τ) = −

∑
j,i ` ji(τ), 1 ≤ i ≤ n, is called the migration or dispersal matrix. Using the matrix L(τ), (1) can be

written as
dx
dt = A(t/T )x, A(τ) = R(τ) + mL(τ) (2)

where x = (x1, · · · , xn)> and R(τ) = diag (r1(τ), · · · , rn(τ)) . We assume that the functions τ 7→ ri(τ) and τ 7→
`i j(τ) are piecewise continuous functions, with a finite set of discontinuity points on each period. Moreover,
they have left and right limits at the discontinuity points. Therefore, the solutions of (1) are continuous and
piecewise C1 functions satisfying (1) except at the points of discontinuity of the functions ri and `i j. We also
assume that for all τ ∈ [0, 1], the matrix L(τ) is irreducible. This assumption means that at each time, every
patch is reachable from every other patch, either directly or through other patches.

We use the following notations: for x ∈ Rn, x ≥ 0 means that for all i, xi ≥ 0, x > 0 means that x ≥ 0
and x , 0, and x � 0 means that for all i, xi > 0. Since the system (2) is a periodic system, its study
reduces to the study of its monodromy matrix Φ(T ), where Φ(t) is the fundamental matrix solution, i.e. the
solution of the matrix-valued differential equation dX

dt = A(t/T )X,with initial condition X(0) = Id, the identity
matrix. Since the matrix A(τ) has off diagonal nonnegative entries (such a matrix is usually called Metzler or
cooperative), and is irreducible for all τ, the monodromy matrix Φ(T ) has positive entries. Therefore, by the
Perron theorem, it has a dominant eigenvalue (an eigenvalue of maximal modulus, called the Perron root),
which is positive. We denote it by µ(m,T ), to emphasize its dependence on m and T . We have the following
result [4, Proposition 1].

Theorem 1. Suppose m > 0 and T > 0. Let µ(m,T ) be the Perron root of the monodromy matrix Φ(T ) of
(2). If x(t) is a solution of (2) such that x(0) > 0, then x(t) � 0 for all t > 0 and for all i,

limt→∞
1
t ln(xi(t)) = Λ(m,T ),

where Λ(m,T ) := 1
T ln (µ(m,T )) . The function Λ is analytic in m and T .

In fact Λ(m,T ) is the maximal Lyapunov exponent of the system. We call it the growth rate of the
system (2). Following [9], we say that dispersal-induced growth (DIG) occurs if all patches are sinks (ri :=∫ 1

0 ri(τ)dτ < 0 for all i), but Λ(m,T ) > 0 for some values of m and T . This means that each of the populations
would become extinct if isolated, but dispersal, at an appropriate rate, induces exponential growth in all
patches. We have the following result [4, Theorem 2].

Theorem 2. For m > 0, T > 0 we have Λ(m,T ) ≤ χ, where χ :=
∫ 1

0 max1≤i≤n ri(τ)dτ.

Consider an idealized habitat whose growth rate at time τ, is max1≤i≤n ri(τ), i.e. that of the habitat with
maximal growth at this time. Hence χ is the average growth rate in this idealized habitat. If the population
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Figure 1: (a) The graph of the function (m,T ) 7→ Λ(m,T ). (b) The set Λ(m,T ) = 0.

does not grow exponentially in this idealized habitat (i.e. if χ ≤ 0), then from Theorem 2 we deduce that DIG
does not occur. One of our main results is that the condition χ > 0 which is necessary for DIG to occur is
also sufficient. This result follows from the asymptotic behavior of Λ(m,T ) for large T and small m [4]. We
show that limm→0 limT→∞ Λ(m,T ) = χ so that we have the following result [4, Theorem 6].

Theorem 3. We have supm,T Λ(m,T ) = χ.

Therefore, if ri < 0 for all i, DIG occurs if and only if χ > 0: a population spreading across sink habitats
can grow exponentially (for some values of m and T ) if and only if it would survive in the idealized habitat
whose growth rate at any time is that of the habitat with maximal growth at this time.

We illustrate this behaviour in Fig. 1 for the two-patch case with time-independent migration given by
`12 = 2 and `21 = 1 and growth rates

r1(τ) =

{
1/2 if 0 ≤ τ < 1/2
−1 if 1/2 ≤ τ < 1 , r2(τ) =

{
−3/2 if 0 ≤ τ < 1/2

1/2 if 1/2 ≤ τ < 1 .

We have χ = 1/2, r1 = −1/4 and r2 = −1/2. Therefore, DIG occurs.

3 Discussion
When migration is time-dependent, it is important to see what are the results that remain valid without the
assumption of the irreducibility of the matrix migration L(τ) for all τ. Indeed, this assumption is certainly not
realized in many real systems. For instance on a two-patches system with two seasons, if there is migration
in one direction in one season and in the other direction in another season, then the matrix L(τ) would not be
irreducible for the times at which migration is in one direction only. What are conditions for DIG when L(τ)
is not irreducible? This question is the subject of future work.
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