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Environmental Health

The methodology of quantitative risk 
assessment studies
Maxime Rigaud1, Jurgen Buekers2, Jos Bessems2, Xavier Basagaña3,4,5, Sandrine Mathy6, 
Mark Nieuwenhuijsen3,4,5 and Rémy Slama1* 

Abstract 

Once an external factor has been deemed likely to influence human health and a dose response function is available, 
an assessment of its health impact or that of policies aimed at influencing this and possibly other factors in a specific 
population can be obtained through a quantitative risk assessment, or health impact assessment (HIA) study. The 
health impact is usually expressed as a number of disease cases or disability-adjusted life-years (DALYs) attributable 
to or expected from the exposure or policy. We review the methodology of quantitative risk assessment studies based 
on human data. The main steps of such studies include definition of counterfactual scenarios related to the exposure 
or policy, exposure(s) assessment, quantification of risks (usually relying on literature-based dose response functions), 
possibly economic assessment, followed by uncertainty analyses. We discuss issues and make recommendations 
relative to the accuracy and geographic scale at which factors are assessed, which can strongly influence the study 
results. If several factors are considered simultaneously, then correlation, mutual influences and possibly synergy 
between them should be taken into account. Gaps or issues in the methodology of quantitative risk assessment 
studies include 1) proposing a formal approach to the quantitative handling of the level of evidence regarding each 
exposure-health pair (essential to consider emerging factors); 2) contrasting risk assessment based on human dose–
response functions with that relying on toxicological data; 3) clarification of terminology of health impact assess-
ment and human-based risk assessment studies, which are actually very similar, and 4) other technical issues related 
to the simultaneous consideration of several factors, in particular when they are causally linked.

Keywords Dose–response, Environment, Hazard, Health impact, Policy, Risk

Introduction
The main aims of environmental health research are i) 
to identify positive or negative determinants of health-
related states (environmental factors in a broad sense 
encompassing physical, chemical, social, behavioral, 
systemic factors); ii) to understand the mechanisms 
underlying the effects of these factors; iii) to quantify the 
corresponding population impact, which can either be a 
burden or benefit. This quantification can be done e.g., in 
terms of number of deaths or disease cases or of healthy 
years of life lost attributable to the factor or set of fac-
tors; and iv) to identify interventions (which can be of all 
natures and act e.g., on the body, behaviors, knowledge, 
representations, values, the social, physical and chemical 
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environments, the economy) allowing to limit this impact 
and preserve or improve the health of populations and 
limit health inequalities.

In the classical view of the 1983 Redbook of the US 
National Research Council on risk assessment [1, 2], 
aim i) corresponds to hazard identification and aim iii) 
to risk assessment. Aim iv) is usually seen as being tack-
led by health impact assessment (HIA) studies, or ana-
lytical HIA studies [3] but as we will discuss (see "Issues 
related to terminology" below, last section), from a meth-
odological point of view, the approaches used to tackle 
aims iii) and iv) are essentially similar. We will there-
fore use (quantitative)  risk assessment to point to stud-
ies filling specifically the aim of steps iii) (quantification 
of population impact of existing factors) and iv) (which 
corresponds to the quantification of the expected impact 
of hypothetical policies or interventions). The overall 
aim of quantitative  risk assessment as broadly defined 
can be described as the quantification of the population 
impact of any type of factor, exposure, policy or program, 
hypothesized or already present.

Risk assessment studies typically allow to answer ques-
tions such as “How many cases of these diseases are 
attributable (yesterday/today/tomorrow) to this (expo-
sure) factor or policy?”, or “How many disease cases 
would be avoided today/in the future if this (exposure) 
factor was/had been brought to a certain level, or if this 
policy was/had been implemented, all other things not 
influenced by this factor or policy being kept identical?”. 
These questions relate to the consequences of interven-
tions (more precisely about the comparison of counter-
factual situations), and not about associations or effects 
(i.e., hazards, for example: can exposure to this factor 
cause liver cancer?), as is typical for epidemiological 
study designs such as cohorts and case–control studies. 
Such measures of associations, or dose–response func-
tions, are essential but not sufficient to assess the risk. 
Indeed, dose–response functions alone generally do not 
allow providing a relevant hierarchy of the disease bur-
den, or impact, associated with each factor: the impact 
can be higher for an exposure with a mild dose–response 
function curve than for an exposure with a steep dose–
response function, if the first exposure is more frequent 
than the latter exposure.

For many, if not all risk factors that influence the occur-
rence of a health-related event, it is not possible to iden-
tify if the occurrence of this event in a given subject has 
been caused by the risk factor; indeed, disease causes 
generally do not leave a specific (unambiguous) signa-
ture in the body, even for strong associations such as 
the induction of lung cancer by active tobacco smoking. 
Therefore, one cannot add up cases identified from death 
certificates or other routine medical data to estimate the 

disease or mortality burden attributable to an exposure 
or policy. Similarly, before-after observational studies can 
be used to document quantitatively health changes in a 
given population, following e.g., a heat wave, a major air 
pollution episode [4], a decrease in air pollution follow-
ing the temporary closure of an industrial site, an abrupt 
change in regulation [5] or an event such as the Olym-
pic Games. However, they are no general solution here; 
indeed, they may allow to identify a hazard but they are 
limited to documenting observed (factual) changes and 
not to studying other (counterfactual) scenarios.

Consequently, one has to rely on more indirect – mod-
elling – approaches. This can be done combining knowl-
edge about the overall frequency of the health parameter 
considered in the specific population under study, about 
the distribution of exposure and about dose–response 
function(s) associated with the factor(s), typically stem-
ming from long-term studies such as cohorts (or ani-
mal studies in the case of animal-based risk assessment 
approaches). Risk assessment studies are related to three 
research and activity streams: that of the epidemiological 
concept of population attributable fraction, or etiologic 
fraction, dating back from the mid-twentieth century 
[6–8], that of chemical risk assessment derived from 
toxicological studies [9], and the practice of environmen-
tal impact assessment in relation to a planned policy or 
project, in which the consideration of the health impacts 
possibly induced by the planned policy or project has 
become more frequent, in addition to the consideration 
of its environmental impacts [3, 10].

These quantitative risk assessment studies contrib-
ute to integrating and translating knowledge generated 
from environmental health research in a form more rel-
evant for policy making. They can be used to define or 
compare risk management strategies or projects, policies, 
infrastructures of various kinds with possible health con-
sequences (Fig.  1). The risk assessment step can be fol-
lowed by (or include) an economic assessment step, in 
which the estimated health impact is translated into an 
economic cost, providing an economic assessment of the 
impact of the factor or policy considered.

Many risk assessment studies have been conducted 
in relation to atmospheric pollutants, urban policies, 
metals, tobacco smoke, alcohol consumption, dietary 
factors, access to clean water. Although many chemi-
cals are likely to influence health, the consideration of 
chemical exposures in (human-based) risk assessment 
studies appears relatively limited [12, 13]. The most 
recent worldwide environmental burden of disease 
assessment coordinated by the IHME (Institute for 
Health Metrics and Evaluation, Seattle, USA) consid-
ered 87 risk factors and combinations of risk factors, 
including air pollutants, non-optimal temperatures, 
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lead, unsafe water, sanitation and handwashing, but 
no other chemical factors except those considered in 
an occupational setting [14]. However, the production 
volume of synthetic chemicals is still increasing and is 
expected to triple in 2050 compared to 2010 [15], and 
widespread human exposure is documented by bio-
monitoring studies [16, 17].

Several reviews about risk assessment and HIA stud-
ies have been published [10, 18–23]. For example, 
Harris-Roxas et al. provided a narrative of the histori-
cal origins of health impact assessment, strengths and 
opportunities [20], Nieuwenhuijsen [21] reviewed 
issues related to the participatory nature of HIA stud-
ies, while Briggs [19] provided a conceptual framework 
for integrated environmental health impact assessment. 
With the exception of issues related to the challenging 
concepts of etiologic fraction/excess cases [7, 8], very 
few reviews focused on methodological issues related 
to the technicalities of the execution of the assessment 
itself, while, with the development of more refined 
approaches to assess exposures, the identification of a 
growing number of hazards through toxicological and 
biomarker-based epidemiological studies or epidemio-
logical studies based on fine-scale (e.g., air pollution) 
modeling, there is a need to review options and strate-
gies related to input data and handling of uncertainties 
at each step of risk assessment studies.

We therefore aimed to perform a literature review 
(see [24]) of the methodology of quantitative risk 
assessment studies, discussing sequentially each step 
posterior to issue framing [19]. Qualitative health 
impact assessment approaches and those based on 
animal (toxicological) dose–response functions were 
not considered, with the exception of a few points 
illustrating in which respect the latter diverge from 

assessments based on human dose–response functions. 
We conclude by summarizing the identified methodo-
logical gaps, in particular related to the handling of 
emerging factors with partial data, and issues related to 
terminology.

Key issues and options at each step
Overall methodology of quantitative risk assessment 
studies
The main technical steps of quantitative risk assessment, 
include:

 1. Definition/identification of the factor(s) (environ-
mental factors/infrastructure/plan/policy) consid-
ered;

 2. Definition of the study area and study population;
 3. Description of the counterfactual situations com-

pared and of the study period (may be merged with 
step 1);

 4. Assessment/description of “exposures” in the study 
population under each counterfactual scenario;

 5. Identification of the hazards (health outcomes) 
induced by the factors considered and of the cor-
responding dose–response functions and level of 
evidence;

 6. Assessment of “baseline” (usually, current) dis-
ease frequency or of the DALYs attributable to the 
health outcomes considered, if needed;

 7. Quantification of health risk or impact (e.g., in 
number of disease cases or DALYs);

 8. Quantification of the social and economic impacts;
 9. Uncertainty analysis;
 10. Reporting/communication.

Fig. 1 Position of quantitative risk assessment in the process of risk characterization and management. Risk assessment can be used to assess 
the impacts of the “factors” considered (leftmost box) and of policies aiming at managing and limiting their impacts. Adapted from [11]
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Note that some reviews [19, 25] include preparatory or 
organizational steps, which are not detailed here. Public 
involvement (not discussed here) can be present at virtu-
ally each of these steps. The steps of identification of the 
exposures, outcomes, area and population considered 
(numbered 1–3 above) and protocol definition are some-
times referred to as “scoping” step. Note also that the 
order of some steps is somewhat arbitrary. For example 
step 2 may come first.

Not all quantitative risk assessment studies follow all 
of these steps in practice, depending on their scope and 
the chosen approach. In practice, some studies may stop 
before completing the risk assessment step – for example 
many “risk assessment” exercises conducted by national 
agencies actually only correspond to the identification of 
hazards associated with the exposure or policy consid-
ered without quantification of the corresponding risk, 
e.g., because robust dose–response functions are lack-
ing (see Sect. " Issues related to terminology" for further 
discussion). In case a policy is indeed implemented, a 
“policy implementation phase”, monitoring the imple-
mentation of the policy and possibly its actual impact, is 
sometimes added.

We will review steps 2 to 9, corresponding to the 
“appraisal steps” in the WHO terminology [25].

These steps are depicted in Fig.  2. We first consider 
the simple case of a single environmental factor for 
which exposure levels are available or can be assessed 
(exposure being here understood in its strict mean-
ing of the contact of an environmental factor with the 
human body). From the knowledge about exposure in 
the population under study and various other essen-
tial pieces of information detailed below, an estimation 
of the corresponding health impact will be provided, 
and generally compared to the impact under an alter-
native (or counterfactual) scenario (e.g., correspond-
ing to the same population in which exposure is set 
to zero or another reference value, sometimes called 
TMREL, or Theoretical Minimum Risk Exposure Level, 

see Selection of the target scenario(s) – exposure lev-
els). This health impact may be positive or negative, 
restricted to a specific symptom or disease, or consider 
several diseases or integrated measures of health such 
as Disability Adjusted Life Years (DALYs), which inte-
grate years lost due to both death and disability.

Numerous variations around this basic scheme exist: 
one can start upstream of human exposure (box  4 in 
Fig.  2), for example from the environmental level of 
the factor (e.g., the amount of contamination of food 
by metals or the average atmospheric concentration of 
particulate matter [26], box 3A), further upstream, con-
sidering a source of potentially harmful or beneficial 
factors (e.g., a factory that emits several pollutants, the 
presence of green space [27]; box 2), or a behavior, pos-
sibly influencing exposures, such as burning incense, use 
of tanning cabins, use of electronic screens or cigarette 
smoking [28] (box 3B), or a policy/infrastructure or fore-
seen societal or environmental change (box  1), such as 
the ban of coal burning or of inefficient woodstoves in a 
specific area [29] or of flavored tobacco [30], the build-
ing of a school, or the temperature changes expected 
from climate change a few decades ahead [31], this pol-
icy, infrastructure or environmental or societal change 
being either real or hypothetical. In this latter case, some 
assessment (e.g., though modelling) of the variations of 
all the chemical, physical, psychosocial factors that may 
change as a result of the policy may be required, if it is 
not already available, e.g. as a result of a pre-existing 
environmental impact assessment study. One can also 
start downstream of exposure(s), in particular from a 
body dose or from the organ dose or the excreted level of 
an exposure biomarker. Depending on the starting point, 
specific data and modelling may be required, typically to 
translate the information about this starting point (say, a 
behavior or the presence of a factory) into an exposure 
metric that can be translated into a health risk, which 
will generally be the exposure metric for which reli-
able dose–response functions exist. Downstream of the 

Fig. 2 Overview of the main steps of risk assessment studies. The starting point of the study (or the counterfactual scenarios) can be formulated 
in terms of policy, program, project (1), environmental emissions (2), environmental level (3A), behavior (3B), human exposure (4)
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health risk assessment, one may wish to also consider 
economic and other societal impacts.

Compared situations
Principle of counterfactual comparisons
To estimate the impact of a given factor or policy, one 
needs to subtract the number of disease cases expected 
under the hypothesis that the policy is present or the 
factor(s) has a given distribution in the study popula-
tion from the number of cases expected in the situation 
assuming that the policy is absent or different, or that the 
factor(s) has a different distribution. Either of these situ-
ations may correspond to reality as observed at a given 
time point. For this estimation to be relevant (i.e., for it 
to correspond to an estimation of the causal effect of the 
“change” implemented), the comparison has to be done 
in the same population and at the same time point. Oth-
erwise, trends in the health outcome unrelated to the 
considered policy or factor may exist and bias the com-
parison between both situations. As an illustration, com-
paring the number of air pollution-related diseases in 
10 years, after a road infrastructure has been built, with 
the situation today, in the absence of the infrastructure, 
would not distinguish the impact on health of changes in 
the traffic fleet in time from the impact of the infrastruc-
ture per se. In the terminology of causal inference theory, 
this corresponds to considering counterfactual situa-
tions. The reliance on counterfactual thinking is a basis 
for causal inference: the causal effect of a factor A cor-
responds to the difference between the situation in the 
presence of A and a (counterfactual) situation in which 
everything is similar with the exception that A has been 
removed [32, 33]. Note that the epidemiological concept 
of population attributable fraction developed before the 
application of counterfactual thinking to the health field, 
with the possible consequence that the counterfactual 
scenarios are not always explicit when estimating popula-
tion attributable fractions.

The comparison can apply to the past, the current 
period, or to another period in the future. Therefore, the 
two main options are:

• Counterfactual approach at the current period or in 
the past: The number of disease cases (or healthy 
years lost because of specific diseases or another 
health metric) at the current time  t0 in a hypothetical 
(“counterfactual”) world similar to the current world 
but for the fact that the factor is absent, or altered, 
or the policy has been implemented, is compared to 
the number of disease cases (or healthy years lost or 
another health metric) in the real world considered at 
the same time  t0;  t0 needs not to be to the time when 
the study is performed but can correspond to some 

time point in the past. We group the situations corre-
sponding to  t0 corresponding to current or past situa-
tions because in principle real data on exposures and 
health can be accessed for the default scenario. See 
e.g., examples in [34, 35].

• Counterfactual approach with future scenarios: Here, 
the number of disease cases (or healthy years lost 
because of specific diseases or another health metric) 
at a specific time  t1 in the future in the study popula-
tion in which the factor has been removed or altered, 
or the policy has been implemented, is compared to 
what would be observed at the same time assuming a 
specific reference scenario [29, 36, 37]. Time  t1 might 
correspond to the time when the planned policy is 
expected to have been implemented, or some time 
later when a new stationary state is assumed to have 
been reached.

t0 and  t1 are usually not time points but time periods 
over which impacts are summed; they may typically cor-
respond to a one-year period, but may also correspond to 
a long duration, which may correspond to the life expec-
tancy of the planned infrastructure, in which case the 
risk assessment may be repeated during each year of the 
study period to allow integration of the impact and pos-
sibly infrastructure or policy costs over this period. This 
is in particular relevant if the costs and benefits vary over 
time (the costs being possibly borne in the beginning and 
the positive impacts reaped after a longer duration). Such 
an integration allows to provide a relevant average of the 
yearly impacts and costs. An example is the assessment 
of the health, economic impact and cost of measures to 
limit air pollution over the 2017–2045 period, assuming 
that the measures have been implemented at the start of 
the study period [29].

The two options above may actually be combined, 
by providing estimates of the situation at time  t1 in the 
future under various scenarios, together with an estimate 
providing to another earlier time  t0 such as the current 
time. As an illustration, Martinez-Solanas et al. estimated 
the impact of non-optimal (both cold and warm) tem-
peratures at the end of the twenty-first century under 
three greenhouse gas emission scenarios, but also at the 
historical period (1971–2005), allowing both to compare 
two possible futures with different levels of action against 
greenhouse gas emissions, as well as to compare the cur-
rent situations with some possible futures [31].

Note that the first situation typically corresponds to 
attributable fraction calculations [7] done on the basis 
of the measure of association (e.g., a relative risk) esti-
mated in an epidemiological study, using the exposure in 
the population from which the relative risk has been esti-
mated. Also note that the observational study equivalent 
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to the second situation corresponds to what is called the 
difference-in-differences approach [38]; in this observa-
tional approach, in order to estimate the impact of a real 
intervention, a community or group experiencing an 
intervention is compared to itself before the intervention, 
while another group that did not experience the interven-
tion to correct this before-after comparison for temporal 
trends in the health outcome of interest).

A specificity of the second (“future”) option relates to 
the temporal evolutions of the study area. These pos-
sibly include changes in the demography (age structure 
and hence also possibly raw disease risk, as the incidence 
of most diseases varies with age), in specific disease risk 
factors besides the one in focus and also possibly regard-
ing the dose response function, in particular for health 
outcomes very sensitive to societal changes, such as 
mortality. Such evolutions may be difficult to predict, in 
particular over periods of several decades or more. Illus-
trations include studies of long-term effects of ozone 
depletion [37] or of climate change, in which sociode-
mographic changes as well as societal adaptation to high 
temperatures [39] are expected.

Selection of the target scenario(s) – exposure levels
The scenarios correspond to the counterfactual situations 
that one wishes to compare to answer the study aim. One 
scenario will typically correspond to the current or base-
line situation (if one is interested in the effect of a factor 
present today), or to the extension over time of the cur-
rent situation, the so-called “business as usual” scenario, 
if the question asked pertains to a policy or infrastruc-
ture that would be implemented or built in the future. 
The alternative scenario(s) will correspond to the hypo-
thetical situation in which the policy considered has been 
implemented (the policy being e.g., the construction of 
an infrastructure, a change in urban design, or a lowering 
of the pollution levels, if the study aims at quantifying the 
impact of a specific exposure). Of course, several coun-
terfactual scenarios can be considered and compared (see 
examples in Table 1 or [29]).

An essential question here, for actions on one or sev-
eral specific factors, relates to the targeted levels (or dis-
tribution) of the factor. In the case of a study aiming to 
quantify the current impact of a factor that has mono-
tonic effects on all diseases considered, the counterfac-
tual situation in which no one is exposed to the factor 
can be considered. This would correspond to the ban of 
the substance or the behavior considered, assuming that 

Table 1 A series of 10 scenarios compared in a risk assessment study of the impact of atmospheric pollution (fine particulate matter, 
or  PM2.5). From [40]

a Corresponding to the 5th percentile of  PM2.5 concentration distribution among French rural towns
b The 10th percentile of  PM2.5 exposure by Housing Block Regrouped for Statistical Information (IRIS) in the study area (corresponding to 10.3 and 12.4 µg/m3 in 
Grenoble and Lyon conurbations, respectively)
c Baseline corresponds to the  PM2.5 exposure average for the 2015–2017 period, taken as a reference in the present study
d Mortality reduction targets expressed as a proportion of the non-accidental death cases attributable to  PM2.5 exposure that can be prevented under the scenario S2: 
“No anthropogenic  PM2.5 emissions”
e S6: -2.9 and -3.3 µg/m3 in Grenoble and Lyon conurbations, respectively; S7: -4.4 and -5.1 µg/m3; S8: -6.0 and -6.9 µg/m3
f Inspired by the 2008/50/EU Directive, which targets relative  PM2.5 yearly average decreases to obtain by 2020. The decrease value depends on the exposure average 
for the last three years (2015–2017): -15% in the case of Grenoble and Lyon conurbations
g The 90th percentile corresponded to 16.0 and 17.4 µg/m3 in Grenoble and Lyon conurbations, respectively

Scenario 
number

Scenario description Scenario name PM2.5 yearly level reduction

S1 Spatially homogeneous target value 
in the whole area

“WHO guideline” Down to WHO yearly guideline (10 µg/m3 
at the time of this publication)

S2 “No anthropogenic  PM2.5 emissions” Down to lowest nation-wide levels (4.9 µg/m3)a

S3 “Quiet neighborhood” Down to lowest study area district levels (10th 
percentile of exposure)b

S4 Homogeneous  PM2.5 decreases in the whole 
area

“-1 µg/m3” Baselinec -1 µg/m3

S5 “-2 µg/m3” Baselinec -2 µg/m3

S6 Targeted reduction in  PM2.5-related mortality 
in the whole  aread

“-1/3 of mortality” Equivalent to decreasing homogeneously 
and sufficiently the  baselinec exposure to achieve 
the indicated health  objectiveeS7 “-1/2 of mortality”

S8 “-2/3 of mortality”

S9 2008/50/EU  Directivef

“2020 target”
In the whole study area” Baselinec -15%

S10 Restricted to  PM2.5 exposure hotspots” Baselinec -15%, only if baseline ≥ 90th centile 
of  PM2.5  levelsg
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the substance is not persistent in the body or the envi-
ronment, and that the compliance to the regulation is 
perfect. Other scenarios are however worth considering 
in specific situations; in particular, one may wish to con-
sider levels strictly higher than zero as an alternative to 
the current situation if the factor corresponds to a sub-
stance persistent in the body or the environment (so that 
a ban would not lead to the immediate disappearance of 
the pollutant, as is the case for DDT [dichlorodiphenyl-
trichloroethane] or PCBs [polychlorinated biphenyls]), 
if it has both human and natural sources (as is the case 
for particulate matter, which are also emitted by volcanic 
eruptions) or if exposure to the factor does not have a 
monotonic association with disease occurrence (as is the 
case for outdoor temperature, exposure to sun radiations 
or level of essential elements in the body). The meth-
odology of the Global burden of disease (GBD) project 
coordinated by IHME refers to a Theoretical Minimum 
Risk Exposure Level (TMREL) defined as the exposure 
level that “minimizes risk at the population level, or […] 
captures the maximum attributable burden” [14]. Alter-
natives exist, such as considering a feasible minimum 
(which may however require a specific approach in order 
to be rigorously identified), or specific existing guideline 
levels (e.g., WHO air quality guidelines [41]).

In the case of particulate matter (PM), studies in the 
early 2000s typically used WHO PM guideline value 
(then 10  µg/m3 for  PM2.5) as the target, which then 
seemed a remote target – although this value did not 
correspond to a “no-effect level”, which has not been evi-
denced for  PM2.5. Today, as exposures in many Western 
cities decreased close or below 10 µg/m3, lower reference 
values are often chosen, such as the 2021 WHO guide-
line value of 5  µg/m3, the lowest observed value, or the 
fifth percentile of the values observed across the cities of 
the country (which, in the case of PM, will lead to very 
different reference values in India and Canada, making 
between-country comparisons difficult), or an estimate 
of the levels that would be observed in the absence of 
anthropogenic source of PM. Since the “target” value has 
of course generally a very large impact on estimates, it is 
crucial for it to be explicitly quoted when summarizing 
the study results. Mueller et al. [36] give the example of 
a policy that would simultaneously target noise, air pol-
lution, green space and heat exposure, as well as physical 
activity, taking for each exposure factor levels interna-
tionally recommended (in general by WHO) as counter-
factual scenario (see Figure S1).

Considering environmental and societal side effects 
of policies
Ideally, the counterfactual scenarios should consider 
possible side effects and remote consequences of the 

considered intervention. For example, a risk assess-
ment of a ban of bisphenol A (totally or for specific uses) 
could consider several counterfactual scenarios, one in 
which the consumer products containing bisphenol A 
are simply banned (possibly trying to consider the soci-
etal cost of such a ban if the products product a benefit 
to society), and others in which bisphenol A is replaced 
by other compounds, including some that also have pos-
sible adverse effects, such as bisphenol S. Studies on the 
expected impacts of climate change mitigation strategies, 
such as the limitation of fossil fuels use, may consider 
health effects due to the expected long-term improve-
ment in climate, but also those related to changes in air 
pollution levels possibly resulting from the limitation of 
fossil fuels use, and also the possible consequences of 
increases in physical activity if this limitation of fossil 
fuels is expected to be followed by shifts from individual 
cars to other more active modes of transportation.

Study area and population
The study area should be coherent with the policy or fac-
tor considered, trying to include the whole population 
likely to undergo positive or negative impacts from the 
factor or policy. Its choice should also take into account 
the entity (institution, community, administration, pop-
ulation…) able to take a decision regarding this policy. 
Choosing an area larger than that targeted by a policy 
makes sense, as it may allow to consider unplanned 
effects on the surrounding areas (for example, in the 
case of a policy planning to ban the most polluting vehi-
cles from a city, an increase in the traffic of these vehi-
cles in the surrounding cities), and to provide estimates 
specific to various sub-areas, which are also relevant 
because sometimes the exact area concerned with a pos-
sible policy is not always decided a priori – in which case 
the study may help making this decision. However, one 
should also keep in mind that considering a study area 
larger than that in which the policy will be implemented 
may entail possible dilution effects – i.e., the impact may 
appear lower than it is actually in the population targeted 
by the policy, if expressed on a multiplicative scale, that 
is, as a change in the proportion of deaths or DALYs in 
the area. When considering a policy decided at the city 
level, estimating the health impact in the city and pos-
sibly the surrounding ones is for example relevant; for a 
European policy, one may consider the whole Europe, or 
a (possibly random) group of regions if limiting the size 
of the study population limits bias, costs or uncertainties, 
which is not always the case for risk assessment studies 
contrarily to field studies.

In addition to factors related to health (see Assess-
ment of disease frequency) and to exposure to the factor 
or policy considered (such as possibly fine-scale data on 



Page 8 of 32Rigaud et al. Environmental Health           (2024) 23:13 

population density), it is usually relevant to collect infor-
mation on population size, sociodemographic (docu-
menting e.g., age and social-category distribution) and 
behavioral factors. Although seldom done in practice in 
the context of risk assessment studies, it is worth consid-
ering conducting a specific survey to document specific 
characteristics of the study population not available in 
administrative or health databases. For example, if the 
intervention may as a side effect impact physical activ-
ity (which has a non-linear relation to health), it is useful 
to document the distribution of physical activity in the 
population.

Exposure (risk factors) assessment
Identification of exposures
In the simple case of a risk assessment study consider-
ing a single pre-identified factor A, before assessing the 
impact (Health impact), one has to:

• assess the expected exposure to factor A in the study 
population under the considered counterfactual sce-
narios (see Exposure assessment tools – general con-
siderations to Reliance on exposure biomarkers);

• identify all health endpoints and possibly biological 
parameters  H1,  H2…  Hi that can or could be influ-
enced by A (see Identifying all health-related events 
possibly influenced by the considered exposures);

• assess the level of evidence regarding the possible 
effect of A on  H1, of A on  H2…  Hi (see Estimating 
the strength of evidence about the effect of factors on 
health);

• assess the incidence of the health endpoints in the 
considered population, and the dose response func-
tion of all exposure-outcome pairs (A,  H1), (A,  H2)… 
(A,  Hi) (see Exposure-response functions).

As described in Fig.  2, the level of intervention can 
correspond to either the emission of factor A (e.g., what 
a chemical plant is allowed to emit on a yearly basis, 
box 1), its concentration in a milieu (e.g., air, water, food, 
box 3A), human exposure to A (referring, strictly speak-
ing, to the contact of humans with the factor, integrat-
ing both the duration of the contact and the level of the 
compound, box 4); A may also correspond to a behavior 
(e.g., having sexual intercourse without using condoms, 
box 3B). We will here refer to all of these situations with 
the same simplifying terminology of exposure in the 
loose sense, keeping in mind that this differs from its 
strict definition given above, and that depending on the 
situation, one may have to do some modelling to trans-
late the intervention into a metric compatible with the 

exposure response function to be used (see Exposure 
assessment tools – general considerations below).

If the starting point of the study is now a family of fac-
tors (e.g., endocrine disruptors, or environmental factors, 
as in the case of Environmental burden of disease assess-
ments), then one may first have to list/identify which fac-
tors fall under this definition. This step can in practice be 
challenging and may require a specific technical study.

If the study aims at assessing the impact of a policy, one 
has to first analyze if and how the policy may translate in 
terms of environmental (understood in the broad sense) 
impacts – that is, identify which chemical, physical and 
social factors  A1,  A2…  Aj may be influenced by the policy, 
and quantify the expected amplitude of the variations 
in these factors once the policy has been implemented. 
For example, if one aims at estimating the impact of 
banning a fraction of gasoline- and diesel-powered cars 
or trucks from an area, then one will generally have 
to rely on atmospheric dispersion models to estimate 
which changes in specific atmospheric pollutants will be 
induced by this ban, in addition to consider other conse-
quences of the ban, e.g. related to physical activity. This 
actually corresponds to a study in itself (an environmen-
tal and social impact assessment), which may be already 
available, possibly because of legal requirements. One 
would then have to perform the three steps listed above 
(see end of Study area and population) for each of the 
factors  A1,  A2…  Aj, influenced by the policy, which may 
imply to assess and synthesize the evidence regarding a 
large number of exposure-outcome pairs  (Ai,  Hj).

The consideration of several risk factors has implica-
tions in the way the health impact is estimated, which 
are discussed in Consideration of multiple risks factors 
below.

Exposure assessment tools – general considerations
Whatever the starting point of the study (i.e., the tar-
geted intervention or factor), the estimation of the 
health impact should ideally rely on some estimate of 
the exposure metric coherent with the dose–response 
function considered (see Exposure-response functions 
below), which should itself be chosen to minimize the 
uncertainties and bias in the final risk estimate. If, for 
example, the evaluated intervention corresponds to the 
closing of a plant emitting hazardous gases, one could 
attempt estimating the spatial distribution of the air 
concentration of the corresponding gases in the area 
surrounding the plant, averaged over a relevant time 
period, to convert this spatial distribution into an esti-
mate of population exposure taking into account the 
spatial distribution of density of the target population 
(e.g., general population or any specific subgroup) in 
the study area, and possibly any relevant information 
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on the time–space activity budget of the local popula-
tions, and then estimate the population risk from this 
estimated distribution of population exposure and a 
dose–response function chosen in coherence with this 
exposure metric. Similarly, if the intervention aims at 
changing a behavior such as having unprotected sexual 
intercourse, one would ideally need to obtain estimates 
of such behaviors before and after the hypothetical 
intervention, to provide an estimate of the incidence of 
a sexually transmitted disease.

All the tools of exposure science and etiological epi-
demiological studies can in principle be used to assess 
exposures, from environmental models to question-
naires, dosimeters and biomarkers, keeping in mind that 
they differ in terms of resolution, accuracy, cost, potential 
for bias…

As risk assessment studies are expected to provide an 
estimate relevant in a given population, representative-
ness of the group in which exposure is assessed with 
respect to this target population is a desired feature, con-
trarily to etiological epidemiological studies, for which 
representativeness is usually not required [42]. For this 
reason, “simpler” rather than more accurate and cum-
bersome approaches to exposure assessment than those 
used in etiological studies may be preferred, since the 
later, although more accurate at the individual level, may 
entail selection bias and thus have in some instances 
more limited validity at the population level. Conse-
quently, environmental models or data, which may be 
developed without always requiring contact with the 
population, are very frequently used in risk assessment 
studies of environmental factors; we discuss below issues 
related to the spatial resolution of such models without 
entering into details of models development and validity 
not specific to risk assessment studies [43]; for behav-
iors, questionnaires may be used, while for many chemi-
cal exposures, data from biomarkers or exposure models 
may be preferred.

In addition to issues related to the validity of the 
exposure metric itself, errors may arise because of par-
ticipation (selection) bias induced by the selection of 
the population for which this metric is available (e.g., 
answering a questionnaire or providing biospecimens to 
assess exposure biomarkers). Simply identifying a repre-
sentative sampling base may be challenging in some areas 
if no relevant public database exists or if access cannot 
be granted; even if such a relevant sampling base exists, a 
participation rate of 100% cannot be expected, and refus-
ing to participate can a priori be expected to be associ-
ated with sociodemographic characteristics and possibly 
with the exposure of interest. Tools such as reweighing 
approaches may be used to limit the impact of such selec-
tion bias on the estimated exposure distribution.

Again, whatever the approach used, the estimate of 
exposure provided should be coherent with the hazard 
identified and the dose response function to be used in 
the following steps (i.e., a dose–response function based 
on yearly exposure averages should not be combined 
with a weekly estimate of exposure).

Issues related to the assessment of environmental factors 
through questionnaires
Questionnaires may be used to assess behaviors, such 
as the frequency of use of specific modes of transpor-
tation (which would be relevant if one aims to quan-
tify the impact of a policy entailing a shift in the share 
of specific modes of transportation), diet, smoking or 
physical activity and also psychosocial factors. Just like 
for environmental models, validation studies are par-
ticularly relevant to discuss and possibly quantify (see 
below, sensitivity analyses, Sensitivity and uncertainty 
analyses) any bias possibly induced by the question-
naire used, keeping in mind that the validity of ques-
tionnaires may be population-specific, as the validity 
of replies will depend on the social desirability of the 
considered behavior (for example, replies to question-
naires on alcohol consumption may be dependent on 
the social perception of alcohol consumption in the 
given cultural background), as well as evolve over time 
in a given society, limiting the validity of temporal 
comparisons.

When it comes to assessing exposure to specific 
chemical or physical factors, questionnaires may be 
very limited. Indeed, one is generally not aware of 
one’s own exposure to a chemical, in particular if expo-
sure occurs through several routes (e.g., in the case of 
bisphenol A, PCBs, or specific pesticides), and can-
not provide any quantitative estimate of her/his own 
exposure; additionally, one’s perception of exposures 
may be strongly influenced by social or psychologi-
cal factors (e.g., one’s perception of the noxiousness of 
the factor, or the existence of a disease that one con-
siders to be imputable to the considered exposure), 
which may bias the estimated impact (assuming that 
perception is not of interest by itself ). As an illustra-
tion, a European study showed limited agreement of 
one’s self-declared exposure to traffic with an objective 
assessment of exposure, to extents that varied between 
countries [44]. The fact that questionnaires alone are 
typically limited to assess exposures to chemical and 
physical factors does not imply that they cannot be 
used in combination with other sources of informa-
tion to provide a relevant exposure estimate (see Reli-
ance on environmental models and surveys below). 
Moreover, questionnaires (including those relying on 
smartphone-based applications) are essential to assess 
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behavioral factors such as dietary patterns, alcohol or 
tobacco consumption, physical exercise, transporta-
tion patterns, sexual activity… These often rely on data 
collected independently from the health impact assess-
ment study, but there is no reason for investigators 
planning such a study not to envision an ad-hoc ques-
tionnaire survey.

Reliance on environmental models and surveys
In some areas, public authorities or other institutions 
developed “databases” regarding specific factors that may 
be a relevant source of information about the exposure 
of interest. These databases may be built from various 
sources and approaches. These include data on sources 
of specific hazards (e.g., maps on the location of pollution 
sources or on the chemical composition of cosmetics or 
other consumers’ products), environmental monitoring 
(e.g., databases on water contamination (typically based on 
measurements in the water distribution network, job-expo-
sure matrices in an occupational setting or models), corre-
sponding to boxes 2, 3A and 3B of Fig. 2 (the case of human 
biomonitoring is discussed specifically below). When avail-
able, databases on sources and environmental models and 
measurements have the advantage of being possibly repre-
sentative of a specific milieu, in particular if they are based 
on environmental measurements or models, which can 
more easily be developed on a representative basis than 
measurements implying the participation of human sub-
jects; they also have the advantage to rely on information 
often not known to the inhabitants of the study area (e.g., 
the level of contamination of the air or drinking water or 
food by specific compounds) and to possibly cover large 
spatial areas and extended temporal windows. They may 
provide source-specific information, which may be relevant 
if the health impact assessment study considers a possible 
intervention limited to a specific source of exposure; for 
example, atmospheric pollution dispersion models typically 
combine emissions from urban heating, traffic, industry… 
and may be used to predict environmental levels that would 
be observed assuming that emissions from one or several 
specific sources are decreased [29]. They possibly allow 
avoiding directly contacting individuals to collect informa-
tion on their exposure, although in many situations it is 
actually relevant to combine such environmental models 
with questionnaire data: for example, questionnaires are 
essential to combine models or data on food contamination 
or dietary characteristics with individual information on 
food consumption patterns [45], models or measurements 
in drinking water benefit from information on water use 
(sources and amount of water drunk, frequency and tem-
perature of baths and showers… [46], and atmospheric pol-
lution models may be relevantly combined with individual 
information on time space activity, to integrate individual 

exposures across the places where each individual spends 
time [47, 48]. Indeed, environmental models typically pro-
vide an estimate of an environmental level and not an esti-
mate of personal exposure in the strict meaning. Other 
issues related to their use is that such models do not exist 
for all environmental factors and areas and that their spatial 
resolution may be limited.

Environmental models—Issues related to spatial scale
Indeed, the spatial resolutions of such models vary 
between models. In the case of atmospheric pollutants, 
early risk assessment studies typically relied on data 
from background monitoring stations, which cover 
a generally small fraction of territories and are some-
times distant by several kilometers one from another. 
In addition, background monitoring stations are by 
definition located in “background” sites, which are 
located far (typically, a couple hundred meters or more) 
from air pollution “hot spots” (see Fig. 3). On the one 
hand, relying on data from background monitoring 
stations may underestimate health impacts, as these 
background stations are not meant to represent people 
living or spending time close to air pollution hot spots 
such as industrial sources or high-traffic roads. On the 
other hand, stations located close to specific sources to 
monitor their activity are not meant to provide an esti-
mate valid for a large area.

In the last decades, models providing a finer-scale 
resolution, such as geostatistical models based on 
measurement campaigns in a large number of points, 
land-use regression or dispersion models were devel-
oped [49]. These have a much finer spatial resolution 
(Fig. 4). In a study in two French urban areas, assess-
ing exposures from background monitoring stations 
entailed an underestimation of the mortality attribut-
able to fine particulate matter by 10 to 20%, compared 
to fine-scale models with spatial resolutions taking 
into account variations in the pollutants’ concentra-
tion with a spatial scale of about 10  m [34]. Identify-
ing the most relevant approach for risk assessment 
purposes is not straightforward. Even some fine-scale 
approaches may entail some error, as these may rep-
resent a “smoothed” version of the actual spatial con-
trasts in air pollution, and as smoothing typically 
entails a poor representation of the extreme values. 
These models with a very fine spatial resolution may 
be limited in terms of temporal resolution, which may 
be an issue for some health outcomes. Moreover and 
maybe counter-intuitively, relying on spatially very fine 
models may not be desirable in risk assessment stud-
ies in which there is no available data on the time–
space activity of individuals. Indeed, if, in the absence 
of such individual time–space activity data, one has to 
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assume that individuals are exposed at the concentra-
tion assessed at the location of their home address, 
then models that tend to smooth concentration over 
rather large areas may be more accurate for the pur-
pose of risk assessment than models very fine spatially 
used ignoring the other places where individuals spend 
time.

Integrating environmental models with data on population 
density
As already mentioned, environmental models do not pro-
vide an estimate of the population exposure in the strict 
sense, if only because population density varies with 
space so that simply averaging the environmental levels 
over the study area, which gives the same weight to each 
location (and is equivalent to assume that the popula-
tion is homogeneously distributed spatially across the 
study area) may poorly approximate population expo-
sure. Getting closer to population exposure may imply 
to combine the estimated environmental level with data 
on population density (i.e., weighting concentrations 
with population density), which will allow considering 
the fact that the population is not evenly distributed in 
a given area. Kulhánová et al. [51] have illustrated these 
issues in a study of the lung cancer risk attributable to 
fine particulate matter exposure in France. Compared to 
a model that took into account  PM2.5 exposure at a 2 km 

resolution and population density, a model ignoring the 
spatial distribution of homes within each département 
(geographical units of 200,000 to one million inhabitants) 
underestimated the population attributable fraction by 
about one third; when the variations in population sizes 
between départements was ignored, so that one assumed 
that everyone in the country was exposed to the median 
level observed at the country level, the estimated popu-
lation attributable fraction was divided by 3.6, compared 
to the original one taking into account population den-
sity and fine-scale air pollution data (see Table 2). A large 
part of this bias was due to ignoring population density.

Note that at this step, the environmental levels and 
population density data can be combined with other spa-
tially referenced data, such as information on sociodemo-
graphic characteristics, as a way to provide an estimate 
of how exposure distribution varies across these sociode-
mographic characteristics.

Reliance on personal dosimeters
Exposure assessment may also rely on personal sensors 
and dosimeters [54]. Generally, these have the advan-
tages to provide an estimate of exposure that does 
not rely on detailed data on the sources of the factor, 
which are not always available (for many chemicals 
whose sources are not always monitored, such as ben-
zene and other volatile compounds or pesticides), not 

Fig. 3 Cross-sectional variations of fine particulate matter  (PM2.5) throughout the urban area of Lyon, as estimated from a fine-scale dispersion 
model, and typical locations of background permanent monitoring stations (black circles). Adapted from [40]
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on a modeling of the dispersion of the factor from its 
sources to the human environment, contrarily to the 
approaches discussed above in 2.4.4 to 2.4.6. Since 
dosimeters are carried by individuals, they efficiently 
allow taking into account the variability in exposure 
due to people moving between different environment 
[47]. They also allow to capture indoor levels of the 
factor of interest, which is of importance (for factors 
whose levels indoors and outdoors differ, such as ozone, 
benzene, radiations, temperature, noise…) given that 
people spend the vast majority of time indoors, at least 
in Northern countries. This increased “spatial” resolu-
tion compared to the above-mentioned environmental 
models (which typically capture outdoor levels, and 
generally at one location only if the time space activity 

of the population is not assessed) generally comes at the 
cost of possible limitations in terms of temporal reso-
lution. In particular, it may be cumbersome to assess 
long-term exposure (which may be toxicologically rel-
evant for specific outcomes) using personal dosimeters, 
which are typically carried over short-term (typically, 
from a day to a week) periods; these measurement peri-
ods may be repeated over time to improve the accuracy 
of the assessment as a proxy of long-term exposure 
[55], as discussed below for exposure biomarkers. 
Dosimeters are particularly relevant for media-spe-
cific exposures or factors, such as atmospheric pollut-
ants including particulate matter [56, 57] or nitrogen 
oxides [47, 58], benzene [59, 60] and other volatile 
organic compounds [61], non-ionizing radiation such 

Fig. 4 Spatial resolutions of various air pollution (nitrogen dioxide) exposure models developed in a middle size city. a Estimates based 
on permanent background monitoring stations; b geostatistical model relying on a fine-scale measurement campaign; c dispersion model taking 
into account emission and meteorological conditions; d Land-use regression model relying on the same measurement points as geostatistical 
model (b) [50]
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as ultra-violet [62] or ionizing radiation [63], tempera-
ture, noise [64]… Contrarily to environmental models, 
their use in the context of a health impact assessment 
study implies to recruit a population sample as repre-
sentative of the target population as possible. Their use 
in risk assessment studies appears quite limited so far 
outside the occupational setting [61].

Reliance on exposure biomarkers
In the case of chemicals with multiple routes of exposure 
such as specific pesticides, which may be present in food, 
water and air, exposure biomarkers (the assessment of the 
compound or of its metabolite(s) in a tissue or fluid of the 
organism) may be a relevant approach. With the devel-
opment of biomonitoring studies [65–67] and of cohorts 
collecting biospecimens [68], exposure biomarkers may 
be expected to be increasingly used in quantitative risk 
assessment studies related to chemicals.

Biomarkers study typically provide an estimate of the 
circulating or excreted level of the compound, which 
is not exposure in the strict sense but is related to it, 
while also depending on toxicokinetic factors, that typi-
cally vary between subjects [69]. Biomarkers integrate 
multiple routes of exposure, in that the level of a com-
pound or its metabolites in a given body compartment 
will generally depend on the doses entering the body 
by ingestion, inhalation, dermal contact… (with many 

specificities according to the compound and tissue in 
which the metabolites are assessed). This may or may 
not be seen as an advantage, depending on the study 
aim, which may relate to exposure as a whole or to route-
specific exposure (e.g., that due to food contamination). 
Considering these different routes is in principle possible 
via environmental models and measurements, but may be 
very cumbersome in terms of data collection and mod-
eling work (consider for example a study on the impact of 
pesticides, which would have to estimate pesticide levels 
in water, possibly in the air, in food and to assess eating 
behaviors to try to reconstruct an individual’s exposure). 
A limitation of exposure biomarkers is related to the 
short half-life of many chemicals in the body, which 
implies that a spot biospecimen will generally be a poor 
proxy of long-term internal dose [70]. This is an issue 
for etiological studies, in which dose response functions 
assessed using a single biomarker in each subject are 
expected to suffer from bias towards the null [70]. This 
issue may also impact risk assessment studies. Indeed, 
even in the context of classical-type error, which may be 
hypothesized for biomarkers, although the population 
average exposure may not be biased when a spot meas-
urement is done in each subject, the estimation of other 
features of the exposure distribution, such as variance 
and hence the estimation of specific exposure percen-
tiles, is expected to be biased. Like questionnaire-based 

Table 2 Illustration of the influence of the spatial resolution of the exposure model and of the consideration of data on population 
density in health impact assessment studies (adapted from [51])

The table gives the estimated population attributable fraction (PAF) of lung cancer cases attributable to fine particulate matter  (PM2.5) exposure in France among 
subjects aged 30 years and more, for the year 2015 [51]

In approach 1 (main model), the PAF is estimated using a fine scale  PM2.5 dispersion model (2 km grid) at the country level, averaged at the “IRIS” (neighborhood) 
scale and weighted by population density. In approach 2, exposure is smoothed by assuming that all IRIS of each département have the same  PM2.5 concentration 
(corresponding to the median population-weighted value in each département), or that all départements in the country have the same  PM2.5 concentration value 
(“country scale”). In approach 3, values also correspond to the median value at the département (respectively, country) levels, with the only difference compared to 
approach 2 that median value are estimated without weighting with population density

Approach 4 differs from approach 1 in that an alternative RR of 1.40 per 10 µg/m3 increase, obtained from a meta-analysis from ESCAPE project including 14 cohorts 
from eight European countries [52] is used, while a RR of 1.09 is used in model 1 [53]

CI Confidence interval, PAF Population attributable fraction, RR Relative risk

Hypothesis PM2.5 exposure: 5th–50th–
95th percentiles (µg/m3)

PAF (%) (95% CI) Number of attributable lung 
cancer cases (95% CI)

Relative difference 
compared to main model 
(%)

Approach 1: population-weighted PM2.5 concentration (main model)
 IRIS scale 8.3 – 13.8 – 21.8 3.6 (1.7–5.4) 1,466 (679–2,193) –

Sensitivity analyses
Approach 2: population-weighted median PM2.5 concentration
 Department scale 9.7 – 13.8 – 19.1 3.6 (1.7–5.4) 1,471 (680–2,203) 0.4

 Country scale 13.8 – 13.8 – 13.8 3.2 (1.5–4.9) 1,303 (598–1,965) -11.1

Approach 3: median PM2.5 concentration without population weighing
 Department scale 6.0 – 11.1 – 16.4 2.4 (1.1–3.6) 964 (445–1,446) -34.2

 Country scale 11.2 – 11.2 – 11.2 1.0 (0.5–1.6) 416 (190–631) -71.6

Approach 4: alternative RR of lung cancer (1.40 per 10 µg/m3 increase in PM2.5, instead of 1.09)
 Neighbourhood 8.3 – 13.8 – 21.8 12.9 (0.2–25.3) 5,232 (78–10,221) 256.8
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approaches, and generally to a larger extent, biomarker-
based approach are dependent on individual’s participa-
tion and are therefore prone to selection biases; these 
may, again, be partly corrected if information on the fac-
tors associated with participation is available. Just like for 
all other approaches to assess exposures, behaviors and 
other health drivers, although rarely done, there is no 
reason beyond logistics and funding not to consider an 
ad-hoc biomonitoring survey as part of the HIA, on the 
contrary. We are not aware of specific quantitative evalu-
ation of the bias associated with all the possible exposure 
assessment tools to a priori justify the choice of the expo-
sure metric used in a given risk assessment study.

Exposure–response functions
Identifying all health‑related events possibly influenced 
by the considered exposures
For each factor (in the broad sense of chemical, physical, 
psychosocial, behavioral factor) primarily considered or 
identified at the previous stages as possibly influenced 
by the considered intervention, all health-related events 
that this factor might influence (the “health effects”, or 
hazards, a qualitative notion not to be mistaken with the 
quantitative health impacts) need to be identified. This 
identification should cover proximal and more remote 
effects, and positive (beneficial) as well as negative (det-
rimental) effects. For several environmental factors, the 
list of possible health effects may be long; for example, 
lead is a cause of neurological, nephrotoxic, cardiac, 
reproductive… effects, while particulate matter can affect 
cardiac, respiratory, metabolic and possibly reproductive 
and neurodevelopmental function [71]. Complex policies 
may entail numerous health consequences; for example, 
acting on traffic will affect air pollutants, but also noise, 
traffic accidents, greenhouse gas emissions, that may 
have long-term health effects (even if the correspond-
ing impact may be limited, depending on the considered 
spatial scale). Even if the study does not provide a quan-
titative assessment of all the effects of a given exposure, 
identifying all of these effects is important. This identi-
fication of possible health effects should in principle rely 
on a systematic review that should encompass the human 
literature but also toxicology and possibly in  vitro or in 
silico studies that may inform on mechanisms and point 
to specific health effects. Such an identification of all 
likely effects of the factor, change or intervention con-
sidered may rely on a recent well-conducted published 
review.

Estimating the strength of evidence about the effect 
of factors on health
The identification of each health effect possibly influ-
enced by each considered factor should come with some 

assessment of the corresponding level of evidence. The 
assessment of the level of evidence evolved in the last 
decades from experts’ opinion to more formalized sys-
tematic reviews, possibly followed by meta-analyses and 
evidence integration approaches combining streams of 
evidence from various disciplines such as in silico data, 
in  vivo and in  vitro toxicology, environmental sciences, 
epidemiology… (see e.g., [72, 73] or the chapter 6 of [74] 
for a presentation of these approaches). Given the some-
times very large effort required by the implementation 
of such approaches, in particular for factors about which 
a vast literature exists, it is relevant to rely on existing 
assessments of the level of evidence, whenever a recent 
one with a transparent and relevant methodology is avail-
able. If not, the time and effort required for this step 
should not be underestimated, so that a review of the lit-
erature from all relevant disciplines, experts from these 
disciplines can be gathered to synthesize and weight the 
evidence and provide an assessment on a pre-specified 
grading scale (e.g., in terms of probability of causation). 
In case several factors are considered, then the number 
of exposure outcome pairs considered can be very large. 
An example of the assessment of the strength of evidence 
about endocrine disruptors is provided in Trasande et al. 
[75] and in Table 3.

Handling of the strength of evidence about the effect 
of environmental factors on health
In the past, a common practice was to only consider 
exposure-outcome pairs  (Ai,  Hj) for which the strength 
of the evidence regarding the effect of  Ai on  Hj was very 
strong or deemed causal. Another common option is 
to focus on a specific a priori chosen health outcome 
induced by the exposure, acknowledging that other 
effects are ignored; for example, many studies quantified 
the impact of tobacco smoke on lung cancer only, while 
other effects, e.g., on cardiovascular diseases, are certain.

The obvious consequence of these practices is to bias 
the estimated impact of the exposure or policy, generally 
in the direction of an underestimation (assuming that 
all associations go in the same direction, e.g., a negative 
effect of exposures on health). This is obvious for the sec-
ond option above, but is also true for the first one. This is 
because in some cases, the discarded exposure-outcome 
associations will eventually turn out to correspond to 
very likely effects, as research continues, while the sym-
metrical situation of an effect deemed very likely or cer-
tain becoming unlikely as research unfolds is arguably 
much rarer in practice [76].

Possible alternatives to only considering very likely 
exposure–response pairs include:
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a) Considering all exposure-outcome pairs for which 
the estimated level of evidence is above a certain level 
(e.g., “likely association” or above, keeping in mind 
that diverse approaches are used to obtain these cau-
sality gradings and that various scales of evidence 
are used by various institutions), and estimating the 
corresponding impacts of these likely effects just 
like for the exposure-outcome pairs with a very high 
level of evidence. A special case consists in consider-
ing all exposure-outcome pairs for which there is at 
least “some evidence” of an association; in this case, 
there is potential for an overestimation of the overall 
impact (again, assuming that all associations go in the 
same direction);

b) Performing sensitivity (additional) analyses consid-
ering exposure-outcome pairs with decreasing lev-
els of evidence, and report the estimated impact of 
the exposure or policy considering only very likely 
effects, as well as the impact estimated considering 
also likely effects and suspected effects;

c) Considering all exposure-outcome pairs for which 
the estimated level of evidence is above a certain level 
in the risk assessment and summing their impacts, 
weighing the sum by a weight increasing with the 
level of evidence of the corresponding effect, so that 
in the overall impact more weight is given to impacts 
from exposure-outcome pairs with a high level of evi-
dence and less to the less likely ones.

Many studies more or less explicitly correspond to 
approach a). For example, the GBD methodology cur-
rently focuses on exposure-outcome pairs for which there 
is “convincing or probable evidence” [14]. An example of 

approach c), which is an intermediate one between the 
two first alternatives above, is a study of the cost of expo-
sure to endocrine disruptors in the European Union [12, 
75]. In this study, the health impact (and corresponding 
cost) attributable to exposure to each considered endo-
crine disruptors has been assessed using a Monte-Carlo 
approach in which, at each simulation run, the impact of 
a given exposure-outcome pair was possibly set to zero, 
according to the estimated probability of causation (with 
more likely effects being less often set to zero), and the 
overall impact was estimated averaging over many simu-
lation runs and summed across exposure-outcome pairs. 
For example, in the case of a dose–response function of 
an exposure-outcome pair for which the strength of evi-
dence had been rated to be about 50%, then the corre-
sponding attributable cases were taken into consideration 
in only half of the simulation runs [75]. This approach 
seems relevant if a large number of factors is considered 
and if one assumes that the literature is not systemati-
cally biased. Indeed, if twenty factors are considered and 
the evidence is properly evaluated, then, assuming that 
the weight of evidence is estimated to be 50% for all fac-
tors, one may expect that eventually 10 of these factors 
turn out to really have an impact, so that counting half 
of the effect of the twenty factors may fall closer to the 
true impact (corresponding to that of ten factors) than 
if all twenty factors are ignored because the strength of 
evidence is not high enough. Note that the assumption 
regarding the fact that the literature is not biased can 
be debated for environmental factors, as for many fac-
tors, the weight of evidence typically tends to increase 
over time, rather than vary up or down randomly, and 
as a literature review of environmental alerts concluded 

Table 3 Estimated strength of evidence regarding the effect of endocrine disruptors on health

The overall probability of causation (last column) was based on the toxicological and epidemiological evidence. From Trasande et al. [75] (extract)

Exposure Outcome Strength of human evidence Strength of 
toxicological 
evidence

Probability 
of causation, 
%

PBDEs IQ loss and intellectual disability Moderate-to-high Strong 70–100

Organophosphate pesticides IQ loss and intellectual disability Moderate-to-high Strong 70–100

DDE Childhood obesity Moderate Moderate 40–69

DDE Adult diabetes Low Moderate 20–39

Di-2-ethylhexylphthtalate Adult obesity Low Strong 40–69

Di-2-ethylhexylphthtalate Adult diabetes Low Strong 40–69

Bisphenol A Childhood obesity Very low-to-low Strong 20–69

PBDEs Testicular cancer Very low-to-low Weak 0–19

PBDEs Cryptorchidism Low Strong 40–69

Benzyl and butyl-phthalates Male infertility, resulting in increased assisted 
reproductive technology

Low Strong 40–69

Phthalates Low testosterone, resulting in increased early 
mortality

Low Strong 40–69
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that “false alarms” tended to be very rare in environmen-
tal health [76]. This would rather support not restrict-
ing the risk assessment to “certain” exposure-outcome 
associations, and also consider those with a lower level 
of evidence, possibly taking the level of evidence in the 
estimation as described above in c). Considering associa-
tions with less than certain level of evidence also allows 
to quantify the possible impact of suspected hazards, 
which is relevant to prioritize environmental factors for 
which research efforts should be dedicated [77]. In prac-
tice, the ability to implement the approaches depends on 
the availability of relevant data on exposures (which can 
be collected in the context of the risk assessment if not 
already available), exposure response functions (which 
may be very long and cumbersome to obtain if they are 
not already available) and baseline population health; 
this means that whatever the option chosen to handle 
the weight of evidence regarding each exposure-health 
outcome pair, the list of effectively considered pairs 
may be further restricted because of these issues related 
to data availability; this is expected to bias the health 
impact estimate (see Assessing the impact of policies 
versus the impact of exposures for further discussion). 
Transparency on all possibly affected outcomes is any-
way warranted, even if not all of them can eventually be 
incorporated in the estimated overall impact.

Exposure–response functions
Exposure to chemical, physical and behavioral factors is 
now generally assessed on quantitative scales, and the 
expected impact of policies or plans on environmental 
and societal factor can often be translated in terms of 
quantitative variations in drivers of health. The ERF pro-
vides an estimate of the effect (positive or detrimental) 
associated with the exposure at each level (the terms of 
dose, concentration or exposure response function (DRF, 
CRF, ERF) or curve are here used synonymously). Issues 
related to the ERF relate to the validity of its assessment, 
including the slope and shape and to its applicability to 
the study population.

In the context of a risk assessment study, contrarily 
to the estimation of exposure which may in some cases 
be done ad hoc, it is generally not realistic to expect to 
generate from scratch a new ERF (whose estimation may 
require the follow-up of large populations over periods 
of years or decades) so that one has to rely on external 
ERFs. If no ERF is available, then one may either 1) try to 
derive an ERF from existing toxicological (animal) stud-
ies [78], if any or 2) perform a qualitative HIA. If several 
ERFs are available, then performing a meta-analysis of 
these ERFs to obtain a more robust one should be consid-
ered. This step may be done on the basis of the systematic 
review possibly performed to assess the level of evidence 

(see Estimating the strength of evidence about the effect 
of factors on health above).

We will here assume that some ERFs (or relative risks 
or any equivalent measure of association) are available. 
The choice of the exposure response function may have 
large influences, as illustrated by a review of air pollu-
tion HIAs illustrating that the estimated health impact 
of fine particulate matter in Europe varies by a ratio of 
two when switching between exposure–response func-
tions based on two large studies [79] (see also Table 2). 
Three dimensions to consider are those of the sample size 
from which the ERF has been estimated, the potential 
for bias of the ERF, e.g., in relation to the adjustment fac-
tors considered, and that of its applicability to the study 
population. Researchers are typically left with the choice 
between an ERF estimated on a local (or nearby) popula-
tion, which possibly relies on a small population (hence 
a large variance), or more global estimates, such as those 
from meta-analyses, which may be more robust (based 
on larger populations) but ignore possible differences in 
sensitivity between the local population and the rest of 
the world (and therefore are possibly biased). This can be 
seen as an illustration of the classical bias-variance trade-
off. In an ideal situation in which many studies providing 
an ERF are available, one would characterize the poten-
tial for bias of each individual study (evidence evaluation, 
see e.g., chapter 5 in [74]) and then perform meta-analy-
ses, in which the poor-quality studies would be discarded 
if they tend to produce different ERF estimates than the 
studies with better quality. The potential for heteroge-
neity in the ERF across populations and geographical 
areas should also be characterized (see Fig.  5), allowing 
to decide whether it appears more relevant to derive the 
ERF from a small group of studies in settings very similar 
to the setting of the HIA, or from a larger group of stud-
ies covering a wider diversity of settings.

It may be relevant to also consider other factors, such 
as the range of exposures in the studies from which the 
ERF is based, trying to base the ERF on studies with an 
exposure range similar to that of the population in which 
the risk assessment is conducted, and avoiding to extrap-
olate ERFs outside the exposure levels where the bulk of 
the original data lie. In the case of risk assessment stud-
ies focusing on factors of other nature, such as social or 
behavioral factors, for which the hypothesis of heteroge-
neity in sensitivity across large areas is more likely, the 
meta-analysis may not be the preferred option.

The concept underlying the exposure assessment 
in the study from which the exposure response func-
tion is based should be similar to that used in the risk 
assessment study. For example, if “exposure” in the 
study from which the exposure–response curve origi-
nates corresponds to lead environmental level, then 
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it is generally not advised to rely on lead biomark-
ers (which assess the levels circulating in the body 
and not environmental levels) in the risk assessment 
study; the length of the exposure window should also 
be similar, as this length generally influences the esti-
mated exposure variability. If both entities differ, then 
in some cases it may be possible to convert one into the 
other, using a formula derived from a study in which 
both entities have been assessed in the same popula-
tion, or using toxicokinetic modelling. Contrarily to 
what is sometimes said, this requirement of a similarity 
of exposure concepts does not imply that the specific 
approaches used to assess exposures need to be identi-
cal. The measurement approaches can differ, provided 
one is not biased with respect to the other. For exam-
ple, if the exposure considered is fine particulate mat-
ter and the exposure–response function stems from a 
cohort study in which exposure was assessed relying 
on permanent monitoring station, then a dispersion 
model could in principle be used to assess fine particu-
late matter levels in the risk assessment study. In this 
example, both the permanent monitoring stations and 
the dispersion models provide an estimate of the same 
entity (the environmental level), and since etiologic 

studies relying on permanent monitoring stations are 
not expected to be strongly biased compared to studies 
using environmental models with a finer scale such as a 
dispersion model (assuming that the concept of Berk-
son error [80] applies), the exposure–response function 
stemming from the study using monitoring stations is 
in expectation similar to the one that would have been 
obtained if a dispersion model had been used instead to 
assess exposure.

Non‑linear exposure–response functions
The studied factor may have non-linear associations 
with the health outcome considered on a given (e.g., 
additive or multiplicative) scale. Note that such devia-
tions from linearity are not always investigated in etio-
logical studies (possibly for reasons related to limited 
statistical power). As an illustration, a 2001 review on 
the ERF of physical activity effects on mortality indi-
cates that only 17 of the 44 studies conducted a test of 
linear trend [81]. A more recent and robust review does 
a meta-analysis on studies with larger population sam-
ples and finds a better fit for the curve y =—x 0.25, with 
steeper effect of moderate, as opposed to higher, physi-
cal activity on mortality [82].

Fig. 5 Meta-analysis of the relative-risk (RR) of lung cancer associated with  PM2.5 exposure, by region [53]
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Non-linear dose–response functions are all the more 
likely when the underlying mechanisms of action are 
complex and as the range of exposure values increases. 
Ignoring this non-linear relation can significantly impact 
the estimated risk [83], hence potentially misestimating 
the risks or benefits of the change, depending on the dis-
tribution of the exposure in the population.

Non-linear ERFs have been exhibited for several risk 
factors. This is the case for temperature and air pollution 
effects on mortality in particular, and also effects of phys-
ical activity on health (Fig. 6); they may also be expected 
e.g., for endocrine disruptors [84].

Note that many risk assessment studies, at least from 
a certain period in the past, used to assume the exist-
ence of thresholds (hence, a non-linear dose–response) 
in the non-carcinogenic health effects of chemicals, 
and a lack of threshold of carcinogenic effects. There is 
to our knowledge no toxicological justification to such 
general claims. The “threshold” model can be seen as 
being related to the misconception that the NOAEL (no 
observed adverse effect level) estimated in some regula-
tory toxicology studies corresponds to a true “no effect” 
exposure level. In fact, a NOAEL generally corresponds 
to a level with an effect, whose size depends in particular 
on the number of animals used in the experiment aiming 
to estimate the NOAEL [88].

Assessment of disease frequency
The ideal situation corresponds to that of an area where a 
register (or any other system allowing an exhaustive assess-
ment of new disease cases on a representative basis) exists. 
Such registers exist in many countries for cancers but, out-
side Scandinavian countries, are rarer for other diseases. 
Just like for the case of the assessment of exposures, tools 
typically used in etiologic cohort studies may provide a 

relevant estimate of the disease frequency, with the same 
caveat as above, namely that etiologic studies are rarely rep-
resentative of a given area, which would be a limitation if 
the disease frequency obtained in such a study is to be used 
in a risk assessment exercise. Alternatively, one can rely 
directly on estimates of the disease burden, such as those 
provided by the Global burden of disease project (https:// 
www. healt hdata. org/ resul ts/ gbd_ summa ries/ 2019).

The disease frequency can correspond to different enti-
ties, generally related to incidence (the number of cases 
appearing during a given time period in a population) or 
prevalence (the number of cases present at a given time 
point, whatever the time when the disease started). In 
principle, incidence should be targeted. The entity used 
to assess disease frequency should be coherent with the 
measure of association (the exposure–response func-
tion) chosen. For example, a hazard rate stemming from 
a cohort study (or an incident case control study) assesses 
the change in the disease hazard (the strength of appa-
rition of new cases) and needs to be combined with a 
measure of incidence and not prevalence.

Health impact
Concepts of impact
The health impact (or risk) is the core estimate of a risk 
assessment study. It is a challenging notion, both from a 
conceptual and estimation perspective, not to mention 
issues related to the use of this expression with possibly 
different meanings across scientific and public health 
communities. When it comes to the human-derived risk 
assessment studies discussed here, the core product cor-
responds to notions close to the epidemiologic notion of 
attributable fraction. Following Greenland [8], we shall 
remind that this expression covers different concepts: 
the etiologic fraction, the excess fraction, the incidence 

)C)B)A

Fig. 6 Illustration of non-linear exposure response functions: A) Fine particulate matter and mortality [85]; B) Temperature and mortality in Rome 
[86], C) Physical activity and cardiovascular events [87]. MET: Metabolic equivalents: RR: Relative risk

https://www.healthdata.org/results/gbd_summaries/2019
https://www.healthdata.org/results/gbd_summaries/2019
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density fraction, to which one shall add the expected 
(healthy) years of life lost.

The excess fraction corresponds to the proportion of 
cases that would not have become a case during the study 
period in the absence of exposure, while the etiologic 
fraction includes these excess cases as well as the cases 
due to exposure that would also have occurred during 
the study period in the absence of exposure, but at a later 
time point during this period. These two fractions can 
strongly differ because the etiologic fraction includes, in 
addition to the “excess cases”, the cases which would have 
happened also in the absence of exposure, but for which 
exposure made the incidence happen earlier than if the 
subject had not been exposed. These cases for which 
exposure simply made the case happen earlier in the 
study period may correspond to a large fraction of cases 
for complex diseases (as opposed to diseases with a sim-
pler etiology such as infectious diseases), and their num-
ber increases with the duration of the study period. This 
is illustrated with the extreme example of a study of a fac-
tor increasing mortality or any other inevitable outcome: 
if the study period is very long, so that all members of the 
considered population are dead at the end of this period, 
then the excess fraction will become zero (because eve-
ryone eventually dies, even in the absence of the consid-
ered exposure)(see for example Fig.  2.6c in [89]), while 
the etiologic fraction may be non-null if the exposure 
does influence mortality [8]. For this reason, some advise 
not to use the excess fraction as a metrics, or the simi-
lar yearly number of avoided cases in a population [89]. 
Although this metric is indeed limited when it comes to 
estimating a meaningful health impact (that may be used 
to quantify an economic impact), when comparing the 
impact of various factors, it is possible that in many com-
mon situations the ranking of risk factors is preserved 
across metrics. In any case, it is of course crucial to only 
compare exposures in terms of impact assessed using 
exactly the same metric. Although in principle more rel-
evant, the estimation of the etiologic fraction requires 
specific biological knowledge or hypotheses [8].

The incidence density fraction, defined as  (IDE+-IDE-)/
IDE+, where  IDE+ (respectively,  IDE-) is the incidence in 
the exposed (respectively, unexposed) group, has differ-
ent interpretations, depending on whether one relies on 
instantaneous or average incidence densities [8]. Estimat-
ing attributable life-years (or healthy life-years) associ-
ated with the exposure or policy may appear as a relevant 
option for many public health purposes [8] and should be 
attempted. One reason is that this metric does not suf-
fer from the above-mentioned limitation related to the 
fact that, since everyone eventually dies (the deaths are 
postponed, not avoided), the long-term gain expressed as 
a total number of deaths avoided from the reduction of 

exposure to a harmful environmental factor will appear 
much smaller than could be thought at first sight when 
considering the number of deaths avoided during a given 
year. The number of avoided life-years, by depending 
both on the number of deaths postponed each year and 
on the delay in their occurrence induced by the envi-
ronmental change, takes into account the two dimen-
sions of the problem. The same goes for the change in life 
expectancy [89]. Note that a given number of (healthy) 
life-years lost may translate into very different impacts 
on life expectancy, depending on how the life-years lost 
are distributed in the population (something that can-
not be determined without strong assumptions). As an 
illustration, the UK committee on the medical effects of 
air pollution (COMEAP) concluded that anthropogenic 
fine particulate matter  (PM2.5) at the level observed in 
2008 in the UK was associated with an effect on mortality 
equivalent to nearly 29,000 deaths at typical ages in 2008, 
and that, depending on how this burden is spread in the 
whole population, this might correspond to impacts on 
life expectancy ranging from 6 months (if the air pollu-
tion effects was distributed across all deaths) to 11.5 years 
(if  PM2.5 were only implied in 29,000 deaths) [89].

Estimation
The risk estimation relies on a more or less sophisticated 
combination of the exposure distribution under each 
counterfactual scenario with the ERF and with an esti-
mate of the baseline disease frequency in the considered 
population, whether explicitly or hidden in the externally 
available disease burden. This estimation is repeated 
under each of counterfactual scenario, and the risk dif-
ference between the targeted and “baseline” scenario is 
computed. In practice, several ways to estimate the risk 
are used, which are not all strictly valid in theory. The 
main types of approaches correspond to:

• PAF-based formulas: An analytical (formula-based) 
estimation of a “population attributable fraction” 
associated with the exposure, multiplied either by the 
incidence of the disease or by an externally available 
estimate of the disease burden in the population (i.e., 
the impact of the disease in the considered popula-
tion irrespective of all its possible causes, typically, 
expressed in DALYs);

• Person-years method: A simulation of the whole pop-
ulation in which new disease cases occur each year 
during the course of the study period under vari-
ous counterfactual scenarios, from which attribut-
able cases, differences in life expectancy, DALYs and 
other specific measures of risk can be estimated. This 
approach has the advantage of allowing to take into 
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account the dynamics between death rates, popula-
tion size and age structure [89].

Note that alternative approaches exist, such as com-
partmental models (generally, but not exclusively, used for 
infectious diseases) or approaches based on individual, as 
opposed to population-based modeling, such as micro-
simulations (see e.g. Mueller et al. [90] for a review). Com-
partmental models assume that subjects switch between 
mutually exclusive states (e.g., susceptible, infected, recov-
ered, dead, for an infectious disease) and model the trajec-
tory of each individual from the population across these 
states via deterministic or probabilistic approaches. They 
are particularly relevant to model the impact of interven-
tions that may influence infectious diseases, and will not be 
detailed here (see [91] for an example). The lifetable (or per-
son-years) approach mentioned below can in a way be seen 
as a particular example of compartmental models.

As already mentioned, one general issue relates to 
the consistency between the various metrics used; for 
example, the data on baseline disease frequency need 
to correspond to an estimate of disease incidence if the 
exposure–response function is derived from an etiologic 
study assessing the occurrence of new disease cases, such 
as a cohort or incident case-controls study.

The “PAF-based formula” approach can be illustrated 
taking the simple example in which a binary exposure 
level is changed from 1 to 0 (e.g., all smokers stop smok-
ing) in the counterfactual situation and in which the 
overall burden associated with the disease, assumed to 
correspond to a dichotomous outcome (with/without 
disease) is available. The health impact is generally esti-
mated in two steps, the first one corresponding to the 
estimation of the PAF, which, in a situation without con-
founding, is defined as:

Where Y corresponds to the disease, P(Y = 1) is the 
proportion of subjects developing the disease in the study 
period and X is the exposure of interest, with X = 0 corre-
sponding to non-exposed subjects. Equivalently, the PAF 
can be defined as:

Were  Re and  Ru are the risks of disease in the exposed 
and unexposed subgroups, respectively.

Note that the assumption about the lack of confounding 
can be conveniently ignored by relying on the structural 
causal modeling framework [92] and the do operator:

(1)PAF =
P(Y = 1)− P(Y = 1/X = 0)

P(Y = 1)

(2)PAF =
P(X = 1)× (Re − Ru)

P(Y = 1)

where do(X = 0) refers to a situation in which X is set to 0 
through a minimally invasive intervention (in the termi-
nology of Pearl [92]), all other variables possibly influenc-
ing X remaining constant; of course, the “reference” value 
X = 0 can be replaced by any other value or distribution, 
in the case of an exposure with more than two categories.

Coming back to the situation in which X is binary, the 
PAF is generally estimated relying on Levin’s formula, 
which can be derived from the previous ones:

Where P is the prevalence of exposure in the popula-
tion, or P(X = 1), RR the relative risk associated with 
exposure (assumed here to be dichotomous). (Note that 
Rockhill et al. [6] explain that this formula is not valid in 
the context of confounding. This is true when one applies 
the formula (4) in the study population from which the 
RR is estimated but not, as in a risk assessment exercise, 
if one uses (4) to estimate the attributable fraction in a 
given population using a RR assumed to be unbiased esti-
mated from another population.

The health impact is then estimated by combining the 
estimated PAF with the burden of the considered dis-
ease, BD, in the study population, generally available or 
approximated from external sources (or estimated via an 
ad-hoc study):

The unit of BD (e.g., deaths, DALYs, etc.) defines the 
unit of measure of the health impact.

In the case of a categorical assessment of exposure, the 
health impact is estimated as above in each exposure 
category, after which the overall impact is estimated by  
summing over all exposure levels. If exposure is continuous, 
formula (1) above is generalized by integrating the PAF 
over all exposure levels as shown here:

Where m is the maximal exposure level,  PS1 is the 
observed distribution of exposure level (or baseline 
scenario),  PS2 the distribution of exposure under the 
counterfactual hypothesis (which may correspond to 
a uniform distribution with all subjects at zero if zero 
is the targeted level) and RR the exposure–response 
function, with RR(x) providing the relative risk when  
exposure is x.

(3)PAF =
P(Y = 1)− P(Y = 1/do(X = 0))

P(Y = 1)

(4)PAF =
P × (RR− 1)

1+ P × (RR− 1)

(5)Health Impact = PAF × BD

(6)PAF =

m

x=0
RR(x)× PS1(x)dx −

m

x=0
RR(x)× PS2(x)dx

m

x=0
RR(x)× PS1(x)dx
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If the health parameter Y is continuous (e.g., blood 
pressure, birth weight…), then the impact of X on the 
average value of Y can be estimated as:

Where β corresponds to the exposure–response func-
tion describing the average value of the outcome Y as a 
function of the outcome. In the case of a binary expo-
sure with prevalence P, the right-hand side of this for-
mula simplifies to β x P. This value can be multiplied by 
the population size if one wants to express the impact in 
terms of units of Y (e.g., IQ points) due to the exposure in 
the population as a whole.

The person-years approach consists in simulating the 
cohorts corresponding to each of the considered coun-
terfactual scenarios throughout the study period, with 
new disease cases appearing each year. It has several key 
advantages over the formula-based approach, includ-
ing: 1) to make all assumptions more explicit; 2) to avoid 
issues related to the estimation of the expected number 
of cases [7, 93], since the number of subjects still at risk 
in each cohort is explicitly estimated; 3) to be more flex-
ible in coping with various exposures simultaneously, 
assuming various correlation structures between them, 
with scenarios implying gradual changes in exposure 
over time, considering sociodemographic changes in the 
study population, without having to work out an analyti-
cal solution. The cost of this approach is that it is gener-
ally much more complex to implement and compute.

The estimation needs to be repeated for the other 
health outcomes identified at the hazard identification 
step (Identification of exposures above) as being pos-
sibly influenced by the considered factor. It can also be 
repeated for other factors, as we now discuss.

Consideration of multiple risks factors
If several factors are considered (e.g., because one is 
interested in a prespecified set of exposures, or because 
the policy evaluated is expected to influence several 
physical, chemical, psychosocial factors), the estimation 
needs to be repeated for each of these factors, at least 
those for which the level of evidence regarding effects on 
one health outcome are above the selected level, if any 
(see Handling of the strength of evidence about the effect 
of environmental factors on health). A central issue here 
relates to the situation in which two or more of these 
factors can influence the same health outcome. Indeed, 
care is required to acknowledge the fact that the frac-
tion of cases of a specific disease attributable to different 

(7)
Health Impact =

∫ m

x=0

β(x)×PS1(x)dx−

∫ m

x=0

β(x)×PS2(x)dx =

∫ m

x=0

β(x)×[PS1(x)− PS2(x)]dx

risk factors can generally not be summed. This is a con-
sequence of the multiplicative nature of risk and of the 
multifactorial nature of most diseases [94]; moreover,  

care is needed to consider possible relations, and in 
particular correlation, effect measure modifications or 
mediation between risk factors.

Again, the PAF-based formula and the person-years 
method can be used when considering several fac-
tors influencing the same health outcome, with the lat-
ter being more flexible. Regarding the former approach, 
if population attributable fractions have been estimated 
for each of the R risk factors influencing the considered 
outcome, and under some hypotheses (see below), then 
these can be aggregated with formula (6):

Where  PAFr is the population attributable risk frac-
tion associated with risk factor r estimated independently 
from the other risk factors. This approach makes strong 
assumption: that all risk factors act independently (in 
particular, that no effect of one factor is to some extent  
mediated by another factor, or modified by another  
factor) and are not correlated. Note that this formula is  
identical to that used in toxicology for the so-called case 
of independent action [95]. Under these assumptions, if 
two independent factors have attributable fraction of the 
cases of 40 and 50% respectively, then their joint action 
corresponds to an attributable fraction of 70% (40% plus 
50% of the remaining 60%).

Some of these assumptions may not hold in real 
situations.

A first issue relates to the situation in which exposures 
to the considered factors (say,  x1 and  x2) are correlated. 
Formula (8) assumes that the fraction of cases attribut-
able to B is the same in the whole population and in the 
population from which factor A has been removed (inde-
pendent action), which does not hold if A and B are cor-
related because then the prevalence of exposure to B is 
not the same in the two populations. From this it appears 
that information on the relations between exposures to 
the considered factors (here,  x1 and  x2) in the study popu-
lation is required to estimate the fraction of cases attrib-
utable to  x1 and  x2. Specifically, their joint distribution 
P(x1,  x2) needs to be considered in the PAF estimation, as 
described in Ezzati et al. [96]. Formula (6) can be adapted 
by replacing each integral by:

(8)PAF = 1−
∏R

r=1
(1− PAFr)



Page 22 of 32Rigaud et al. Environmental Health           (2024) 23:13 

this implies of course that information on the joint (and 
not only marginal) distribution of all relevant factors is 
available or collected in the population in which the risk 
assessment is conducted. Biomonitoring and exposome 
studies, provided they assessed multiple exposures simul-
taneously in the same participants, allow providing such 
a joint distribution [97]. Equation  (9) assumes that the 
risk for a given combination  (x1,  x2) of exposures  X1 and 
 X2 is the product of the relative risks associated with  X1 
and  X2, corresponding to a hypothesis of lack of effect 
measure modification of  X1 by  X2.

If now there is evidence of effect measure modification 
(sometimes termed interaction) between risk factors then 
in principle  RR1(x1).RR2(x2) in Eq. (9) should be replaced 
by RR(x1,x2), that is the relative risk function describing 
the joint effect of  x1 and  x2, which can incorporate a dif-
ferent relative risk associated with  x1 at each given value 
of  x2. To our knowledge, there are currently few examples 
of risk factors and outcomes for which this function is 
accurately characterized and available.

Another option to handle it is to consider different 
ERFs in different population strata; again, one needs 
information on the joint distribution of all relevant fac-
tors, as well as stratum-specific relative risks.

Another (non-exclusive) situation is that of mediation 
effects [98]. Consider the case of a disease D (say, lung 

(9)

m1∫

x1=0

m2∫

x2=0

RR1(x1)RR2(x2)P(x1, x2)dx1dx2

cancer), influenced by several risk factors including 
active smoking (A) and green space exposure (B), the 
effect of which being partly mediated by changes in air 
pollution levels (C). Figure 7 provides a possible model 
of the assumed relations between A, B, C and D. Let us 
assume that one is interested in estimating the overall 
impact of factors A, B, C on D, that is, the number (or 
the fraction) of cases of disease D that would be avoided 
if A, B, and C all had “optimal” levels. The estimated 
impacts of B (improving green space exposure) and C 
(getting rid of air pollution) cannot be considered as 
being independent because a part of the effect of B is 
included in the effect of C (a mediation issue). Esti-
mates of the share of the effect (in the sense of measure 
of association) of B on D that is not mediated by C (but 
that may be mediated by other factors not considered 
here, such as an increase in physical activity), termed 
the natural direct effect, can be provided by mediation 
analysis techniques [98]. This natural direct effect of B 
on the disease risk is by construction independent of 
the effect of C on disease risk, so that the correspond-
ing attributable fractions can then be estimated and 
combined using formula (8) above. In the Global Bur-
den Disease methodology, for each pair of risk factors 
that share an outcome, the fraction of the risk mediated 
through the other factor is estimated using mediation 
analysis techniques, if the relevant studies (in which 
B, C, D are altogether estimated) are available. A con-
cern here (besides the usual assumptions required by 
mediation analysis [98]) relates to the transposability 

Fig. 7 Causal diagram summarizing the causal relations between hypothetical risk factors (A, B and C) and a disease D. Here, A and B are assumed 
to independently affect the probability of disease, while a part of the effect of B on D is mediated by C 
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from one area to the other of such mediation analyses; 
for example, the change in air pollution level following 
a change in green space surface may be influenced by 
the local share of traffic-related air pollution among the 
total of the emissions of air pollutants from all sources, 
which may vary across areas.

In the case of a continuous health outcome, one 
option to estimate the joint impact of several factors, 
which assumes a lack of synergy (or of departure from 
additivity) is to sum the average changes in the out-
come attributed to each exposure to obtain an estimate 
of the impact of the combined exposure.

Cessation lag
The cessation lag can be defined as the time lag between 
the implementation of the considered intervention and 
the consequent change in hazard rate. It is meant to 
take into account the fact that for most (chronic) clini-
cal endpoints, the effect of changes in (external) risk fac-
tors does not manifest fully immediately. The COMEAP 
study of particulate matter impacts on mortality [89] 
provides an illustration of the impact of various cessation 
lags (see also Fig. 8). Such a cessation lag can be imple-
mented in studies relying on person-year approaches. 
Whether a cessation lag needs to be considered depends 
on the availability of knowledge about when a change 
in exposure will start influencing the considered health 
outcomes, as well as on the question asked: if for exam-
ple one is interested in knowing how health is likely to 

vary in the short and mid-term if one managed to imple-
ment a given intervention now (or in a near future), 
then considering a cessation lag is relevant; if the ques-
tion of interest is the more theoretical one of quantifying 
how much better the population health would be today 
if a given exposure or set of exposure was absent (or if a 
specific intervention had been implemented a long time 
ago), then cessation lags might be ignored.

Socio-economic impact of attributable health effects
One may wish to go beyond the health impact esti-
mates. Economic analysis can further inform choices 
between different project or policy alternatives consid-
ering dimensions beyond health. Such an analysis can 
be limited to quantifying the costs of implementation of 
the considered scenarios or policies (e.g., those required 
to induce a reduction of exposure to a specific factor), 
and relate these costs to the health benefits expressed in 
non-monetary terms, such as DALYs (corresponding to 
a cost–benefit analysis). Beyond this, cost–benefit analy-
ses have the advantage of allowing to compare the costs 
and monetized health and non-health benefits. Such an 
analysis is more complete and may be more meaningful 
for decision-makers than one ignoring the costs of imple-
mentation of each of the considered alternatives.

The benefits include the monetization of health ben-
efits, which takes into account both tangible and intangi-
ble costs. The tangible costs refer both to direct costs, in 
particular the costs to the health system (costs of specific 

Fig. 8 Illustration of possible cessation lags (in years) considered in the estimation of the impact of fine particulate matter exposure on mortality 
[89]. The first year of the intervention implementation is designated as year one
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treatments for each pathology: drugs, consultation, hos-
pitalization, etc.) and indirect costs linked to absentee-
ism and the resulting loss of productivity. The intangible 
costs refer to the inclusion in the economic analysis of 
the loss of well-being due to anxiety, discomfort, sadness 
or the restriction of leisure or domestic activities due. 
These are therefore non-market costs for which it is nec-
essary to reveal their value through survey methods or 
analysis of the behavior implicitly attributed to them. For 
example, Ready et al. [99] and Chilton et al. [100] valued 
the willingness to pay to avoid an air pollution-related 
morbidity episode. Among these intangible costs, the 
economic valuation of mortality is a delicate step from an 
ethical point of view in the absence of consensual values. 
It is generally based on the monetary valuation of a sta-
tistical life or a year of life lost. In recent years, the most 
popular approach in the economic literature to determin-
ing the statistical value of a human life is the willingness-
to-pay approach. The statistical value of a human life is 
thus approximated by the amount of money a society is 
willing to pay to reduce the risk exposure of each of its 
members. This literature shows that the statistical value 
of a human life depends on characteristics such as age 
at death, time between exposure and death (i.e. latency), 
and nature of the underlying risk [101, 102]. Empirical 
assessments have provided a range of values generally 
between €0.7 and €10 million per human life. The other 
approach used is that of revealed preferences, which is 
based on observed behavior: for example, the difference 
in wages between two branches of economic activity with 
different mortality risks.

The cost–benefit analysis, beyond the health bene-
fits directly generated by the project or policy, can also 
integrate co-benefits not directly related to health. For 
example, Bouscasse et  al. [29] considered the following 
co-benefits of measures to reduce fine particle pollu-
tion: the reduction of noise, the development of active 
mobility on health, which lead to health co-benefits, but 
also the reduction of greenhouse gas emissions, which 
includes benefits not related to health.

With regard to the evaluation of costs, it is necessary to 
define the scope: is it the cost of implementing the policy 
for the public authorities? Should the impact on house-
hold expenditure also be taken into account? This may 
be important, for example, in the case of measures aimed 
at reducing air pollution through actions on heating or 
transport, for which individuals carry a part of the cost. 
The assessment may also seek to quantify the impact on 
employment, for example, or on imports or exports of 
goods and equipment.

Finally, the time dimension is important in the imple-
mentation of a cost–benefit analysis. While costs usually 
occur at the beginning of the period (implementation of 

actions or policies, investments), benefits tend to occur 
later. Indeed, health benefits are generated over time 
depending i) on the speed of implementation of actions 
and of the progressiveness of the reduction of expo-
sures, and ii) on the fact that health benefits may not 
be immediate following the reduction of this exposure 
(cessation lag).

The time lag between costs and benefits has another 
consequence in a cost–benefit analysis. We do not 
give the same value to €1 to be paid today or in several 
years, because of what economists call the preference 
for the present. This is introduced into cost–benefit 
analysis through a discount rate, which gives a present 
value to monetary flows in the future. The higher the 
discount rate used by the public authority or by the 
stakeholders, the lower the present value of benefits 
that occur later.

Sensitivity and uncertainty analyses
Sources of uncertainty in quantitative risk assessment studies
Uncertainties exist at each step of risk assessment. For 
example, there may be uncertainties in the health out-
comes influenced by the considered factor or policy, in 
the level of evidence relating the factor or policy with 
a given health outcome, in the corresponding dose–
response function, in exposure distribution… We will 
here distinguish uncertainties due to the variability of 
the quantitative parameters considered in a risk assess-
ment study (typically, in the dose–response function, but 
also possibly in parameters of higher dimension, such as 
the distribution of an exposure in the population) from 
more systemic uncertainties related to the model choice 
(sometimes termed systemic or epistemic uncertainties, 
e.g. related to the assumption that the risk factor(s) con-
sidered only influences a specific health outcome, pos-
sibly disregarding health effects not identified yet or for 
which a dose–response function is not available) [103]. A 
typology of sources of uncertainty in burden of diseases 
studies is presented in Knoll et  al. [104]. We will focus 
here on uncertainty due to the variability in parameters, 
and touch upon systemic uncertainty in Sect. "Sensitivity 
and uncertainty analyses" below.

The consideration of the uncertainty related to variabil-
ity typically implies to obtain an estimate of the uncer-
tainties occurring at each step of the study, in order to 
combine these uncertainties (uncertainty propagation, or 
error propagation) and try providing an estimate of the 
resulting uncertainty on the overall study results.

Estimating the impact of uncertainties
In the simple case of a single source of uncertainty, the 
translation of this uncertainty on the overall results is 
in principle relatively straightforward; for example, if 
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one only considers uncertainty on a dose response func-
tion expressed using a relative risk and (simplistically) 
assumes that this uncertainty is conveyed by the con-
fidence interval of the relative risk, then the estimation 
of the health impact can be repeated using the limits of 
the confidence interval instead of the point estimate of 
the relative risk (of course, the confidence interval usu-
ally only conveys uncertainties related to the population 
sampling, more specifically to random error related to 
sampling.

However, there are multiple sources of uncertainty 
beyond those related to sampling error. Indeed, in the 
classical view of epidemiology (developed for measures 
of association), the uncertainty due to variability can 
be seen as having a random and a systemic component; 
only the former is easily estimated, while the estimation 
of bias requires quantitative bias assessment methods 
[105] that are seldom applied. In particular, sources of 
uncertainty related to exposure measurement error, 
to the assessment of disease frequency, possibly con-
founding bias or uncertainties in the shape of the expo-
sure response function and the existence and shape of 
cessation lag, are not conveyed by the confidence inter-
val of the relative risk and are worth considering – but 
rarely taken into account.

If one tries to simultaneously take into account 
several sources of uncertainty, then more complex 
approaches are required to propagate the uncertainty 
down to the impact estimate. Although analytical 
approaches (such as the delta-method) may be appli-
cable in relatively simple situations, one more general 
approach corresponds to Monte-Carlo simulations. 
Monte-Carlo simulations rely on the principle of 
repeating a large number of times the health impact 
estimation, letting all underlying parameters (relative 
risks, exposure distribution, possibly the number of 
factors influencing the health outcome and the out-
comes that they influence, if there are uncertainties 
at this level…) vary across realistic values [106, 107]. 
They allow providing an estimate of the distribution of 
the possible values of the health impact. This requires 
knowledge or assumptions on the likely distribution 
of each parameter considered in the study. If such an 
approach is implemented, then authors will be able 
to report a distribution of the most likely value of the 
health impact or cost. The results will for example be 
conveyed in a way such as: “Taken all identified sources 
of uncertainty into account, there is a 90% probability 
that the number of deaths attributable to factor A in the 
area is above 10, a 50% chance that it is above 30 and 
a 10% chance that it is above 50 cases” (with of course 
specific explanations for a non-scientific audience). 

Alternative approaches to Monte-Carlo simulations 
also exist, in particular in the context of Bayesian mod-
eling [108]. Provided relevant data are available, this 
framework can in principle accommodate both the 
uncertainty related to variability, but also systemic 
uncertainty [109].

In the absence of formal consideration of the sys-
temic uncertainty in the uncertainty analysis, it remains 
essential for the investigators to state their model’s 
assumptions and limitations, including in particular 
the impacts related to specific risk factors or health 
outcomes that could not be taken into account in the 
quantitative assessment (see also 3.3 below).

Conclusion
Quantitative  assessment studies are at the interplay 
between scientific, policy and legal issues; contrarily to 
what the deceptively simple epidemiological concept and 
formula of the “population attributable fraction” may let 
think [7, 8], their implementation and interpretation is 
very challenging.

We have reviewed some of the possible approaches 
and issues at each step of risk assessment studies. We 
have made the choice not to discuss the steps of problem 
framing, study reporting, and issues related to popula-
tion participation, which are presented elsewhere [19, 
21]. In the absence of broad methodological studies (e.g., 
via simulation approaches) in this field, we acknowledge 
that some of the choices we have done in presenting 
methods carry some amount of subjectivity and encour-
age the development of studies to quantitatively assess 
bias and trade-offs in this area to help investigators make 
more informed choices with regards to the methodologi-
cal options. Such simulation studies could e.g., be used to 
select the most efficient approach to assess exposures in a 
given context.

To conclude, we will touch upon issues related to the 
terminology of risk assessment and HIA studies, the 
distinction between human-derived and animal-derived  
(toxicological) risk assessment studies, and research needs.

Issues related to terminology
Studies aiming at characterizing the health and soci-
etal impact of policies or environmental factors are rid-
dled with many different terminologies and acronyms. 
This diversity of acronyms encompasses some real dif-
ferences in aims or methodology, but is also due to the 
convergence of various research and application streams. 
Indeed, as already mentioned, these studies originate 
from the epidemiological research stream related to 
the concept of population attributable fraction, which 
dates back to the 1950s [7], from the development of 
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legal requirements for environmental impact assess-
ment before the development of new policies, plans or 
programs (which progressively also encompassed health 
issues), and from the applied stream of chemical risk 
assessment based on “regulatory toxicology” approaches 
and the risk assessment logic outlined in the USA 
National Research Council originally published in 1983 
and also known as the “red book [1, 2]. Three key expres-
sions are used: 1) burden of disease; 2) risk assessment; 3) 
health impact assessment.

Burden of disease studies generally correspond to an 
assessment of the risk (e.g., in terms of attributable cases 
or DALYs) associated with a given disease in human pop-
ulations, without referring to an exposure possibly caus-
ing the disease or to a policy aiming at limiting its impact. 
However, when used in relation with a factor or family of 
factors, then only the risk (or disease burden) associated 
with this factor is considered (e.g., in “environmental bur-
den of disease”), so that there is no essential distinction 
anymore with what we have discussed here. In practice, 
health impact assessment is often used in relation with a 
policy or intervention likely to affect health, while envi-
ronmental burden of disease is often used in the absence 
of explicit consideration of a policy or intervention (see 
below).

Regarding health impact assessment, a difficulty arises 
from the fact that much of the theory and examples of 
HIA studies has been published in the grey literature [10]. 
The term has most often been used to assess the potential 
impact of a public policy, plan, program or project not 
yet implemented [3]. HIA is defined by WHO as “a com-
bination of procedures, methods and tools by which a 
policy, program or project may be judged as to its poten-
tial effects on the health of a population, and the distribu-
tion of those effects within the population”. In addition, 
the consideration of inequalities (i.e., considering the dis-
tribution of risk within a population rather than only its 
mean value) has been put forward as an essential part of 
HIAs, at least in principle [110]. Several distinctions exist 
within the field of HIAs, which refer to various notions 
and dimensions [10, 110, 111]. Some of these notions 
are at different levels and hence not mutually exclusive 
(for example some distinctions refer to the way health is 
conceptualized, other to the qualitative or quantitative 
nature of the study, others to the level of participation of 
the considered population), making it difficult to suggest 
a simple and unified terminology. A distinction between 
“broad focus” HIA studies, in which “a holistic model of 
health is used, democratic values and community par-
ticipation are paramount and in which quantification of 
health impacts is rarely attempted” [10], and “tight focus” 
HIAs, based on epidemiology and toxicology and tending 
towards measurement and quantification, is sometimes 

done [10]. “Analytical HIA” is sometimes used synony-
mously to these “tight focus” HIAs. Harris-Roxas and 
Harris also quote distinctions such as between quantita-
tive and qualitative HIAs, to those relying on “tight” or 
“broad” definitions of health, to HIAs of projects or poli-
cies [111]. What we have reviewed here is close (if not 
equivalent) to these “analytical”, “tight focus” or “quanti-
tative” HIAs.

Such quantitative HIAs typically aim at answering a 
question about the future (“how is the planned policy 
expected to affect the health of the concerned popu-
lation?”) while many risk assessment studies aim at 
answering a question about the present, and are some-
times presented as considering a single factor at a time 
(typically, “how many lung cancer cases would be 
avoided in this city if WHO air pollution guidelines were 
respected?”). We come back to these apparent differences 
in the Sect. " Assessing the impact of policies versus the 
impact of exposures".

As already stated, in practice, some HIA or “risk assess-
ment” exercises fall short of providing a quantitative esti-
mate of the risk, e.g., because of a lack of relevant dose 
response functions or support to collect missing infor-
mation; they may for example stop at the step of hazard 
identification. It is, in a way, what happens with animal-
based risk assessment studies.

Animal-based risk assessment studies
It is important to recall that in addition to the approach 
based on human-derived dose–response functions that 
we described above exists a whole stream of research and 
applied studies relying on animal-based dose–response 
functions and so-called toxicological reference values. 
The core approach of the benchmark dose (BMDL) con-
sists in identifying an exposure level corresponding to 
an effect considered small in an animal model (say, a 5% 
decrease in organ weight or 5% increase in the frequency 
of a disease) [112]. The lower confidence bound of the 
benchmark dose is then divided by an uncertainty factor 
(typically, 100), to take into account between-species and 
within-species differences in sensitivity, and this value is 
used as a “daily tolerable dose”, or compared to the expo-
sure distribution in a specific human population. There-
fore, this approach aims at identifying a range of doses 
under which, under certain assumptions, there would be 
no “appreciable adverse health effects” of exposure. The 
comparison of the estimated daily tolerable dose with 
the exposure distribution in the considered population 
allows to identify if a substantial share of the population 
is above this daily tolerable dose, and thus finds itself at 
exposure levels that cannot be deemed safe (a qualita-
tive rather than quantitative statement about risk). For 
this reason, these risk assessment approaches based on 
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animal-derived reference values or dose–response func-
tions rather correspond to safety assessment: they can 
allow to state that, given its exposure distribution, a given 
human population is “safe”, or unlikely to suffer apprecia-
ble adverse health effects, with respect to a specific expo-
sure (or set of exposures if the approach is used in the 
context of mixtures of exposures) and do not strictly cor-
respond to risk assessment as we defined it, i.e., the esti-
mation of a number of disease cases (risks) attributable to 
an exposure in a population. To limit ambiguity, it might 
be relevant either to use the expression “safety assess-
ment” when referring to the so-called risk assessment 
studies relying on animal derived toxicological reference 
values, or to distinguish “animal-based risk assessment” 
(which implies between-species extrapolation) from 
“human-based risk assessment” (which does not).

Assessing the impact of policies versus the impact 
of exposures
The factors influencing health considered in risk assess-
ment studies range from single behaviors (e.g., smoking, 
physical activity), to physical and chemical factors such 
as particulate matter [35, 113] or other environmental 
exposures including lead or families of factors such as 

endocrine disruptors [12, 75]; these can be considered at 
various scales, from the neighborhood, region, country 
or at the planetary scale (e.g. as done by the Global Bur-
den of Disease Studies, or by a study considering differ-
ent ozone layer depletion scenarios [37]). In addition, as 
described above, the formalism of risk assessment studies 
used for a single exposure can be extended to the case of 
two or more exposures, at least under certain assump-
tions. Consequently, if one is interested in a project (e.g., 
the building of a road infrastructure, a factory) or a pol-
icy (regulating a behavior such as smoking, alcohol con-
sumption, speed limit on highways, frequency of social 
contacts or exposure to a chemical or set of chemical 
factors, or consisting in taxes aiming at modifying expo-
sures or behaviors), and if it is possible to provide a quan-
titative estimate of the expected changes in the factors 
affecting health impacted by this project or policy, then 
the methodology of risk assessment as described above 
can be used to provide an estimation of the impact of this 
project or policy. Symmetrically, evaluating the impact 
of a factor, such as an atmospheric pollutant, implies, as 
we have seen, to compare a given situation (usually, the 
current one or a future of this situation assuming a “busi-
ness as usual” scenario) with a counterfactual situation (a 

A) Assessing the impact of an exposure B) Assessing the impact of a policy

Fig. 9 Illustration of the similitude of the principles of risk assessment of an exposure (A) and of a policy or program (B). When considering 
an exposure (A), the fraction of disease cases attributable to a specific exposure (compared to a lower and theoretically achievable level) 
is estimated for time t (typically assumed to correspond to the current time). When considering a policy (B), the expected health benefit 
of the project or policy (consisting in changing the level of one or more environmental factors) is estimated, considering the population 
at the current time or at a later time t, comparing it to the situation without change. Both approaches can be seen as aiming to estimate the impact 
of a theoretical policy or intervention lowering (or, more generally, changing) the level of one or several environmental factors, compared 
to a reference situation considered at the same time period
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hypothetical present in which a behavior or an exposure 
has been altered at the population level) that can be seen 
as resulting from a policy or an infrastructure. For exam-
ple, assessing the risk associated with air pollution expo-
sure implies to consider a counterfactual level (e.g., the 
WHO air pollution guidelines); the estimated risk is then 
identical to the health gain expected from a policy that 
would allow to lower air pollution from the current situ-
ation down to this guideline value (see Fig. 9 for an illus-
tration). In other words, assessing ex-ante the impact of a 
hypothetical policy or infrastructure (what is sometimes 
termed health impact assessment) boils down to evalu-
ating the health impact of its immediate consequences 
relevant for health (a set of factors); and assessing the 
impact of one or several behavioral, social or environ-
mental factors (for which the expression risk assess-
ment is usually reserved) is equivalent to considering the 
impact of a policy that would alter this or these factor(s). 
There may be some differences in implementation 
between the two specific questions (e.g., one may want to 
assume that it takes a few years for air pollution to reach 
the target value in the case of the evaluation of a policy, 
while an estimation of the current impact only requires 
to compare two “parallel worlds” with distinct air pollu-
tion levels), but these are not always considered and can 
be seen as minor technical differences. For these reasons, 
there are no essential differences in quantitatively assess-
ing the effect of a single factor, of several factors, or of 
a policy or project. Recognizing this similarity in design 
of risk assessment and analytical/quantitative HIAs may 
allow to bring more clarity in the methodology and ter-
minology; in particular, it may be relevant to adopt a 
unified terminology allowing to point to the differences 
that bear strong consequences, such as whether the study 
relies on human-based dose response functions (as illus-
trated here) or on dose–response functions derived from 
animal models.

The perils of quantification: leaving emerging hazards 
by the roadside
Risk assessment studies imply many steps requiring a 
large amount of data; this is all the more true in the case 
of studies considering simultaneously multiple expo-
sures, exposures with effects on multiple health end-
points (such as tobacco smoke, particulate matter, lead, 
physical activity…), or policies likely to influence several 
exposures or behaviors (such as a “zero pollution action 
plan”, as envisioned by the European Commission, or a 
set of actions to limit greenhouse gas emissions in mul-
tiple sectors). In some (probably not infrequent) cases, 
only a fraction of the data relevant for the risk assessment 
will be available or possibly available within a limited 

time frame. Researchers are then facing several non-
exclusive options:

1) collect additional data (the scientifically rigorous 
approach); this may take a long time and be very 
expensive, since in many cases the missing data cor-
respond to dose–response functions, which are typi-
cally generated by cohort studies. For example, in an 
ongoing exposome study conducted as part of ATH-
LETE project and considering 74 exposure-outcome 
pairs corresponding to effects with a level of evi-
dence deemed likely or more than likely, a human 
dose–response function could be identified for only 
70% of these possible effects (Rocabois et  al., per-
sonal communication). Although working with high-
quality data, even if this implies to delay the availabil-
ity of the final results, is often the preferred option 
in science, such an option is problematic for health 
impact assessment studies, which often require to 
be conducted within a constrained time frame so 
that a decision about the planned policy or a possi-
bly harmful exposure can be quickly taken, to bring 
potential health benefits to society or inform a legal 
process;

2) perform the study with the limited data available in 
the constrained time frame (imperfect but timely 
approach); in this case, it is possible that only a frac-
tion of the impact of the exposure(s) or policy will be 
assessed (because several dose response functions 
corresponding to the effects of the exposure or policy 
are available) and that the quantified fraction will be 
estimated with large uncertainties;

3) perform a purely qualitative health impact assess-
ment study (qualitative approach);

4) not to perform the study (“analysis paralysis”).

In many cases, option 2), consisting in moving along 
with the limited data available, will be preferred. The con-
sequence may be that a fraction, which may be large, of 
the impact, will be ignored. Thus, because of their relative 
complexity, health impact assessment studies, which aim 
to make health impacts visible, may paradoxically leave 
a large fraction of this impact on the roadside. Impacts 
left on the road side will often correspond to “emerging” 
(newly identified factors, newly identified effects) risks. 
Under this imperfect but timely approach, it is essential 
not only to try to provide a quantification of the uncer-
tainty around the quantified part (see above, Sect. " Sensi-
tivity and uncertainty analyses"). It would also be relevant 
to attempt providing some estimate of the magnitude of 
what has obviously been left out (for example, the impact 
of a known exposure likely to affect an outcome for which 
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no dose–response function is available), or at least to 
make the missing part (the “known unknown”) visible in 
some way.

Identified gaps
This review provided a general methodological frame-
work for risk assessment studies and demonstrated their 
relevance to also consider the expected impact of poli-
cies and infrastructures, and therefore their closeness 
to health impact assessment studies; it illustrated recent 
development related to the diversity of approaches to 
assess factors at the individual levels (such as fine-scale 
environmental models and personal dosimeters), and the 
potentially strong impact of choices regarding exposure 
assessment tools, including the consideration of popu-
lation density when environmental models are used. It 
also allowed to identify some gaps, challenges or pend-
ing issues in the methodology of risk assessment studies. 
These issues include 1) proposing a formal approach to 
the quantitative handling of the level of evidence regard-
ing each exposure-health outcome pairs (see Handling of 
the strength of evidence about the effect of environmen-
tal factors on health); 2) more generally, develop more 
formal and if possible quantitative assessment of the 
health impacts not handled by a specific quantitative risk 
assessment study (the “know unknowns”); 3) confronting 
the approaches of risk assessment based on human dose–
response function reviewed here with that relying on 
toxicological data; and 4) other technical issues related to 
the simultaneous consideration of several exposures (or 
of policies acting on health via changes in several envi-
ronmental factors), in particular when some of these 
exposures are causally related.
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