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Abstract

The pancreatic innervation undergoes dynamic remodeling during the development of pancreatic
ductal adenocarcinoma (PDAC). Denervation experiments have shown that different types of axons
can exert either pro- or anti-tumor effects, but conflicting results exist in the literature, leaving the
overall influence of the nervous system on PDAC incompletely understood. To address this gap, we
propose a continuous mathematical model of nerve-tumor interactions that allows in silico simulation
of denervation at different phases of tumor development. This model takes into account the pro- or
anti-tumor properties of different types of axons (sympathetic or sensory) and their distinct remod-
eling dynamics during PDAC development. We observe a “shift effect” where an initial pro-tumor
effect of sympathetic axon denervation is later outweighed by the anti-tumor effect of sensory axon
denervation, leading to a transition from an overall protective to a deleterious role of the nervous sys-
tem on PDAC tumorigenesis. Our model also highlights the importance of the impact of sympathetic
axon remodeling dynamics on tumor progression. These findings may guide strategies targeting the
nervous system to improve PDAC treatment.

1 Introduction
The nervous system plays an important role in regulating various bodily functions and disease processes,
including cancer development and progression [Winkler et al., 2023]. Denervation studies have shown that the
peripheral nervous system (PNS) can either promote or inhibit cancer growth, depending on the specific types
of nerves and cancers involved. For example, in mouse models of pancreatic ductal adenocarcinoma (PDAC),
selective ablation of pancreatic sympathetic innervation has been associated with accelerated tumor growth,
increased metastasis and decreased survival [Guillot et al., 2022]. Conversely, removal or silencing of sensory
neurons has been shown to slow tumor growth and improve survival ( [Saloman et al., 2016]; [Sinha et al., 2017]).
These findings, together with others, suggest a broad model in which the autonomic nervous system (including
both its sympathetic and parasympathetic branches) has an anti-tumor property in PDAC, whereas the sensory
nervous system has an inverse pro-tumor activity (Figure 1).

According to the data presented, the combined effect of the PNS on PDAC tumour progression results from
a mixture of pro- and anti-tumour activities. This combined effect can be assessed in experimental models by
surgical denervation of the pancreas, which disrupts the mixed nerve of sympathetic and sensory axons supplying
the pancreas. Such an intervention mimics procedures performed in patients (eg. celiac neurolysis and splanch-
nicectomy) to manage abdominal pain in unresectable PDAC. However, surgical denervation studies in mice have
led to divergent results. A pro-tumor effect was observed when denervation was performed before the onset of
pathology [Guillot et al., 2022], whereas an anti-tumor effect was observed when denervation was performed
after tumor establishment [Renz et al., 2018a]. The reasons behind these conflicting results are not yet understood.
One hypothesis suggests a switch in sympathetic function over the course of pathology. Initially, sympathetic
axons may have an anti-tumor effect in the early (pre-)cancer stages, before possibly switching to a promoting role
on tumor growth at a later stage. Another interpretation is that the relative abundance of pro- and anti-tumoral
axons may vary at different denervation times. Indeed, studies have shown different remodeling patterns for
sympathetic and sensory innervation. Higher levels of sympathetic innervation are found in pre-cancerous lesions
compared to both healthy and cancerous tissues, while sensory axons are markedly increased within the cancerous

1



lesions ( [Guillot et al., 2022]; [Demir et al., 2015]).

These findings highlight the importance of the PNS as a potential therapeutic target for the modulation of PDAC.
However, they also highlight the need for a deeper understanding of the individual and combined effects of the
different axon types, taking into account their remodeling patterns and influence on the tumor, in order to develop
strategies to deplete or inhibit the PNS in PDAC. To address this need, we develop a mathematical model that
allow us to study the consequences of denervating sensory and/or sympathetic axons at different times during
tumor development and progression.

So far, two mathematical models have been developed to better understand the influence of the PNS on cancer.
The first model investigated the pro-tumoral effect of the autonomic nervous system in prostate cancer [Lolas
et al., 2016]. However, due to the opposite function of the sympathetic innervation in pancreatic cancer, another
mathematical model was developed to specifically study PDAC [Chauvet et al., 2023]. This model formalized
the interactions between cancer progression and axons using a compartmentalized differential equations model,
where each compartment corresponds to a stage of cancer progression (healthy, pre-cancerous, cancerous). The
asymptotic behavior of the system shows that the pathological state, where only cancer cells persist, is globally
asymptotically stable. The impact of denervation was simulated in silico and recapitulated the biological data of
denervation performed at early stage, before the onset of pathology. However, other times of denervation have not
been investigated.

The aim of this paper is to introduce a new continuous mathematical model describing the relationship between
axons and cancer, and to simulate in silico denervation of sympathetic and sensory neurons at different times.
The continuous model considers the cell phenotype (from healthy to cancerous) as a continuous variable.
Consequently, the description of cancer progression and axon remodeling occurring during this process becomes
more precise.

We organized the paper as follows. In Section 2.1, we set up the model illustrating the effect that PNS axons have
on cancer development and progression. A theoretical study on the well-posedness of the model is given in Section
2.2. This is followed by a qualitative study in Section 2.3 where we show that the final state of the disease can belong
to one out of three cases: either no cancer cells exist, either cancer and healthy cells co-exist, or only cancer cells
exist. Also, explicit bounds on the time of appearance of the first cancer cells are given under some hypotheses on
the parameters. Next, in Section 3, we give precision on the parameters of the model and explain how to denervate
in silico. We then calibrate the model in Section 4 by minimizing a 2-dimensional criterion. We obtain several sets
of parameters that fit the data. Using some of the sets of parameters obtained, we apply numerical simulations to
study in silico denervation using an indicator of invasive potential detailed in Section 5.1. In Section 5.2, we perform
in silico denervation separately for each axon type (sympathetic or sensory) or simultaneously at defined time
points. The dynamical system and its in silico denervation are implemented using a finite volume approach and
the algorithm can be found at (https://github.com/MarieJosec/PDE_Axons_Innerv). In Section 5.3, denervation
is performed for each axon type or for both at different time points. The results recapitulate the different outcomes
of surgical denervation observed in [Guillot et al., 2022] and [Renz et al., 2018a] [Renz et al., 2018a] and support
a ’shift effect’ of PNS function in PDAC from anti-tumor to pro-tumor. The model predicts that this transition
does not occur through a change in sympathetic function, but rather depends on the remodeling dynamics of the
sympathetic and sensory axons and on the strength of the sympathetic inhibition on tumor growth.

2 Mathematical model
In this section, we establish and explore an original continuous model for studying cancer progression and its
regulation by axons. Initially, a compartmental model was introduced in [Chauvet et al., 2023] to investigate the
interactions. However, this model, based on ordinary differential equations (ODEs), focused on discrete stages of
cancer progression from a healthy state to a tumoral stage. Each stage was treated as a variable, compartmental-
izing the different steps, which failed to capture the continuous nature of the biological process. To address this
limitation, we introduce another mathematical model that adopts a continuous framework for cell phenotypes,
spanning from a healthy state to a tumoral stage, thereby bringing it closer to the reality of the biological process.
This model also considers the heterogeneity of the cell phenotype. In alignment with recent literature (cf. [Eftimie
and Gibelli, 2020], which introduces a phenotype-structured model to describe the heterogeneous population of
macrophages), we propose employing structured population dynamics in the model.

2.1 Model presentation
We focus on the pancreas as the domain of our model, by taking into account the pancreatic cells and the nerve
axons. In this model, we denote the unknowns Q, A1 and A2 where:
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Figure 1: Graphical description of the state-of-the-art concerning the interactions between sensory axons, parasym-
pathetic neurons, sympathetic axons and tumor cells (PDAC). The arrow with the symbol → denotes a promoting
effect and the arrow with the symbol − [ denotes an inhibiting effect.

• Q(t, x) is the density of cells structured by the progression state of the disease. The variable t corresponds
to time with t ∈ [0,+∞) and the variable x corresponds to the phenotype of the cell where x ∈ Ω with
Ω := R or Ω := (−L, L) with the constant L > 0 (finite truncated domain). Cells with a positive phenotype
correspond to cancerous cells. Whereas for x ∈ (−L, 0), we start from healthy cells undergoing precancerous
phenotypes before reaching the cancerous state. The lower the phenotype variable x is, the healthier the cells
Q(t, x) are.

• The variable A1(t) is the normalized density of the sympathetic axons with respect to time t ∈ [0,+∞).

• The variable A2(t) is the normalized density of sensory axons with respect to time t ∈ [0,+∞).

Hence, the variables Ai for i = 1, 2 are unit-less and are bounded, i.e. Ai(t) ∈ (0, 1) for t ≥ 0.
The total amount of pancreatic cells N(t) and the total amount of cancer cells Nc(t) can be obtained from the density
Q by

N(t) =
∫

Ω
Q(t, x)dx, Nc(t) =

∫
Ω

ψ(x)Q(t, x)dx,

where ψ is an indicator function whose support is a subset of R+. These two macroscopic quantities play significant
roles in the dynamics of the model. They allow to compute crucial indicators such as the proportion of cancer cells
in the system or the growth of the size of the pancreas induced by cancer cells. For instance, the ratio Nc(t)/N(t)
corresponds to the proportion of cancer cells in the system. If the ratio is equal to 1 then all the cells are cancerous
ones and if the ratio is equal to 0, then no cancer cells are present in the system. Also the ratio N(t)/N(0) gives
information on the growth of the size of the pancreas.
Moreover, we introduce the notation X := (Q, A1, A2) to group the unknowns into a tuple. Hence, the dynamic of
Q(t, x) is given by the following transport-growth equation :

∂tQ(t, x) + ∂x
[

f (t, x;X )Q(t, x)
]︸ ︷︷ ︸

Progression of the disease

= g(t, x;X )︸ ︷︷ ︸
Growth term

.

Progression of the disease. We model the evolution of the disease as a transport term on the phenotype axis for
the cell densities Q in the partial differential equation governing the dynamics of cells. The speed of progression
of the disease (i.e. the transport speed) denoted f (t, x;X ) is regulated by the presence of the axons and the cancer
cells. It takes the following form

f (t, x;X ) := π(x)
[
1 − β(x)ρ(A1(t)) + δ(x)A2(t)

]
+ η

(
x, Nc(t)

N(t)

)
(1)

where
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• π(x) represents a basal amplitude for the speed of disease progression. Since we expect the transformation
of healthy cells to be slow at early stages, we consider the transfer to be almost negligible for x ≪ 0. This
transport is then expected to increase up to a plateau observed during the early PDAC stage. Moreover, we
naturallly assume that at the boundary of the phenotype axis (+∞ or L), the function π vanishes.

• The basal amplitude is modulated by the presence of the sympathetic axons that slow down the disease
progression (cf. [Guillot et al., 2022]). The function β modulates the maximum rate of the regulation depend-
ing on the phenotype variable x. The function ρ modulates the basal amplitude negatively because of the
inhibiting mechanism of A1, under the assumption that a sufficient density of sympathetic axons is required
to have an impact on the cancer progression process. Thus, the function ρ vanishes for small values of A1.

• The basal amplitude is also regulated by the presence of sensory axons that speed up the disease progression
(cf. [Saloman et al., 2016]). The function δ modulates the maximum rate of the regulation depending on the
phenotype variable x.

• Moreover, we assume that cancer cells in the pancreas are inducing an acceleration of the cancer progression
of the healthy cells in the late stages of the disease. This assumption is formalizing the crosstalk between
PDAC cells and other cells where the tumorigenic environment facilitates the ability of cancer cells to survive
and proliferate to the detriment of healthy cells (cf. [Alexander and Cukierman, 2016]). In order to model this
response, we introduce the function η which contributes to the cancer progression acceleration. This function
takes as variables the ratio Nc(t)/N(t) which quantifies the presence and the proportion of pathological cells
in the system and the phenotype variable x. Also, we assume that η is compactly supported and its support
is located in a neighbourhood corresponding to the healthy cells on the phenotype axis.

An additional assumption in our model is that the cancer progression is non-reversible. For instance, once cells
start to progress towards a cancerous state, they cannot recover, meaning that they cannot have an healthy
phenotype state later in time. This implies that the transport term f remains non-negative.

Growth term. In the model, the growth of the cancer cell densities is modelled by a logistic-type growth which is
given by the growth term g:

g(t, x;X ) := r(x)Q(x)
(

1 − N(t)
τC

− µ1 A1(t) + µ2 A2(t)
)

. (2)

The function r of the phenotype variable x is the basal growth rate of the proliferating cells. Since growth starts at
pre-cancerous stages and accelerate around cancerous stages, (cf. [Klein et al., 2002]), the support of the function r
is located in its neighbourhood on the phenotype axis. This growth process is regulated by the axons (cf. [Biankin
et al., 2012]). On the one hand, the presence of the sympathetic axons inhibits or promotes the growth of cancer
cells depending on the sign of µ1 which is the amplitude of the modulation (cf. [Renz et al., 2018a] and [Guillot
et al., 2022]) This mechanism is modelled by the term −µ1 A1(t), if µ1 > 0, then the sympathetic axons play an
inhibitory role, whereas if µ1 < 0, the sympathetic axons play a promoting role on tumor growth. On the other
hand, the presence of sensory axons amplifies the growth of cancer cells (cf. [Banh et al., 2020]) , and this is
modelled by the term +µ2 A2(t) where µ2 ≥ 0. Moreover, the saturation rate of the cells densities is linked to the
parameters τC (the carrying capacities), µ1 and µ2.

Sympathetic axons growth dynamics. One interesting dynamics for the sympathetic axons is that a small increase
of the density of these axons is observed early in precancerous stage of cancer progression process, whereas once
cancer is established the density of sympathetic axons is reduced (see the biological data in Figure 9 in Section 4.1).
Hence, in order to model the time evolution of the sympathetic axons, we use a logistic law with an Allee effect.
We denote by θ the function that enables the Allee effect. The function θ takes as argument the ratio N(t)/N(0)
and it allows to change the dynamics of the sympathetic axons evolution during disease progression. Starting from
the healthy state, N(t) = N(0) at least from small time t i.e. the total concentration of cells remains constant, then
taking θ(1) < A1(0) and the amount of sympathetic axons increases. Moreover, θ is an increasing function such
that if N(t) > N(0) i.e. there are proliferative cells in the system, then at some point θ (N(t)/N(0)) > 1 and the
amount of sympathetic axons decreases. Thus the dynamics of the sympathetic axons are given by the following
differential equation:

d
dt

A1(t) = rA1 A1(t)

 A1(t)

θ
(

N(t)
N(0)

) − 1

 (1 − A1(t))

︸ ︷︷ ︸
Logistic law with Allee effect

,

where rA1 > 0 is the growth rate of sympathetic axons.

Sensory axons growth dynamics. The remodeling of the sensory axons start at cancerous stages (see the biological
data in Figure 10 in Section 4.1). Hence, one natural way to model the time evolution of sensory axons is to use a
logistic law with a growth rate which is modulated by the presence of cells with non-negative phenotype values.
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We denote rA2 the increasing function taking as argument Nc(t)/N(t) which model the growth rate of sensory
axons. The dynamics of the sensory axons are given by the following differential equation:

d
dt

A2(t) = rA2

(
Nc(t)
N(t)

)
︸ ︷︷ ︸

Impact of cancer cells on growth

A2(t)(1 − A2(t))︸ ︷︷ ︸
Logistic law

.

For instance, if there is no proliferative cells, then

rA2

(
Nc(t)
N(t)

= 0
)
= 0

and the amount of sensory axons remains constant. As soon as Nc(t)/N(t) > 0 which implies rA2 (Nc(t)/N(t)) > 0
then the sensory axons follow the logistic law. Since we assume that rA2 is monotonous, then the more cancer cells
there are in the system, the faster the growth of sensory axon is.

Complete dynamical system. The system that mathematically formalizes the impact of axons on tumor progression
consists in a partial differential equation (PDE) for cell dynamics and two differential equations for axon dynamics.
It couples a growth-transport equation for Q with two ODEs with non-local terms for A1 and A2:

∂tQ(t, x)+∂x
[

f (t, x;X )Q(t, x)
]
= g(t, x;X ), t > 0, x ∈ Ω

d
dt A1(t) = rA1 A1(t)

(
A1(t)

θ
(

N(t)
N(0)

) − 1

)
(1 − A1(t)), t > 0,

d
dt A2(t) = rA2

(
Nc(t)
N(t)

)
A2(t) (1 − A2(t)) , t > 0.

(3)

The system (3) is completed with the following initial conditions:

Q(0, x) = Q0(x) for x ∈ Ω, A1(0) ∼= Aeq
1 and A2(0) = A0

2,

where Aeq
1 > 0 corresponds to the average density of sympathetic axons in a healthy pancreas which has been

normalized and 0 < A0
2 ≪ 1 corresponds to the average density a sensory axons in a healthy pancreas also

normalized. For modeling purposes, if there is no observations showing the presence of sensory axons in a healthy
pancreas, we still consider that there is a negligible amount of sensory axons in the system at the initial state.
Otherwise, the growth dynamics could not take place since A2(t) = 0 is an unstable steady-state. One point to note
is that if we consider initially that the pancreas is essentially composed of healthy cells then one way to cope with
this assumptions is to assume that Q0 is compactly supported and that the following holds on the support of the
initial datum supp(Q0) ⊂ Ω/R+. Finally, we add the following boundary condition on the PDE

f (t, x;X )Q(t, x) = 0, x ∈ ∂Ω,

which ensures Dirichlet boundary conditions and allows us to neglect any processes acting outside of our domain.
This boundary condition is a strong assumption which is sufficient to prove the well-posedness of the model and
the fact that no mass is lost on the boundary of the domain. It is ensured by the compact support of the transport
term f (cf. Hypothesis 2.2).

2.2 Well-posedness of the model
We denote by X := (Q, A1, A2) the solution of the system (3). We note that X is solution of a non-conservative
system that is a particular case of the following system :

∂tQ(t, x) + f (t, x;X )∂xQ(t, x) + c(t, x;X )Q(t, x) = 0 for t > 0, x ∈ Ω,

f (t, x;X )Q(t, x) = 0 for x ∈ ∂Ω, t ≥ 0,

Q(0, x) = Q0(x) for x ∈ Ω,

d
dt

A1(t) = rA1 A1(t)

 A1(t)

θ
(

N(t)
N(0)

) − 1

 (1 − A1(t)) for t > 0,

A1(0) = A0
1 ∈ (0, 1),

d
dt

A2(t) = rA2

(
Nc(t)
N(t)

)
A2(t) (1 − A2(t)) for t > 0,

A2(0) = A0
2 ∈ (0, 1),

(4a)

(4b)

(4c)

(4d)

(4e)

(4f)

(4g)
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where N(t) :=
∫

Ω Q(t, x)dx and Nc(t) :=
∫

Ω ψ(x)Q(t, x)dx such that ψ is given and nonnegative and supp(ψ) ⊂
Ω ∩ R+ and that ∥ψQ(t)∥L1(Ω) ≤ ∥Q(t)∥L1(Ω) for t ≥ 0. We also introduce the function g which allows to rewrite
the equation (4a) in a conservative form :

g(t, x;X ) := c(t, x;X )− ∂x f (t, x;X ), (5)

implying that
∂tQ(t, x) + ∂x

(
f (t, x;X )Q(t, x)

)
+ g(t, x;X )Q(t, x) = 0 for t > 0, x ∈ Ω.

In the following, we study the well-posedness of system (4) and start with the different hypotheses required for
that.

Hypothesis 2.1 (Initial condition). Assume Q0 ∈ C1(Ω) is nonnegative such that

0 < C(N(0)) <
∫

Ω
Q0(x)dx = ∥Q0∥L1(Ω) < C(τC) < ∞

with C(N(0)) and C(τC) positive constants.

Hence, we denote P the following set:

P(T) :=
{
(Q, A1, A2) ∈ C1

(
[0, T]; C1(Ω) ∩ L1(Ω)

)
× C1([0, T])× C1([0, T]) such that

C(N(0)) ≤
∫

Ω
Q(t, x)dx ≤ C(τC) and 0 ≤ Ai(t) ≤ 1, i = 1, 2, t ∈ [0, T]

}
.

(6)

We also assume the following conditions on the functions given by the transport term and the growth term. Given
X ∈ P(T), for T > 0, we have the following hypotheses :

Hypothesis 2.2 (Transport term). Assume that Xi ∈ P(T), for T > 0 for i = 1, 2 then

f (·;X ) ∈ C
(
[0, T]; C1

c (Ω)
)

with |∂x f (t, x;X )| < ∞, f (t, x;X ) ≥ 0

for t ∈ [0, T] and x ∈ Ω,
f (t, x;X ) = ∂x f (t, x;X ) = 0 for t ∈ [0, T] and x ∈ ∂Ω

and there exist constants Cl( f ) > 0, Cl(∂x f ) > 0 such that

∥ f (t;X1)− f (t;X2)∥L∞(Ω) ≤ Cl( f )∥X1 −X2∥P and ∥∂x( f (t;X1)− f (t;X2))∥L∞(Ω) ≤ Cl(∂x f )∥X1 −X2∥P .

Hypothesis 2.3 (Growth term). Assume that Xi ∈ P(T), for T > 0 for i = 1, 2 then

g(·;X ) ∈ C
(
[0, T]; C1

c (Ω)
)

with |g(t, x;X )| < ∞, |∂xg(t, x;X )| < ∞ for t ∈ [0, T] and x ∈ Ω

and there exists a constant Cl(g) > 0 such that

∥g(t;X1)− g(t;X2)∥L∞(Ω) ≤ Cl(g)∥X1 −X2∥P .

Moreover, assume that the growth term is a logistic-type growth term, i.e

−g(t, x;X ) := r(x)
(

h
(

A1(t), A2(t)
)
−
∫

Ω
Q(t, y)dy

)
where there exist constants 0 ≤ r− < r+ < ∞ and C(τC) > 0 such that

r− ≤ r(x) ≤ r+ for x ∈ Ω

and there exists a small perturbation 0 < ε such that

C(τC)− ε ≤ h(x, y) ≤ C(τC) for (x, y) ∈ [0, 1]2.

Hypothesis 2.4 (Coupling axons and cell densities). Assume θ ∈ C(R+) and rA2 ∈ C(R+) such that

rA2 (x) ≥ 0, ∀x ∈ R

and that for any compact set K ⊊ R+, there exist a constant Cl(θ) > 0 and a constant Cl(rA2 ) > 0 such that ∀(x, y) ∈ K×K

|θ(x)− θ(y)| ≤ Cl(θ)|x − y| and |rA2 (x)− rA2 (y)| ≤ Cl(rA2 )|x − y|.

Moreover, the image of θ satisfies
Im(θ) ⊂ [θ−, θ+] with θ− ∈ (0, A0

1), θ+ > 1.
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Remark 1. The Hypothesis 2.1 allows to consider an initial state of healthy cells for the system. As for Hypotheses 2.2 and
2.3, they give sufficient conditions on the tumor progression term (the transport term f ) and on the proliferation term (the
reaction term c) in order to ensure the well-posedness. The Hypothesis 2.4 states some regularity assumptions on the terms
formalizing the effect of the cells on the axons densities as well as additional conditions in order to have a coupling term
biologically relevant (cf. Section 2.1).

Remark 2. In our model,

f (t, x;X ) = π(x)(1 − β(x)ρ(A1(t)) + δ(x)A2(t)) + η
(

x, Nc(t)
N(t)

)
and

c(t, x;X ) = ∂x f (t, x;X )− r(x)
(

1 − N(t)
τC

− µ1 A1(t) + µ2 A2(t)
)

.

Hence the conditions on f and c stated in Hypotheses 2.2 and 2.3 are enforced when the following detailed assumptions are
fulfilled :

• Let π ∈ C1
c (Ω), β ∈ C1(Ω), δ ∈ C1(Ω) and η

(
·, NC(t)

N(t)

)
∈ C1

c (Ω) such that

sup
x∈Ω

|π′(x)|+ |β′(x)|+ |δ′(x)|+ |η′(x)| ≤ C

for a constant C > 0.
• Let r ∈ C1

c (Ω) and Lipschitz continuous.
More details about these functions will be given in Section 3.1.

Theorem 1. Assume that the Hypotheses 2.1, 2.2, 2.3 and 2.4 are satisfied, then the system (4) admits a unique solution

(Q, A1, A2) ∈ C1([0, T];L1(Ω))× C1([0, T])× C1([0, T]), for all T > 0

such that
∀s ∈ [0, T] 0 ≤ Ai(s) ≤ 1, i = 1, 2,

and there exists a positive constant C(τC) > 0

∀s ∈ [0, T]
∫

Ω
Q0(x)dx ≤

∫
Ω

Q(s, x)dx ≤ C(τC).

Sketch of the proof : The details of the proof of Theorem 1 are postponed in the Appendix A. The system (4)
couples an transport–reaction partial differential equation (PDE) for the cancer progression with two differential
equations for the axons densities. Axons dynamic is governed by non-local terms that depend on the solution of
the PDE. Inversely, the dynamic of tumor progression modelled by the transport term and the reaction term is
also governed by the axons. The proof of the well-posedness of the solution of this non-linear system relies on the
contraction mapping theorem.
Consider X = (Q, A1, A2) ∈ C1([0, T]; C1(Ω)∩L1(Ω))×C1([0, T])×C1([0, T]) given. Define N(s) :=

∫
Ω Q(s, x)dx

and Nc(s) :=
∫

Ω ψ(x)Q(s, x)dx such that 0 < N(0) ≤ N(s) ≤ C(τC) for s ∈ [0, T]. We introduce the linear system
(4): 

∂su(s, x) + f (s, x;X )∂xu(s, x) + c(s, x;X )u(s, x) = 0, for s ∈ (0, T), x ∈ Ω,

f (s, x)u(s, x)= 0, for x ∈ ∂Ω, s ∈ (0, T),

u(0, x) = Q0(x), for x ∈ Ω,

d
ds Ã1(s) = rA1 Ã1(s)

 Ã1(s)

θ

(
N(s)
N(0)

) − 1

 (1 − Ã1(s)), Ã1(0) = A0
1,

d
ds Ã2(s) = rA2

(
Nc(s)
N(s)

)
Ã2(s)

(
1 − Ã2(s)

)
, Ã2(0) = A0

2.

(7)

We denote

B :=
{

Q ∈ C1([0, T]; C1(Ω) ∩ L1(Ω)) |
∫

Ω
Q0(x)dx ≤

∫
Ω

Q(s, x)dx ≤ C(τC) for s ∈ [0, T]
}

and S the following mapping :

S : B × C1([0, T])× C1([0, T]) → B× C1([0, T])× C1([0, T]), (Q, A1, A2) 7→ (u, Ã1, Ã2). (8)

Hence, we note that the solution of (4) is a fixed point of S . The Lemmas 1, 2 and 3 in Appendix A prove the well-
posedness of the solution of (7) and give the estimations needed to prove the contraction property of the mapping
which implies the existence and uniqueness of the solution of (4).
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Remark 3. The Theorem 1 state the well-posedness on any finite time interval of the solution of (4). However, one can prove
the global well-posedness with the same arguments assuming additionnal regularity assumptions (on the time variable t ∈ R+

instead of t ∈ [0, T]) on the functions θ and rA2 (e.g. no singularities). The main reason allowing the extension of the result
about the well-posedness comes from the fact that assuming the Hypothesis 2.1 holds and 0 < A0

i < 1 for i = 1, 2 then
the trajectories (

∫
Ω Q(·, x)dx, A1(t), A2(t)) remain bounded away from 0. However, finer stability estimates are required to

conclude. Since this study focuses on the the interactions between cells and axons during the tumorigenesis for the pancreatic
cancer, the transient behaviour (instead of the asymptotic behaviour) is the main point of interest. The result of Theorem 1 is
sufficient to pursue this goal.

2.3 Qualitative study of the system
The aim of this section is to study how the transport term (1) and the proliferation term (2) of the system (4)
impact the final state of the model’s dynamics. First, we show that, depending on the assumptions made about
the functions π (the basal speed of disease progression), η (the speed of disease progression due to the presence
of cancer cells), r (the basal proliferation rate of cancer cells) and Q0 (the initial distribution of cells with respect
to their phenotypes), the different behaviours of the model’s dynamics can be summed up in three categories.
Secondly, we obtain explicit bounds on the first time of appearance of cells with cancerous phenotypes. This result
is obtained under some assumptions on the transport term and relies on the characteristic curves of the equation.

2.3.1 Behaviour of the model

We recall that our phenotype domain Ω ⊂ R can either be the whole real line or a segment centered in 0. Hence,
a distinct separation for the cells with positive and negative phenotypes is assumed. The origin separates the
cancer-induced proliferative cells from the healthy one. Moreover, at time t = 0 the cells are supposed to be at a
non-cancerous and thus at a non-proliferating state. This assumption is formally translated in our model by the
following hypothesis on the location on the phenotype axis of the initial distribution Q0 (i.e. its support) and on
the support of the proliferation rate r :

Hypothesis 2.5. Assume Q0 is the initial condition of (4) which fulfills Hypothesis 2.1. Moreover, let Q0 be compactly
supported and

supp(Q0)
⋂

supp(r) = ∅.

Hypothesis 2.5 implies that the population of cells in a healthy pancreas remain constant until the apparition of
cancer cells. Moreover, we also assume the following :

Hypothesis 2.6. Let

π(x) ≥ 0, η(x) ≥ 0, δ(x) ≥ 0 and 1 − β(x)ρ(y) ≥ 0 ∀x ∈ Ω, ∀y ∈ [0, 1].

Hypothesis 2.6 implies that the transport term f (·;X ) is nonnegative. It ensures the modeling assumptions stating
that the phenotypic transfer is unidirectional: from healthy to cancer cells. The immediate consequence of this
assumption is that the behaviour of the system is mainly dictated by the location on the phenotype axis of the
transport term support (i.e. the supports of π and ϵ).
Once the Hypotheses 2.5 and 2.6 are assumed, the model dynamics can exhibit several types of behaviour that can
be associated to one of the following states:

• a stationary state where there is no cancer progression,

• a bimodal state, where the cancer progression takes place but the system converges towards a bimodal distri-
bution (i.e. an asymptotic state in which healthy cells and cancer cells are present),

• a pathological state where the healthy cells are totally replaced by cancer cells.

These three behaviours are determined by more refined assumptions on the functions involved in the system (4).
The assumptions categorizing the dynamical behaviour are summarized in Figure 2.

The stationary state. The conditions ensuring this state are schematized in Figure 2a. Since there is no inter-
section between the support of the initial condition and the support of the transport term, there is no possible
progression of the cancer. This behaviour corresponds to the dynamics of the model when there are only healthy
cells without proliferative cells (cf. Figure 3a). Moreover, since there is no proliferative cells, the sensory axons
density remains constant and the sympathetic axons density stays constant or follows a logistic growth (cf. Figure
3b).
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x
Supp(r)Supp(π)Supp(Q0)Supp(η)

(a) The stationary state. The support of the transport term (blue) is not intersecting the support of the initial condition (red).

x
Supp(r)Supp(π)Supp(Q0)Supp(η)

(b) The bimodal state. The support of the transport term (blue) is not intersecting the support of the function η (black) but it
intersects the support of initial condition Q0 (red).

x
Supp(r)Supp(π)Supp(Q0)Supp(η)

(c) The pathological state. The support of the transport term (blue) is intersecting the support of the function η (black) and the
support of the initial condition Q0 (red).

Figure 2: Scheme of the supports of the functions governing the dynamics of the cancer cells progression

The bimodal state. The conditions ensuring the bimodal state are schematized in Figure 2b. The support of
the initial density of cells on the phenotype axis is intersecting with the support of the functions implied in the
progression towards the cancerous phenotype (the functions π and η in (1)). The function π transports a propor-
tion of the cell densities toward the cancer phenotype whereas the function η starts accelerating the transport of
the cell densities from the healthy state to the cancerous state only when cancer cells are present in the system.
Nevertheless, in the bimodal state, the supports of π and η are not intersecting each other. In that case, the system
dynamics tend towards a bimodal population distribution. The bimodal state corresponds to a state where there
are cancer cells in the system after some time . However a proportion of non-cancerous cells is also present and
persists through time (cf. Figures 3c and 4a). Concerning the axons dynamics, in contrast to the stationary case, the
sympathetic axons are first increasing thanks to the logistic growth and then decreasing thanks to the Allee effect
(cf. Figure 3d) and the sensory axons are following a logistic growth (since there are cancer cells in the system).

The pathological state. The asymptotic behaviour corresponding to the pathological case is the opposite of
the one from the stationary case. After a finite time, the cancer cells are present in the system and a progression
towards cancerous phenotypes occurs for the remaining healthy cells (cf. Figure 3e). Then, after some time, there
are only cancer cells in the system. If a proportion of healthy cells remains after the start of the cancer progression
(i.e. supp(Q0) ∩ supp(π) ̸= ∅ and supp(η)/supp(π) ̸= ∅), a second transport phenomenon toward the cancer
phenotypes takes place because the supports of the function π and the function η are intersecting each other (cf.
Figures 2c, 3e and 4b). This means that in this state, the cancer cells play a more prominent role in the cancer
progression. Also, the cancer cell proliferation is controlled by the function r, its support on the phenotype axis
and the various parameters involved in the saturation phenomena. In this case, since all cells are cancer cells after
a finite time, the total amount of cancer cells is higher as compared to the one in the bimodal state (cf. Figures 3c
and 3e). However, the axons dynamics in the bimodal state and the pathological state are similar since in both state
cancer cells are present (cf. Figure 3f).

2.3.2 Explicit bounds on the time to appearance of the first cancer cells

To obtain explicit bounds on the time to appearance of the first cancer cells, we state the following hypothesis
which hold either on the bimodal case or the pathological case.

Hypothesis 2.7. Let
supp(Q0)

⋂
supp(π) ̸= ∅, supp(r)

⋂
supp(π) ̸= ∅

and
π : K ⊊

(
supp(Q0)

⋂
supp(π)

)
/supp(r) → R∗

+, x 7→ π(x)

be monotonous and increasing.

Hypothesis 2.7 is stating that at least a proportion of cells from the initial condition progress toward the cancer-
ous phenotype and that the cells can reach a proliferative state. Moreover, it also state that the function π involved
in the transport term is positive and increasing in a specific subset of its definition domain. The second statement
ensures that the progression toward cancer cells happens in finite time and that progression is faster when the lo-
cation on the phenotype axis is towards the pre-cancerous and cancerous states than when it is towards the healthy
state. Hence, we consider the time t∗, the time to appearance of the first cancer cells, with the following definition.

Definition 1. We denote t∗ the first time when cells can proliferate, i.e.

t∗ := inf {t ∈ R∗
+ | min(supp(r)) ∈ supp(Q(t, ·))} .
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(a) The stationary state. Evolution of the cell densities (b) The stationary state. Evolution of the axons

(c) The bimodal state. Evolution of the cell densities (d) The bimodal state. Evolution of the axons

./heatmap_3t.png

(e) The pathological state. Evolution of the cell densities (f) The pathological state. Evolution of the axons

Figure 3: Numerical simulations of the system (4) (cf. Appendix B for the details of the numerics). The subfigures
3a, 3c and 3f show in the form of a heatmap the evolution of cell populations over time as a function of their
phenotypes. The vertical axis is the time and the horizontal axis is the phenotype. The color map is an indicator of
the cells densities. The subfigures 3b, 3d and 3f describe the evolution of the normalized densities of sympathetic
axons denoted A1 and sensory axons denoted A2.
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Finally, we obtain an upper bound and a lower bound on the time t∗. The bounds depend on the assumptions
made about the functions in the transport term (π, β, ρ, δ in (1)), those in the growth term (r in (2)) and the initial
condition Q0 (cf. Figures 2b or 2c).

x

t

t∗

Supp(π)Supp(Q0)Supp(η)

M0

Su
pp

(Q
(t

, .
))

(a) Bimodal state

x

t

t∗

Supp(π)Supp(Q0)Supp(η)

M0

Su
pp

(Q
(t

, .
))

(b) Pathological state

Figure 4: Scheme of the characteristic curves and the supports of the functions η, Q0 and π for the system (3) under
the assumptions of Hypothesis 2.7. The red dashed lines are the characteristic curves. The red region is the region
where the density of cells is non-zero. The thick red line is a dirac mass which contains part of the densities of the
system (the characteristic curves are equal to 0). The time t∗ is the time of appearance of the first cancer cells (cf.
Definition 1). The slope of the characteristic curves is changing at time t∗ because of the effect of the sensory axons
and the effect of the cancer cells (through the function η) on the cancer progression.

Proposition 1 (Appearance of the proliferative cells). Assume Hypotheses 2.5, 2.6 and 2.7 hold. We denote (cf. Figure 4)

M0 = max
(

supp(Q0)
⋂

supp(π)
)

and r0 = min(supp(r)).

Then there exist two positive constants 0 < m1(π(M0), β, ρ) < m2(π, δ) such that

t∗ ∈
[

r0 − M0
m2

;
r0 − M0

m1

]
.

Proof.[Proposition 1] Let t ∈ (0, t∗), then the following equation holds for Q:

∂tQ(t, x) + ∂x ( f (t, x)Q(t, x)) = 0,

since supp(Q0)
⋂

supp(r) = ∅. It implies that

Q(t, x) = Q0(X(0, t, x))× exp
(
−
∫ t

0
∂x f
∣∣
(t,x)=(s,X(s,t,x))ds

)
for t ∈ (0, t∗) and x ∈ Ω where X denote the characteristic curves, i.e.{ d

ds X(s, t, x) = f (s, X(s, t, x)),
X(t, t, x) = x.

Then, assuming t ∈ (0, t∗), we have the following

supp(Q(t, ·)) = supp(Q0(X(0, t, ·)).

Hence, the bounds on t∗ can be found by studying the characteristics. Since Hypothesis 2.6 hold, then there exist
two functions f1 : Ω → R∗

+ and f2 : Ω → R∗
+ with

f1(y) = π(y)(1 − β(y)ρ(1)),
f2(y) = π(y)(1 + δ(y))
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such that

f1(X(s, t, x)) ≤ d
ds

X(s, t, x) ≤ f2(X(s, t, x)).

In order to estimate the bounds on t∗, we focus on the characteristic starting at M0 = max(supp(Q0)
⋂

supp(π))
at time 0 (cf. Figure 4). Since f (t, x) ≥ 0 for t ≥ 0 and x ∈ Ω then

X(t, 0, M0) ≥ M0, for t ≥ 0.

On the first hand, there exists ε > 0 arbitrary small such that π′(x) > 0 for x ∈ [M0 − ε, M0 + ε] ⊂(
supp(Q0)

⋂
supp(π)

)
/supp(r) and max

x∈Ω
β(x)ρ(1) < 1, we have that

0 < π(M0)(1 − max
x∈Ω

β(x)ρ(1)) ≤ f1(X(t, 0, M0), for t ∈ (0, t∗). (9)

On the other hand, since t ∈ (0, t∗) then Nc(t) = 0, we have that

f2(X(t, 0, M0) ≤ max
x∈Ω

π(x)(1 + max
x∈Ω

δ(x)), for t ∈ (0, t∗). (10)

We denote m1 = π(M0)(1 − max
x∈Ω

β(x)ρ(1)) and m2 = max
x∈Ω

π(x)(1 + max
x∈Ω

δ(x)), using the bounds in (9) and (10),

we obtain
M0 + m1t ≤ X(t, 0, M0) ≤ M0 + m2t.

Finally, we obtain a bound for t∗ using the estimates on the characteristic starting at M0 :

r0 − M0
m2

≤ t∗ ≤ r0 − M0
m1

.

■
The dynamics of the mathematical model illustrate the different states of pancreatic cancer tumorigenesis.

Moreover, depending on the information available on the pro or anti-tumoral interactions between the axons and
the cells, our model can be adapted to estimate the bounds on the time of appearance of the first cancer cells
(Proposition 1).

3 Parametrization and modelling of the denervation
In order to confront our model to the data and be able to extract biological information from it, we need to
parametrize the dynamical system and introduce degrees of freedom. The parametrization given in Table 1 is
described in Section 3.1. To understand the regulation coming from the nervous system, we also need to introduce
a mathematical model of the denervation treatment. This is done in Section 3.2.

3.1 Details of the model and its parameters

Choice of the domain. We propose to use functions π and Q0 compactly supported so that we can reduce the
study of the transport equation to a finite domain Ω = (−L, L) (cf. Section 2.3). We are then able to approximate the
solution of the model using an upwind finite volume scheme for the transport equation and explicit Euler scheme
for the ODE (cf. Appendix B). In the following, we fix L = 50. We use a constant time step dt and space step h
ensuring CFL conditions for the upwind scheme.

Initial Conditions. We set Q0(x) to be the concentration of cells at time t = 0 days. Since initially, only healthy
acinar cells are observed, and since negative values of x close to 50 correspond to healthy cells, we then suppose
Q0(x) follows a gaussian distribution centered at −xinit defined by the following :

Q0(x) = Q0
exp {−(x+xinit)

2

4 }
√

4π

with Q0 = 100, and xinit = 40.
We note that N(0) is close to Q0. Also, the choices of Q0, L and xinit are arbitrary and impact the values of many of
the parameters.
As for the axons, at time t = 0 days, a negligible amount of sensory axons, and a small amount of autonomic axons
are present. Moreover, the axon densities in the mathematical model (3) are renormalized and unitless. Based on
the biological data provided, we consider

A1(0) = 0.15445, A2(0) = 0.004.

12



Name Range/Value Units Description

Discretization
T 70 day life time of a mouse
L 50 - phenotype domain
dt min

(
0.9dx

π0(1+δ)
, 0.005

)
day time step

dx 0.05 - space step

Initial condition Q0 100 cells/mm3 amount of healthy cells at time 0 days
A1(0) 0.15445 - amount of sympathetic axons at time 0 days
A2(0) 0.004 - amount of sensory axons at time 0 days

Speed of progression

π0 [0.1, 10] day−1 Basal amplitude of the speed
x1,π [30, 49] - phenotype at which progression starts
ϵ1,π [10−4, 10] - steepness of the switch to progression
x2,π 10 - phenotype at which progression stops
ϵ2,π 10 - steepness of the switch to no progression

β [10−4, 1] - modulation by the sympathetic axons
δ [10−4, 1] - modulation by the sensory axons

Tumor growth

γr [10−2, 10] day−1 maximum proliferation rate
sr [0.2, 10] - rate of proliferation
τc [120, 300] cells/mm3 carrying capacity of total concentration of cells
µ1 [−1, 1] - modulation by the sympathetic axons
µ2 [10−4, 1] - modulation by the sensory axons

Axon growth

Aeq
1 0.1544 - Fixed from the data

rA1 [10−4, 5] day−1 Growth rate of the sympathetic axons
sθ [13, 20] - steepness of decrease

r̄A2 [10−4, 5] day−1 Growth rate of the sensory axons
sA2 [10−4, 10] - steepneess of increase

Table 1: Details on the parameters involved in the model.

Cancer progression. The experimental data that we have is not quantified on the impact that cancer cells have
on cancer progression of the healthy cells in the late stages of the disease. Therefore, we impose in what follows
η = 0 such that

f (t, x;X ) = π(x)(1 − βρ(A1) + δA2).

This implies that transport to cancer phenotypes is no longer affected by the presence of cancer cells at a very
advanced stage of the disease. The advantage of this modeling approach is that it reduces the number of parameters
without significantly impacting the system’s transient dynamics.

π(x)

x

π0

−(L − x1,π )−L LL − x2,π

π0
2

Figure 5: Illustration of the basal amplitude for the speed of disease progression π.

• The function π represents a basal amplitude for the speed of disease progression:

π(x) = π0 (tanh(ϵ1,π(x + L − x1,π)) + tanh(ϵ2,π(−x + L − x2,π))) /2.

Since initially the transdifferentiation of healthy cells is considered to be slow, we require the transport to
be almost negligible around the lower bound of the phenotype domain. At some phenotype −L + x1,π ∈
(−L, 0), we expect to see an increase in the transport speed. A constant amplitude is then observed during
the PanIN/PDAC phase. We impose the assumption that after x = L − x2,π we have decreasing transport
speed in amplitude which vanishes in a neighborhood of the upper bound of the domain. This implies that
no more transport takes place since cells have reached their PDAC phenotype for x ≥ L − x2,π (cf. Figure 5).

– Initially the amount of sensory axons is almost negligible and increases only after the presence of PDAC
cancer cells. We then expect the speed before the presence of cancer cells to be

f (t, x;X ) ∼= π0(1 − βρ(A1)).
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Since the cancer cells are seen around 35 days, the position of the initial distribution on the phenotype
axis provides information on the approximate value of the parameters linked to cancer progression and
the following can be considered

π0(1 − βρ(A1)) ∼=
xinit
35

.

But as ρ(A1) < 1, we then have

π0(1 − β) ≤ π0(1 − βρ(A1)) ≤ π0

which gives,

π0 ∈
[

xinit
35

,
xinit

35(1 − β)

]
.

– The parameter x1,π is closely related to the location on the phenotype axis where the cancer progression
starts. We note that based on Section 2.3, we would like to secure that supp(Q0)

⋂
supp(π) ̸= ∅ so that

tumorigenesis takes place. Since Q0 is constructed such that Q0(x) ≈ 0 for x ≥ −20, we would then
like to ensure that min{supp(π)} ≤ −30 . Thus, we choose L − x1,π ∈ [30, 49] so that x1,π ∈ [1, 20].

−L Lxinit

π(x)

Q0(x)

x

Figure 6: Illustration of the initial distribution of cells on the phenotype axis and the basal amplitude of the transport
speed of the disease progression.

– The parameter ϵ1,π determines the rapidity of increase in the speed of transport. No biological informa-
tion has been provided on this value but keeping in mind that it is essential for supp(Q0)

⋂
supp(π) ̸=

∅ , we then take ϵ1,π ∈ [10−4, 10].

– The parameter x2,π is linked to the location on the phenotype axis where the transport decreases and
stops. The idea of introducing x2,π is to avoid losing mass at the boundary value L. Thus, we choose
x2,π so that L − x2,π < 50. Here, we fix this value to x2,π = 10.

– The parameter ϵ2,π determines the speed at which the transport speed is reduced. Since we do not
expect any transport to happen after all susceptible cells have attained their cancerous state, we then
choose ϵ2,π = 10 so that π(x) vanishes fast after L − x2,π .

• The parameters β and δ represent the maximum rate of the regulation of the progression by the sympathetic
and sensory axons respectively. Since no biological information is provided about their value and since they
represent a modulation, we choose (β, δ) ∈ [10−4, 1]× [10−4, 1].

• The function ρ is a function that removes the effect of regulation for small values of A1 and that is linear for
larger values of A1. This regulation through the function ρ is motivated by the fact that the autonomous axons
are non-negligibly present in healthy pancreas. We denote Aeq

1 the renormalized value of A1 at the healthy
state. To ensure that the quantity A1 does not artificially affect the cancer progression when A1 < Aeq

1 , we
construct ρ as the following :

ρ(x) =


0 for 0 ≤ x ≤ Aeq

1 ,

y = x − Aeq
1 for Aeq

1 ≤ x ≤ 1. A1

ρ(A1)

Aeq
1 1

1 − Aeq
1

Cancer growth. The proliferation is generated by a logistic growth. More precisely,

g(t, x;X ) := r(x)Q(t, x)
(

1 − N(t)
τC

− µ1 A1(t) + µ2 A2(t)
)

.

• The function r represents the basal growth rate of the pre-tumor and tumor cells. We expect for proliferation
to start taking place in the presence of pre-cancerous cells, i.e. in a neighborhood of 0−. Hence, we consider
that

r(x) =
1
2

γr(1 + tanh(srx)).

– The maximum proliferation rate that the cells can exhibit is γr. Here, we take γr ∈ [10−2, 10].
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– The parameter sr determines the rate at which proliferation takes place. For small values of sr, then the
proliferation increases in rate in precancerous lesions, whereas for big values of sr, the tumor growth
increases in rate only in late stages of precancerous lesions. We choose sr ∈ [0.2, 10].

x

r(x)

sr = 1

sr = 8

Figure 7: Illustration of the behaviour of the basal growth rate of the pre-tumor and tumor cells.

• The growth rate of the pre-tumor and tumor cells can be regulated by the presence of axons through the term

−µ1 A1(t) + µ2 A2(t).

In that, we consider that the sympathetic axons either slow down or accelerate tumor growth whereas the
sensory axons only accelerate tumor growth. The parameters µ1 and µ2 modulate the impact that the axons
have on the proliferation. We consider that µ1 ∈ [−1, 1] and µ2 ∈ [10−4, 1].

• It’s important to point out that even if cells proliferate, the total quantity of cells is limited and there is no
explosion in finite time. In other words, we require 1 − N(t)

τC
− µ1 A1(t) + µ2 A2(t) < ∞ with τC being the

carrying capacity of the amount of cells in the absence of axons. Thus, using the fact that Ai ≤ 1 for i = 1, 2
we have,

N(t) ≤ τC(1 − µ1 A1(t) + µ2 A2(t)) ≤ τC(1 + µ2 + µ−
1 ),

≤ C(τC),

with C(τC) = τC(1 + µ2 + µ−
1 ) where x− = 1

2 (|x| − x). Since N(0) = 100, we then require N(0) ≤ τC. We
choose τC ∈ [120, 300].

Sympathetic axons growth. We introduced an Allee effect in the growth term of the sympathetic axons (similar
to what is seen in [Lolas et al., 2016]). We recall that the dynamics of A1 is given by the following

rA1 A1(t)

 A1(t)

θ
(

N(t)
N(0)

) − 1

 (1 − A1(t)).

• The parameter rA1 is the growth rate of the autonomic axons. The bigger the value of rA1 is, the steeper the
increase or decrease of A1 is. We consider rA1 ∈ [10−4, 5].

• In the light of what is done in [Lolas et al., 2016], we also propose to modulate the threshold θ with the total
amount of cells:

θ

(
N(t)
N(0)

)
=

Aeq
1

2
+

1
2

tanh
(

sθ

(
N(t)
N(0)

− 1 − 0.1
))

+
1
2

(11)

where Aeq
1 is the density of the sympathetic axons at the healthy state and sθ is the steepness of the decrease

speed of A1. The value of Aeq
1 is estimated from the data (cf. Table 1). In order to ensure a biological meaning,

the following has to hold: for small time t, θ
(

N(t)
N(0)

)
≈ θ(1), and we want θ(1) < A1(0) with A1(0) ≈ Aeq

1 to
observe initially an increase in the autonomic axon density. Thus, we want

sθ ≥
tanh−1(1 − Aeq

1 )

10−1 .

It leads us to consider sθ ∈ [13, 20]. For large values of the ratio N(t)
N(0) , we have θ

(
N(t)
N(0)

)
≈ 1 +

Aeq
1

2 > 1
leading to a decrease in the autonomic axon density.

Sensory axons growth. The sensory axons follow a logistic growth regulated by the presence of PDAC

rA2

(
Nc(t)
N(t)

)
A2(1 − A2)

with rA2 (s) = r̄A2 tanh(sA2 s). The parameter r̄A2 is the maximum growth rate of the sensory axons. We consider
r̄A2 ∈ [10−4, 5]. The parameter sA2 modulates the steepness of the increase of the growth of A2. Here, we consider
sA2 ∈ [10−4, 10].
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3.2 Modeling denervation treatment
Testing the effects of denervation in preclinical models often requires the use of numerous animals, raising
ethical concerns. Therefore, the use of a mathematical model to predict the effects of denervation becomes highly
valuable, allowing for the replacement and reduction of the number of animals used. In the literature, the role
of axons in cancer progression has been studied through chemical or surgical denervation. In our mathematical
model, denervation is implemented by setting parameters related to the targeted axon to 0 after the time of the
intervention.

Specifically, denervating sympathetic axons is equivalent to suppressing the influence of A1 on cell transport and
proliferation. This is achieved by setting the parameters as follows after the denervation time:

β = 0, µ1 = 0.

Conversely, denervating sensory axons is equivalent to suppressing the influence of A2 on cell transport and pro-
liferation, after the denervation time, the parameters are set as:

δ = 0, µ2 = 0.

For denervating both axons, the parameters are set as follows after the denervation time:

β = 0, µ1 = 0, δ = 0, µ2 = 0.

We have to adapt the notations given above to take into account the above mathematical denervation when useful.
The dynamical system defined in Section 2, in particular in Eq. (3) is parameterized by ϑ as explained in Section 3.1
and models the control treatment (AA). The total amount of cells and the total amount of cancer cells arising
from this dynamical system is denoted by N(t|ϑ, AA) and Nc(t|ϑ, AA), respectively. The dynamical system that
models the denervation treatment is obtained from the same dynamical system, yet the value of ϑ is changed
after time of the intervention, where some components are set to 0 as explained above. The total amount of cells
and the total amount of cancer cells arising from this second dynamical system is denoted by N(t|ϑ, OHDA) and
Nc(t|ϑ, OHDA), respectively.

4 Calibration
In this section, we focus on the calibration of the model to the biological data at our disposal. It is rather complex
in our case since

• a small number of biological data is provided, with variability in samples as described in Section 4.1,

• the model is far from being linear in the parameters and the predictions returned by the mathematical model
cannot be written explicitly as a function of the parameters,

• we do not have at our disposal a likelihood function to explain the difference between the predictions of
model and the data.

Moreover, the set of parameters is of rather high dimension (d = 14) and we need to avoid selecting the best set
of parameters that would overfit the few observed data and would not reflect the biological phenomenon we are
trying to capture.
To this aim, we propose in Section 4.2 a 2-dimension criterion to measure the quality of the calibration of the model
to the data and to our biological knowledge explained in Section 4.1: (1) a mean squared error criterion based on
the cell distribution and axon evolution, that measures the difference between model outcomes and data, and (2) a
criterion based on the biological knowledge we have on the chronology of cell evolution. As described in Section
4.3, we managed to extract biologically relevant sets of parameters that are consistent with the cell data and the
chronological knowledge by exploring the parameter space with a multi-stage quasi-Monte Carlo algorithm that
starts from a flat, uniform prior over the parameter space which is the hypercube given by the range column of
Table 1, and ends with the 0.4% best sets of parameters according to the criterion, that are presented in Section 4.4
and in Appendix B.2.

4.1 Biological data
The selection of experimental data for calibrating the mathematical model is crucial and should align with the
characteristics of the relevant preclinical model. The calibration process encompasses various aspects of the animal
model, incorporating chronological insights into cancer progression derived from the literature. Additionally, data
on sympathetic nerve axons density, sensory nerve axons density, and cell density at different stages of cancer
progression are considered during the calibration process.
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Mice model and data acquisition methods. In this study, we use the
KrasLSL−G12D/+; Cdkn2a(Ink4a/Ar f )lox/lox; Pdx1-Cre (KIC) ) mouse model of pancreatic cancer. The over-
expression of a mutated form of the oncogene KRAS in pancreatic cells induces transdifferentiation, where
healthy acinar cells (the functional unit of the exocrine pancreas) transform into ductal cell-like cells, leading to the
formation of acinar to ductal metaplasia (ADM). Subsequently, ADM can progress to form premalignant pancreatic
intraepithelial neoplasia (PanIN). The deletion of tumor-suppressor genes Ink4A and Arf further accelerates tumor
development, resulting in PDAC itself. The KIC mice model successfully replicates the stepwise progression
observed in human pancreatic cancer (cf. [Aguirre et al., 2003], and Figure 8). Several mouse pancreases at the
time points of 6.5 weeks and 8 weeks are utilized in the experiments to accommodate biological heterogeneity. The
technique used to quantify nerve axons density and cell density within lobules of the pancreatic tissue is detailed
in the source data file of [Guillot et al., 2022]. In short, data comes from the quantification of 3D cleared tissue
images obtained by Light Sheet Fluorescence Microscopy. Tissue staining was achieved through immunostaining
and tissue clearing using the iDISCO+ protocol. Tyrosine hydroxylase antibody staining (TH), an enzyme involved
in the biosynthesis of norepinephrine (one of the main neurotransmitters of the sympathetic nervous system), and
Calcitonin gene-related peptide (CGRP) antibody were used to visualize sympathetic and sensory innervation
respectively. Regions of Interest (ROI), namely asymptomatic (ASYM), ADM, PanIN, and PDAC, were segmented
based on the autofluorescence signal of the tissue, and their volumes were measured. Axonal networks were
manually reconstructed to measure the total axon length in each ROI. The unitless axon density was calculated as

follows:
(
(axons length sum × 1000)(µm)/(volume of each Regions of Interest (ROI))

1
3 (µm)

)
. Densities obtained

through experimentation were normalized by first dividing by the cubic root of the volume in which the density
was measured and then by an affine transformation to obtain proportions. This normalization facilitates the
comparison of quantities both within the experimental data and with the outputs provided by the mathematical
model (cf. Figures 9 and 10).
The method used to describe the proportion of tissue categorized by their phenotypes in histological sections
through the pancreas of a 6.5-week-old mouse can be found in the source data file of [Guillot et al., 2022] (cf. Figure
11).

Knowledge on the chronological process. Based on the previous characterization of the KIC model (seen
in [Aguirre et al., 2003] and in our personal observation), the time of observation of ADM lobules denoted tADM

is around 17 days, the first appearance of relatively advanced-staged PanIN lobules denoted tPANIN is observed
around 24.5 days, and the first appearance of PDAC lobules denoted tearly

PDAC is observed around 35 days. The median
survival of a KIC mouse model is 9 weeks and so, at 6.5 weeks (= tPDAC) the mice has already developed a tumor,
but at 8 weeks (= tadvanced

PDAC ), the cancer is really aggressive. All these chronological assumptions are summarized in
Figure 8. Additionally, we include a time interval of plus or minus three days around the above temporal values to
account for variability in observations.

7 17 24.5 35 45 56

= = = = = =

tASYM tADM tPANIN tearly
PDAC tPDAC tadvanced

PDAC

ADM PanIN PDAC 6.5 weeks Advanced PDAC

Figure 8: Diagram outlining the chronological assumptions regarding cancer progression in pancreas of KIC mice,
drawing from [Aguirre et al., 2003] and our firsthand observations. The indicated times represent the estimated
average time at which each new stage is expected to be observed for the first time. The bold red segments indicate
a time interval of plus or minus three days around the mentioned temporal values, encompassing variations in
chronological estimates.

Sympathetic and Sensory nerve axons quantification. The normalized densities of sympathetic and sen-
sory nerve axons are shown in Figure 9 and Figure 10, respectively, quantified at 6.5 weeks of the KIC age. For
sensory axons, density measurements were also performed at 8 weeks for the PDAC lesions. Also, each sample of
density measurements from the data does not only characterize the axon densities but also the tissue stages from
where it was observed (ROI). This additional information may not be fully exploited by the model because infor-
mation about space is not taken into account in the construction of the model. One way to use all information of the
data is to extrapolate a dynamic based on the ROI type of the data origin. Since we know that tASYM, tADM, tPANIN,
and tPDAC are the times of observation of each ROI type during cancer progression, we then consider that the quan-
tification of the normalized densities of the axons in each ROI type corresponds to those times respectively. Those
timings are stated on the x-axis of the Figure 9 and Figure 10. Hence, the dynamics of the axons are illustrated by
the green curves in Figures 9 and 10. It allows to combine qualitative information (chronological knowledge) to
quantitative information and ensures a more precise calibration of the mathematical model.
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Figure 9: Whisker Plot of Normalized Sympathetic Nerve Axon Density: Data from different KIC mice depict the
sympathetic axonal density within various ROI in the pancreas at 6.5 weeks of age, categorized as ASYMP, ADM,
PanIN, or PDAC. The quantification involved 4 ASYMP, 5 ADM, 6 PanIN, and 7 PDAC ROIs [Guillot et al., 2022].
The dotted blue points correspond to the data. The green curve represents the mean density in each ROI, with
identified stages on the x-axis extrapolated from the chronological knowledge of each ROI type.

Figure 10: Whisker Plot of Normalized Sensory Nerve Axon Density: Data from different KIC mice depict the
sympathetic axonal density within various ROI in the pancreas at 6.5 weeks and 8 weeks of age, categorized as
ASYMP, ADM, PanIN, or PDAC. The quantification involved 6 ASYMP, 6 ADM, 6 PanIN, and 5 PDAC ROIs
[Guillot et al., 2022]. The dotted blue points correspond to the data. The green curve represents the mean density
in each ROI, with identified stages on the x-axis extrapolated from the chronological knowledge of each ROI type.

PDAC Cell Concentration. Figure 11 illustrates the data extracted for the normalized cancer cell concentration
at 6.5 weeks. We set the time of observation for the data and aim to identify model dynamics that closely match
these data points at 6.5 weeks. Through observation, we note that the proportion of PDAC cells is higher in OHDA
samples than in AA samples.

4.2 A 2-dimensional criterion
The first dimension of our criterion is a mean squared error criterion that measures the difference between model
outcomes and data. We consider the following data:
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Figure 11: Whisker Plot of Normalized Cancer Cell Concentration: Sympathectomy was conducted through the
injection of neurotoxin 6-hydroxydopamine (6-OHDA) vehicle solution between 3.5 and 4 weeks of the KIC age.
We utilized data published in [Guillot et al., 2022], where the concentration of cancer cells in 6 KIC mice was
quantified at 6.5 weeks. The mice were distributed as follows: 3 mice injected with ascorbic acid (AA) and 3 mice
injected with the neurotoxin 6-hydroxydopamine (OHDA). For each mouse, we obtained 4 biopsies, and for each
biopsy, we collected the proportion of PDAC. Therefore, we consider a total of 6 × 4 = 24 quantifications of the
proportion of PDAC, with 3 × 4 = 12 quantifications from mice injected with AA and 12 quantifications from mice
injected with OHDA. The dotted blue and red points correspond to the data for control mice and denervated mice
respectively.

• n biological samples of cell distributions pi ∈ (0; 1) under treatment ui ∈ {AA, OHDA} (i = 1, . . . , n) that
should be compared to the proportion of proliferating cells p(t|ϑ, u) given by the model, on average over
time t ∈ (0, T)

• m biological samples of axon density ai ∈ (0; 1) in AA (i = n + 1, . . . , n + m) that should be compared to the
axon density evolution A(t|ϑ) given by the model, on average over the time range t ∈ Ii corresponding to
the kind of tissues of i-th biological sample (ADM, PanIN, PDAC or mature PDAC). Moreover, zi ∈ {A1, A2}
indicates whether the observed density ai is a density of sympathetic (A1) or sensory (A2) axons.

The first coordinate of our criterion is defined as the mean squared error (MSE) given by

G1(ϑ) =
2
n

n

∑
i=1

1
|ItPDAC

|

∫
ItPDAC

(
pi − p

(
t
∣∣ϑ, xi

))2

dt +
1
m

n+m

∑
j=n+1

1
|Ij|

∫
Ij

(
aj − A

(
t
∣∣ϑ, zj

))2

dt. (12)

In the first part of the MSE defined in (12), we have integrated the square difference over a time interval of size 6
because the exact time (on our time axis) at which the cell distributions were observed is not known

• p(t|ϑ, ui) := Nc(t|ϑ, ui)
/

N(t|ϑ, ui) is the proportion of proliferative cells given by the model at time t,

Nc(t|ϑ, ui) being the amount of proliferative cells and N(t|ϑ, ui) being the total amount of cells at time t
given by the model of Section 3.2.

• ItPDAC
= [tPDAC − 3; tPDAC + 3] is the time range at which the cell distributions were observed.

In the second part of the MSE defined in (12), we have integrated the square difference over a time interval of size
6 because the exact time (on our time axis) at which the axon densities were observed is not known, but we know
the kind of tissues we sampled. More precisely,

• Ij ∈
{
[tADM − 3; tADM + 3], [tPANIN − 3; tPANIN + 3], [tPDAC − 3; tPDAC + 3], [tadvanced

PDAC − 3; tadvanced
PDAC + 3]

}
is the

time range corresponding to the observation of the j-th biological sample, i.e the sample coming from either
the ADM, PanIN, PDAC or mature PDAC lobules.

• A(t|ϑ, z) := A1(t|ϑ) or A2(t|ϑ) is the axon density given by the model at time t of type z and parameter set
ϑ.

The second component of our criterion is a penalization term to capture the correct behavior of the model according
to the biological knowledge we have on the chronology of appearances of PDAC cells(see [Aguirre et al., 2003])
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in the control group (AA). We do not expect many PDAC cells at time t < tearly
PDAC where tearly

PDAC is the first time of
appearance of PDAC lobules. Thus, the second component of our criterion is defined as

G2(ϑ) =
1

tearly
PDAC

∫ tearly
PDAC

0
p(t|ϑ, AA)dt, (13)

where p(t|ϑ) is the proportion of proliferative cells at time t given by the model. The quantity G2(ϑ) is the mean

proportion of proliferative cells in the control group (AA) over the time range
[
0, tearly

PDAC

]
and it should be low to

respect the biological knowledge we want to introduce in the calibration process.

4.3 Seeking for parameter sets with low criterion values
The range of parameters that makes sense in the mathematical model is the hypercube H given in Table 1. Without
constraining ϑ ∈ H with the above criterion G(ϑ), the dynamics of the model can change strongly based on
the value of ϑ. Many roads are available to restrain this range and obtain relevant parameter sets based on the
2-dimensional criterion G(ϑ) = (G1(ϑ), G2(ϑ)). We could have tried to optimize a 1-dimensional criterion such
as Ḡλ(ϑ) = G1(ϑ) + λG2(ϑ), where λ is a tuning parameter that defines the trade off between the data and the
chronological information. Yet tuning λ is difficult. Moreover, because of non-convexity, many local minima may
exist, exhibiting different dynamics of the model. Instead of minimizing a Ḡλ(ϑ), we use a a multi-stage algorithm
that selects first the best sets ϑ of parameters according to G1(ϑ) and then refines the selection according to G2(ϑ).

The results given by the multi-stage algorithm given in Appendix B is a (relative large) collection of parameter sets
ϑ that are consistent with the cell data and the chronological knowledge, i.e. that have low values of both G1(ϑ)
and G2(ϑ). We start with a massive quasi-Monte Carlo sampling the hypercube H with a uniform distribution that
acts here as a non-informative prior. The massive collection is then filtered according to both components of G(ϑ)
and re-sample the hypercube H with an instrumental Gaussian distribution fitted on the filtered collection. The
filtering step is then repeated to get the final collection of parameter sets.

J0

J1

J2

J3

Double filtering

Uniform sampling

Mean and covariance

Gaussian sampling

Quasi-Monte Carlo

Figure 12: Schematic view of the step-wise algorithm used to select parameter sets. The collection J0 of parameter
sets is distributed uniformly over the hypercube H of Table 1. The collection J1 is obtained by filtering J0 with
G1(ϑ) ≤ g1 and then G2(ϑ) ≤ g2. The collection J2 is obtained by re-sampling H with an instrumental Gaussian
distribution fitted on J1. The collection J3 is obtained by filtering J2 with G1(ϑ) ≤ g′1 and then G2(ϑ) ≤ g′2.
The thresholds gi and g′i are chosen as some quantiles of small order of the collection that is constrained. The final
collection J3 is a collection of parameter sets that are consistent with the cell data and the chronological knowledge,
i.e. that have low values of both G1(ϑ) and G2(ϑ) (see Appendix B.2 for more details).

4.4 Relevant sets of parameters
By taking some of the sets of parameters obtained in Section 4.3, as seen in Figure 13, A1 and A2 have variability
in their time of remodeling, as well as there is a difference in the time of arrival of cancer cells. We observe that
despite the variability in dynamics, all parameter sets obtained fit the biological data. In the subsequent sections,
we will utilize some of these parameter sets to conduct a detailed investigation of in silico denervation
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Figure 13: Dynamics of the model using different sets of parameters from the relevant sets of parameters obtained.
(Top) Evolution of the sympathetic axons (A1). (Middle) Evolution of the sensory axons (A2). (Bottom) Evolution of
the proportion of cancer cells (Nc/N). The blue dots in each sub-figure correspond to the biological data provided
for the sympathetic axons, sensory axons, and the frequency of cancer cells respectively. The red dots in the bottom
frame correspond to the frequency of cancer cells observed at 6.5 weeks after an early denervation at 28 days with
the use of OHDA, and the dashed red curves correspond to the evolution of the concentration of cancer cells after
early denervation.

5 Impact of the in silico denervation
The aim of this section is to investigate the effect of denervation on cancer progression using specific parameter sets
selected from Section 4.4, chosen for their cost-effectiveness and alignment with biological data outlined in Table
2. Their values for the criteria of fitting the data (12) are 0.264, 0.2461, and 0.246 respectively. Their values for the
criteria of fitting the chronological assumption (13) are 0.033, 0.002, and 0.014 respectively.
The parameter configurations 2 and 3 outlined in Table 2 are selected so that sympathetic axons induce an inhibitory
effect on tumor growth (µ1 > 0). However, they are distinguished by varying durations for axon remodeling,
reflecting patterns observed in the literature [Guillot et al., 2022] and accommodating the variability inherent in
biological data. Furthermore, in light of findings from a literature source [Renz et al., 2018a] suggesting a positive
impact of A1 on tumor growth, we also choose parameter set 1 with µ1 < 0 to investigate this case.
In what follows, we analyze the effects of varying denervation timings on either sympathetic or sensory axons, or
both, in order to elucidate their impacts on tumorigenesis.

π0 β δ γr sr τC µ1 µ2 rA1 r̄A2 x1,π ϵ1,π sθ sA2

Set 1 2.005 0.73 0.398 1.50 2.68 172.295 −0.176 0.214 0.055 0.241 32.97 5.357 15.131 4.151

Set 2 4.589 0.504 0.829 1.160 2.775 177.807 0.609 0.139 0.077 0.928 34.56 6.555 14.733 1.105

Set 3 1.795 0.535 0.398 4.537 6.097 150.576 0.176 0.678 0.032 0.29 30 4.385 17.609 6.49

Table 2: Different sets of parameters

5.1 Indicator of the invasive potential
To study the effect of denervation and the role of axons in pancreatic cancer progression, we investigate the effect
of three types of denervation:

• the denervation of sympathetic axons (A1),

• the denervation of sensory axons (A2),
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• the denervation of both types of axons (A1 and A2).

A quantitative measure of the effect of denervation for any of the above three types of denervation can be the
difference at a given time between the amount of cancer cells in the control case (with both axons regulating the
dynamics) and in the denervated case. Although this function allows us to measure the effect of denervation, it
does not allow us to take into account all the specificities of temporal dynamics. Indeed, the earlier a cancer cell
appears, the higher the probability of accumulating genetic alterations that enhance aggressiveness and metastasis.
So we construct the following function to measure the impact of denervation:

I(T) = 1
T

(∫ T

0

Nc(t|ϑ, OHDA)

N(t|ϑ, OHDA)
dt −

∫ T

0

Nc(t|ϑ, AA)

N(t|ϑ, AA)
dt
)

(14)

with the notations of Section 3.2. This indicator gives information about the invasive potential at time T because it
takes into account the history of existence of cancer cells over time.
This indicator is positive for an overall pro-tumoral effect of denervation (I(T) > 0), and conversely it is negative
for an overall anti-tumoral effect of denervation (I(T) < 0).

5.2 In silico denervation at defined time points
In this section, we apply the three types of denervations stated in Section 5.1. These denervations are implemented
at two specific times:

• at 28 days, which corresponds to the time between the observation of PanIN and the onset of PDAC for the
KIC model (cf. Section 4.1),

• at 50 days, which corresponds to the time between the onset of PDAC and the observation of advanced
PDAC (cf. Section 4.1).

The dynamics of the model subject to these denervations are illustrated in Figure 14.
We denote by T the time of observation, then the effects of the denervations are quantified by the indicator I(T)

given by (14) and the results are summarized in Table 3. The invasive potential can be quantitatively compared with
the various results in the literature on the effect of axons on the initiation and progression of PDAC:

• in [Saloman et al., 2016], the authors show that ablating sensory axons prior to the onset of the pathology
(referred to as early denervation) inhibits tumorigenesis of the pancreatic cancer. This result is translated by
I(T) < 0.

• In [Guillot et al., 2022], the authors show that ablating sympathetic axons prior to the onset of the pathology
(referred to as early denervation) leads to an acceleration of tumor growth and metastasis. This result is
translated by I(T) > 0 in the case of an early denervation of A1.

• Finally, in [Renz et al., 2018a] and [Guillot et al., 2022], the authors conduct surgical denervation for both A1
and A2 after and before invasive tumor formation, categorized as early and late denervation, respectively.
This procedure results in the ablation of mixed sympathetic and sensory axons.

– In [Renz et al., 2018a] they show that removing the axons inhibits tumor growth. Hence, this result is
that I(T) < 0 in the case of late denervation of A1 and A2.

– However, in [Guillot et al., 2022], early denervation of the splanchnic nerve leads to a pro-tumoral
effect with observations of metastasis and a smaller survival time of mice. This result is translated by
I(T) > 0 in the case of early denervation of A1 and A2.

The only nuance to note is that the time at which the effect of denervations is observed in the various articles is
not so easily translated into a quantifiable datum T in days. For instance, the mice models used may differ in terms
of chronological progression of the disease and the different experimental techniques used may also affect the
temporal component of the data in their own way. To make the most of this variability, the final time of observation
T is set at T = 70 days as the rounded upper bound of the median survival of mice (63 days in [Guillot et al., 2022])
which allows us to observe the effect of the denervation over the entire time range.

A1 at 28d A1 at 50d A2 at 28d A2 at 50d A1 and A2 at 28d A1 and A2 at 50d

Set 1 −2.311 −0.56 −1.697 −1.58 −3.961 −2.249

Set 2 5.893 0.876 −2.163 −1.85 3.435 −0.788

Set 3 2.493 0.441 −6.94 −6.366 −4.482 −5.47

Table 3: Values in percentage of the invasive potential I(70) (cf. (14)) for the sets of parameters of Table 2. The
columns indicate the different denervations, sympathetic axons (A1), sensory axons (A2) or both types of axons
(A1 and A2), at early stage (28 days) or late stage (50 days).
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(a) (b)

(c) (d)

(e) (f)

Figure 14: Model dynamics subject to denervation. (Left) Evolution of the axons. (Right) Evolution of the proportion
of cancerous cells NC(t)

N(t) . The different colors show the effect of different denervations. The first row (resp. second
row and third row) corresponds to the dynamics for the parameters set 1 (resp. 2 and 3) in Table 2.

5.2.1 Case when µ1 < 0

Based on Table 3, the invasive potential of parameters set 1 is always negative for the three types of denervations.
Indeed, only an anti-tumoral result is observed for the early and late denervation as seen in Figure 14b, which do
not recapitulate the results shown in [Guillot et al., 2022]. Therefore, this set can be considered as a false positive
estimation due to the high variability of the data and the ill-posedeness of the calibration problem. Thus, in what
follows, we focus our study on the parameters sets 2 and 3 of Table 2 when µ1 > 0 .
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5.2.2 Case when µ1 > 0

In this section, we analyze the impact of axons on tumorigenesis using parameters sets 2 and 3 from Table 2. Our
model posits that sympathetic axons exert an anti-tumoral effect. Therefore, denervation of A1 leads to an increased
proportion of cancerous cells revealed by a positive value for invasive potential, whether denervation occurs early
or late (see Figure 14 and Table 3). Conversely, sensory axons are implicated in promoting tumorigenesis. Thus,
denervation of A2 leads to a decrease in proportion of cancerous cells and a negative value for invasive potential
(see Figure 14 and Table 3).

Effect of the double denervation of sympathetic and sensory axons. The impact of denervating
sympathetic and sensory axons proves to be complex and subject to diverse outcomes across the two distinct
parameter sets, reflecting biological variability.

Outcome 1. For both set of parameters, early denervation of sympathetic and sensory axons result in a shift
from an initial pro-tumoral effect of denervation (increase proportion of cancer cell compare to control condition)
to a late anti-tumoral effect of denervation (decrease proportion of cancer cell compare to control condition). This
"shift effect" is highlighted by the crossing of the green denervated and the black control curves in Figure 14.

Outcome 2. For both set of parameters, late denervation of both axons types inhibits tumorigenesis. In Figure
14, the green denervated curves are below the control ones meaning that pathological cancerous cells are present
at a lower level compared to the control scenario.

Outcome 3. However significant difference emerges between the two sets. For early denervation, invasive
potential is positive for parameter set 2 and negative for parameter set 3. This suggests a higher net production
of cancerous cells over the entire time span for set 2 compared to set 3 (higher area between the green and black
curves before the “shift effect” and a lower area after the curves crossing, see Figure 14). This difference between
the two sets reflects the dominance of a specific axon type (sympathetic for set 2 and sensory for set 3) in pancreatic
cancer regulation.

The role of axons in cancer progression can be effectively established using the mathematical model and in silico
denervation experiments. However, the relevance of in silico results is partly correlated with the calibration of
the model. This calibration becomes more complex when the data is scarce and highly variable. Consequently,
the parameter sets obtained during calibration exhibit different dynamics and denervation effects. Moreover, it is
important to note that both the timing of denervation and the duration of observation post-denervation are critical
factors in understanding the denervation’s effects.

5.3 In silico denervation for varying times
Using the mathematical model, we investigate the temporal dynamics by denervating both sympathetic and
sensory axons at various time points. Subsequently, we construct heatmaps at different observation times to have
an evolving illustration of the invasive potential.

5.3.1 Heatmap construction and interpretation

Studying experimentally the effect of different types of denervation can be time consuming and expensive. How-
ever, the mathematical model allows to perform a large number of in silico denervations and hence gives insights
on the role of the axons in tumorigenesis. In this Section, using the parameters sets 2 and 3 of Table 2, we per-
form denervations varying the time of denervation of both axons independently and we quantify their pro- or
anti-tumoral effect at different times during the tumorigenesis process. The results of the in silico denervations are
illustrated by the two sequences of heatmaps of Figures 15 and 16.
First, we introduce the finite sequence (si) ∈ {5, 10, . . . , 70} which corresponds to the observation times for the
effect of denervations. Then, we denote by tA1 (resp. tA2 ) the time of denervation of the sympathetic axons A1 (resp.
the sensory axons A2). Each heatmap of Figure 15 or 16 corresponds to a grid where the y-axis correponds to the
different values taken by tA1 and the x-axis to those taken by tA2 . The following holds

tAj ∈ [0, si], j = 1, 2,

since it makes no sense to look at the effect of denervation before denervation has taken place.
The cell from the heatmap si located at (tA1 , tA2 ) corresponds to the invasive potential at time si subject to the
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denervation of sympathetic axons at time tA1 and subject to the denervation of sensory axons at time tA2 (cf. (14)
and Section 5.1). We keep track of the denervation time in the notation of the index evaluated at time si as follows:
I (si; tA1 , tA2 ). Hence, two kind of results are observed:

• if I(si; tA1 , tA2 ) > 0, then the cell is colored in blue. Hence, the aggressiveness of the tumor is encoded by
this color. The darker the blue, the stronger the pro-tumoral effect of the denervation.

• If I(si; tA1 , tA2 ) < 0, then the cell is colored in brown. Hence, the possibility of tumor remission through
denervation is encoded by this color. The darker the brown, the stronger the anti-tumoral effect of the den-
ervation.

Moreover, the sequence of heatmaps illustrates the dynamical evolution of the invasive potential. For instance,
the red, blue, green, and black stars on the heatmaps of Figure 15 (resp. Figure 16) correspond to the invasive
potential of the early denervated and control curves of the parameters set 2 (resp. set 3) of Table 2 illustrated by the
red, blue, green and black curves of Figure (14d) (resp. Figure (14f)).

Figure 15: Evolution of the invasive potential with respect to varying denervation times for the parameters set 2
from Table 2. The times of denervations of A1 (resp. A2) are indicated on the y-axis (resp. the x-axis). The observa-
tion time si of the invasive potential is indicated in days above each heatmaps.

5.3.2 Impact of the time-varying denervations on the evolution of the tumorigenesis.

In the following, a more qualitative approach of model validation is proposed. A detailed description of the inter-
esting elements of the model dynamics subject to time-varying denervations is given. We discuss the possibility of
establishing the best time and strategy of denervation.

Different times of remodeling of sympathetic axons explain the different apparition times of the pro-
tumoral effect of denervations. The pro-tumoral effect of denervation starts to be observed at si = 25 days for
parameters set 2 (cf. Figure 15) and at si = 40 days for parameters set 3 (cf. Figure 16) due to the darkening of the
blue color in the lower halves of the heatmaps. The difference in the time of observation si can be explained due
to the difference in the time of arrival of sympathetic axons and the difference in the impact they have on cancer
growth. By referring to Table 2, the parameters rA1 and µ1 are larger for set 2 than set 3, explaining the larger
and earlier effect that sympathetic axons denervation exhibits on tumor growth as seen in Figure 15 compared to
Figure 16.

In the early stages of the tumorigenesis, the strong pro-tumoral effect of denervation is associated to the
early denervation of sympathetic axons. For si ≤ 50, the denervations associated with a strong pro-tumoral effect
are localized in the lower halves of the heatmaps for both sets of parameters, corresponding to early denervation
of sympathetic axons. The time of denervation of sensory axons has almost no effect in the lower halves of the
heatmaps, as the blue region extends homogeneously along the x-axis . The fact that the denervations of sensory
axons do not play a significant role in this time range can be explained due to the late remodeling of sensory axons
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Figure 16: Evolution of the invasive potential with respect to varying denervation times for the parameters set 3
from Table 2. The times of denervations of A1 (resp. A2) are indicated on the y-axis (resp. the x-axis). The observa-
tion time si of the invasive potential is indicated in days above each heatmaps.

and the delay between the denervation time of this type of axons and its impact on the dynamics of the model.
Thus, in that time range, all types of denervations are mainly impacted by the denervation of the sympathetic
axons.

In the late stages of the tumorigenesis, the impact of sensory axons’ denervation becomes significant as the
dynamics for both parameters sets undergo the shift effect described in the previous section. For si ≥ 55, the
sensory axons starts to display its inhibiting effect on cancer cells which can be seen through expanding brown
areas or lightening blue areas on the upper halves of the heatmaps. It illustrates the antagonistic role of both types
of axons: the sympathetic axons playing an anti-tumoral role on the early stages of tumorigenesis and the sensory
axons playing a pro-tumoral role on the late stages of the tumorigenesis.

The sympathetic axons’ (resp. sensory axons’) impact on cancer growth dominates in Figure 15 (resp. Figure
16). On the one hand, the regulation of the sympathetic axons plays the most significant role on tumorigenesis
for parameters set 2 since the denervation of this type of axons highlights a strong deviation of its dynamic
from the control one (illustrated by the opacity level of the blue region in Figure 15). On the other hand, the
regulation of the sensory axons dominates for the parameters set 3 since the anti-tumoral effect of denervation
becomes more and more significant as time passes. The brown area in Figure 16 expands from the upper
region at si = 55 days to three-quarter of the heatmap’s area at si = 70 days (everywhere but the south-east
corner corresponding to the latest denervation of sensory axons and the earliest denervation of sympathetic axons).

The effect of denervation takes time to be seen. Although an initial pro-tumoral effect of the denervation of
both types of axons is always seen due to the dominant blue areas in the heatmaps for small/intermediate values
of si, a later anti-tumoral effect of denervation is also observed when compared to the control curve after the first
remodeling of sensory axons. If the effect of sensory axons on cancer growth is strong enough, then the arrival of
sensory axons may be sufficient for the overall anti-tumoral effect caused by it’s denervation to compensate the
previous pro-tumoral effect that has taken place. In Figure 16, if we compare the heatmaps at si = 50 and si = 60
days, we see areas going from blue to brown. In that case, the final state of the disease (for large si) is a reduction of
tumor, contrary to what can be observed initially for small si. In Figure 15, the stronger pro-tumoral effect resulting
from the denervation of A1 takes longer to be compensated by the anti-tumoral effect of the denervation of A2.
However, it is possible to conjecture that the dynamics obtained of parameters set 2 at a later observation time
(si ≫ 70 days) will be similar to the ones displayed in the last frame Figure 16 (parameters set 3 at observation time
70 days).
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6 Conclusion
This study presents mathematical tools to model and simulate the joint effect of PNS axons (promoting and/or
inhibiting cancer progression and proliferation) in pancreatic cancer tumorigenesis. It extends the previous
model presented in [Chauvet et al., 2023] by considering the cell phenotype as a continuous variable. This new
mathematical formalism provides a more accurate description of tumour progression and associated neuroplastic
changes. The mathematical model is then finely calibrated to the available data by measuring the goodness of fit
between the model output and the biological knowledge with a two-dimensional criterion and by selecting the
relevant calibrated parameter sets with a multi-stage quasi-Monte Carlo algorithm. In addition, a quantitative
indicator of the balance between the two opposing pro- and anti-tumor effects of denervation is calculated
numerically. This balance can be visualised over time for several parameter sets reflecting biological variability.

From a biological point of view, the mathematical model reconciles all the biological data found in the literature
and provides an explanation for the opposite effects of surgical denervation performed at early and late stages
of PDAC. Specifically, the mathematical model shows that when sympathetic axons increase tumor growth, the
model does not replicate the biological data from the literature. This rules out the hypothesis of a functional switch
of the sympathetic nervous system during tumorigenesis. However, when sympathetic axons have a consistently
inhibitory effect on tumor growth, the model recapitulates all the data. This can be explained by the "shift effect"
from a global harmful to a protective role of the PNS, resulting from the compensation of the pro-tumor effect of
denervating sympathetic axons by the anti-tumor effect of denervating sensory axons.

In addition, the model identifies different sets of parameters that may reflect biological variability of tumor inner-
vation. These different sets highlight the importance of the level of sympathetic inhibition on tumor growth. For
example, strong sympathetic inhibition on tumor growth masks the anti-tumor effect of sensory axon denervation.
In this case, targetting the PNS may have little or no benefit for PDAC treatment. However, if the sympathetic
inhibition of tumor growth is weak, the anti-tumor effect of the sensory denervation becomes significant. In this
scenario, targetting sensory axons would be beneficial. However, it is important to note that the beneficial effects
are observed with a delay. Indeed, the model highlights a latency period between denervation and observable
benefits. Therefore, in terms of clinical applications for the treatment of pancreatic cancer, future knowledge
of both the density of tumor innervation and the activity of sympathetic axons will be crucial for adapting the
denervation strategy. This highlights the importance of a patient-specific approach to the timing of nerve block in
the treatment of pancreatic cancer.

This study also highlights the fact that tumorigenesis is a constantly evolving process with inherent biological
variability. To account for the biological variability and complexity of this process, the temporal components of the
data need to be further investigated. On the one hand, having additional data or at least longitudinal components
as data helps to reduce the uncertainty of the parameter estimation problem. On the other hand, the predictive
quality of the model also depends to a large extent on the data used to calibrate it.

An improvement in the mathematical model could be to include elements of the tumor microenvironment. The
complexity of pancreatic cancer tumorigenesis and its neuroregulation is also related to its interactions with the
tumor microenvironment. A first step could be to incorporate spatial structure into the model. The spatio-temporal
dynamics of such a model would certainly make it difficult to establish macroscopic properties and then draw
biologically relevant conclusions. Conversely, a more realistic model will allow more precise investigation of
biophysical properties, such as tissue stiffness and its effect on axon growth, or more complex regulatory processes,
such as additional regulation by the immune system.
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A Results for the well-posedness
In this section, we give the mathematical arguments used to prove the well-posedness of the model. The proof of
Theorem 1 will require four steps. First, we prove that the map S is well defined, i.e the system (7) admits a unique
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solution. Second, we prove that the map S is a contraction. Third, we use a bootstrap argument to conclude the
existence of a solution of (4). The final step is the uniqueness result. All these steps relies on the following Lemmas.

Lemma 1. Let T > 0, θ ∈ C([0, T]) such that Hypothesis 2.4 holds and r > 0. The Cauchy problem :
d
dt y(t)= ry(t) (1 − y(t))

(
y(t)
θ(t) − 1

)
, t ∈ [0, T],

y(0) = y0 ∈ (0, 1),
(15)

admits a unique solution y ∈ C1([0, T]) associated to θ ∈ C([0, T]) and y(t) ∈ (0, 1), ∀t ∈ [0, T].
Moreover, assume y1 (resp. y2) is the unique solution of (15) associated to the Allee effect term θ1 ∈ C([0, T])
(resp. θ2 ∈ C([0, T])) where y1(0) = y2(0) = y0 ∈ (0, 1). Let θi ∈ C([0, T]) such that Hypothesis 2.4 holds and i = 1, 2
then

|y1(t)− y2(t)| ≤ C1(θ−)rteC2(θ− ,θ+)t∥θ1 − θ2∥L∞([0,t]),

where C1 > 0 and C2 > 0 only depend on θ− > 0 and θ+ > 1.

Proof.[Lemma 1] The local existence is a direct consequence of the Picard–Lindelöf Theorem. Moreover, since
y(t) = 0 and y(t) = 1 are two stationary solutions, it implies that the solution with initial datum y0 stays
in(0, 1) and thus is globally defined. We focus on the proof of the second item. We introduce the function
f̄ : (y, θ) ∈ (0, 1)× R∗

+ 7→ ry (1 − y)
( y

θ − 1
)
. Let us note that

|y1(t)− y2(t)| ≤
∫ t

0

∣∣ f̄ (y1(s), θ1(s))− f̄ (y2(s), θ2(s))
∣∣ ds,

≤
∫ t

0

∣∣ f̄ (y1(s), θ1(s))− f̄ (y1(s), θ2(s))
∣∣ ds +

∫ t

0

∣∣ f̄ (y1(s), θ2(s))− f̄ (y2(s), θ2(s))
∣∣ ds.

On the one hand, we have∫ t

0

∣∣ f̄ (y1(s), θ1(s))− f̄ (y1(s), θ2(s))
∣∣ ds ≤

∫ t

0
ry1(s)2(1 − y1(s))

∣∣∣∣ 1
θ1(s)

− 1
θ2(s)

∣∣∣∣ ds,

≤
∥θ1 − θ2∥L∞([0,t])

min
σ∈[0,t]

|θ1(σ)θ2(σ)|

∫ t

0
ry1(s)2(1 − y1(s))ds.

Moreover, the mapping y ∈ (0, 1) 7→ y2(1 − y) admits a unique maximum in y = 2/3. Hence, we get∫ t

0

∣∣ f̄ (y1(s), θ1(s))− f̄ (y1(s), θ2(s))
∣∣ ds ≤ 4rt

27 min
s∈[0,t]

|θ1(s)θ2(s)|
∥θ1 − θ2∥L∞([0,t]). (16)

On the second hand, we have∫ t

0

∣∣ f̄ (y1(s), θ2(s))− f̄ (y2(s), θ2(s))
∣∣ ds ≤

∫ t

0

| f̄ (y1(s), θ2(s))− f̄ (y2(s), θ2(s))|
|y1(s)− y2(s)|

|y1(s)− y2(s)|ds,

≤
∫ t

0
|∂y f̄ (c, θ2(s))||y1(s)− y2(s)|ds,

where c ∈ (0, 1) is a constant coming from the mean value theorem. Moreover, we have∣∣∣ ∂y f̄ (y, θ)
∣∣
y=c

∣∣∣ = ∣∣∣r [−1 + 2
(

1 + 1
θ

)
c − 3

θ c2
]∣∣∣ ,

≤ r max
(
(θ − 1)2

3θ
+ 1

3 , 1
)

.

Hence, we get∫ t

0

∣∣ f̄ (y1(s), θ2(s))− f̄ (y2(s), θ2(s))
∣∣ ds ≤

∫ t

0
r max

(
(θ2(s)− 1)2

3θ2(s)
+ 1

3 , 1
)
|y1(s)− y2(s)|ds. (17)

Finally, using the bounds (16), (17) and Grönwall’s inequality, we get the following result

|y1(t)− y2(t)| ≤
4rte

∫ t
0 r max

(
(θ2(σ)−1)2

3θ2(σ)
+ 1

3 ,1
)

dσ

27 min
s∈[0,t]

|θ1(s)θ2(s)|
∥θ1 − θ2∥L∞([0,t]).

■
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Lemma 2. Let T > 0, r ∈ C([0, T])
⋂L1([0, T]) and K ∈ R∗

+. The Cauchy problem :
d
dt x(t)= r(t)x(t)

(
1 − x(t)

K

)
, t ∈ [0, T),

x(0) = x0 ∈ (0, K),
(18)

admits a unique solution associated to r ∈ C([0, T])
⋂L1([0, T]) given by

x(t) =
K

1 + Ae−
∫ t

0 r(s)ds
,

where A = K−x0
x0

.
Moreover, assume x1 (resp. x2) is the unique solution of (18) associated to the growth rate r1 ∈ C([0, T])

⋂L1([0, T])(
resp. r2 ∈ C([0, T])

⋂L1([0, T])
)

where ri(t) > 0, for t ∈ [0, T] and i = 1, 2 then

|x1(t)− x2(t)| ≤
KAt(

1 + A min
i=1,2

e−t∥ri∥L∞ ([0,t])

)2 ∥r1 − r2∥L∞([0,t]).

Proof.[Lemma 2] The Picard–Lindelöf Theorem ensures that the Cauchy problem (18) admits a unique solution
that stays in (0, K). We focus now on the proof of the second item. In the following, we use the notation ni(t) =

e−
∫ t

0 ri(s)ds for i = 1, 2 and t ∈ [0, T]. Hence, we have

|x1(t)− x2(t)| ≤ K
|A(n1(t)− n2(t))|

|(1 + An1(t))(1 + An2(t)|

≤ KA(
1 + A min

i=1,2
ni(t)

)2

∫ t

0
|r1(s)− r2(s)|ds

≤ KAt(
1 + A min

i=1,2
e−t∥ri∥L∞ ([0,t])

)2 ∥r1 − r2∥L∞([0,t])

since the following inequality holds for (x, y) ∈ R+ × R+

|e−x − e−y| ≤ |x − y|.

■
In order to be able to state the next Lemma on well-posedness of the linear PDE, we introduce the characteristics

associated to (7) by :{ d
ds X(s, t, x;X )= f (s, X(s, t, x;X );X ), s ∈ R

X(t, t, x;X ) = x.
(19)

Lemma 3. Let X ∈ P (set defined in (6)) be given and assume that the Hypothesis 2.1 on Q0 holds. Let f and c defined in (7)
such that the Hypotheses 2.2 and 2.3 hold. Then the PDE defined in (7) has unique solution u ∈ C1 ([0, T], C1(Ω) ∩ L1(Ω)

)
given by

u(t, x;X ) = Q0(X(0, t, x;X ))× exp
(∫ t

0
−c(σ, X(σ, t, x;X ))dσ

)
and we have

1.
∫

Ω Q0(x)dxe−C1t ≤ ∥u(t)∥L1(Ω) ≤
∫

Ω Q0(x)dxeC1t, for t ∈ [0, T],

2. ∥∂xu(s)∥L1(Ω) ≤ C2teC1t, for t ∈ [0, T]

with Ci > 0 for i = 1, 2 and C1 = r+ sup
0≤t≤T

|h(A1(t), A2(t))− N(t)|.

Moreover, let Xi = (Qi, Ai
1, Ai

2) ∈ P and assume that u(t, x;Xi) is the unique solution associated to Xi for i = 1, 2, then

sup
0≤t≤T

∥u(t;X1)− u(t;X2)∥L1(Ω) ≤ C(T)T∥X1 −X2∥P

where 0 < C(T) < ∞.
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Proof.
First step.The existence of the unique solution of (7) under the assumptions of Lemma 3 is a classical result and
can be found for instance in Chapter 6 of [Perthame, 2006]. It relies on the existence and the regularity of the
characteristics (19) that hold since f ∈ C

(
[0, T], C1

c (Ω)
)
.

Now, given X ∈ P , we rewrite the equation (7) in its conservative global form (linear version of (4)):
∂tu(t, x) + ∂x( f (t, x;X )u(t, x)) + g(t, x;X )u(t, x) = 0, for t ∈ (0, T), x ∈ Ω,

f (t, x,X )u(t, x)= 0, for x ∈ ∂Ω, t ∈ (0, T),

u(0, x) = Q0(x), for x ∈ Ω.

(20)

Hence, we have that

d
dt

∫
Ω

u(t, x)dx =
∫

Ω
−g(t, x;X )u(t, x)dx,

with g(t, x;X ) defined in (5). We recall that g(t, ·;Xi) ∈ C1
c (Ω), 0 ≤ Ai(t) ≤ 1 for t ∈ [0, T] and i = 1, 2 (cf. the

definition of the set P (6)).
Second step. We now prove the estimates on u and on ∂xu. First, one can notice that u(t, x) ≥ 0 for t ∈ [0, T] and
x ∈ Ω since Q0 ≥ 0. On the first hand, using the assumptions on g from Hypothesis 2.3 and the fact that X ∈ P ,
we have

d
dt
∥u(t)∥L1(Ω) =

d
dt

∫
Ω

u(t, x)dx ≤
∫

Ω
|g(t, x)u(t, x)|dx,

≤ ∥g∥L∞([0,T]×Ω)

∫
Ω

u(t, x)dx,

≤ ∥r∥L∞(Ω) sup
0≤s≤T

|h(A1(s), A2(s))− N(s)|
∫

Ω
u(t, x)dx.

On the other hand, we have for 0 ≤ t ≤ T

−∥r∥L∞(Ω) sup
0≤s≤T

|h(A1(s), A2(s))− N(s)|
∫

Ω
u(t, x)dx ≤ d

dt
∥u(t)∥L1(Ω).

Then, we obtain the first estimate of Lemma 3 using Gronwall’s lemma. As for the second estimate, since f (t, x) =
∂x f (t, x) = 0 for x ∈ ∂Ω, we have

d
dt
∥∂xu(t)∥L1(Ω) ≤

∫
Ω
|g(t, x)||∂xu(t, x)|dx +

∫
Ω
|∂xg(t, x)|u(t, x)dx,

≤ ∥g∥L∞([0,T]×Ω)∥∂xu(t)∥L1(Ω) + C
(

N(0), ∥∂xg∥L∞([0,T]×Ω)

)
et∥g∥L∞ ([0,T]×Ω) .

Once again, using Gronwall’s lemma, we obtain the following estimate for t ∈ [0, T]

∥∂xu(t)∥L1(Ω) ≤ C
(

N(0), ∥∂xg∥L∞([0,T]×Ω)

)
tet∥g∥L∞ ([0,T]×Ω) .

Third step. Now, we prove the stability condition. We denote ui := u(·;Xi) and v := u1 − u2. We obtain that v
satisfies the following problem

∂tv + f1∂xu1 − f2∂xu2 + c1u1 − c2u2 = 0, in (0, T]× Ω,

v(t, x)= 0, for x ∈ ∂Ω, t ∈ [0, T]

v(0, x)= 0, x ∈ Ω,

(21)

where fi(t, x) = f (t, x;Xi) and ci(t, x) = c(t, x;Xi). It implies that

d
dt
∥v∥L1(Ω) =

∫
Ω

sign(u1 − u2) [∂x( f2u2 − f1u1) + (g1u1 − g2u2)] dx

where gi(t, x) = g(t, x;Xi) defined in (5).
We denote

I1(t) :=
∫

Ω
sign(u1 − u2)∂x( f2u2 − f1u1)dx and I2(t) :=

∫
Ω

sign(u1 − u2)(g1u1 − g2u2)dx.

30



On the first hand, we have

I1(t) =
∫

Ω
sign(u1 − u2)∂x( f2(u2 − u1)) + sign(u1 − u2)∂x(( f2 − f1)u1)dx,

≤
∫

Ω
∂x (− f2|u2 − u1|) dx +

∫
Ω
|∂x (( f2 − f1)u1)| dx,

≤
∫

Ω
|∂x( f2 − f1)u1 + ( f2 − f1)∂xu1| dx,

≤ ∥∂x( f2 − f1)∥L∞(Ω)∥u1∥L1(Ω) + ∥( f2 − f1)∥L∞(Ω)∥∂xu1∥L1(Ω).

Using Hypothesis 2.2 and the estimates on u, we obtain

I1(t) ≤ ∥X1 −X2∥P
(
C0 + C2t

)
etC1 (22)

On the second hand, we have

I2(t) ≤
∫

Ω
|g1 − g2||u1|dx +

∫
Ω
|g2||u1 − u2|dx,

≤ ∥u1∥L1(Ω)∥g1 − g2∥L∞(Ω) + ∥g2∥L∞(Ω)∥u1 − u2∥L1(Ω).

Using Hypothesis 2.3 and the estimates on u, we obtain

I2(t) ≤ ∥X1 −X2∥PC3etC1 + C1∥v∥L1(Ω). (23)

We note that the constant C1 in the inequalities (22) and (23) is the same and depends on the uniform bound of the
growth term g which is proportional to the distance between the integral of the initial condition and the saturation
constant C(τC).
Thanks to the inequalities (22) and (23) and using the notations of Hypotheses 2.2 and 2.3, we obtain

d
dt
∥v∥L1(Ω) ≤ C1∥v∥L1(Ω) + (C0 + C3 + C2t) etC1∥X1 −X2∥P ,

where

• 0 < C0 = C (Cl(∂x f ), ∥Q0∥L1 ),

• 0 < C1 = r+ |C(τC)− C(N(0))|,
• 0 < C2 = C (Cl( f ), ∥Q0∥L1 , ∥∂xg∥∞),

• 0 < C3 = C (Cl(g), ∥Q0∥L1 ).

Finally, using the Gronwall’s Lemma on the previous inequality and taking the supremum over the interval [0, T],
we obtain

sup
0≤t≤T

∥v(s)∥L1(Ω) ≤ T
(

C0 + C3 +
C2
2

T
)

eTC1∥X1 −X2∥P .

■

Lemma 4. Assume that X := (Q, A1, A2) ∈ C1 ([0, T]; C1(Ω) ∩ L1(Ω)
)
× C1([0, T]) × C1([0, T]) is a solution of the

system (4) and S(X ) = X for the mapping defined in (8). Assume Hypotheses 2.1,2.2, 2.3 hold. Then

• (nonnegativity) Q(t, x) ≥ 0 and Ai(t) ≥ 0 for i = 1, 2 and ∀(t, x) ∈ [0, T]× Ω,

• (boundedness)
∫

Ω Q0(x)dx ≤
∫

Ω Q(t, x)dx ≤ C(τC) and Ai(t) ≤ 1 for i = 1, 2 and t ∈ [0, T].

Proof. The nonnegativity property of the solution of system (4) is immediatly obtained using the characteristics for
Q and noticing that 0 is a stationnary solution for Ai for i = 1, 2. The solution can be written as

Q(t, x) = Q0(X(0, t, x))e−
∫ t

0 c(σ,X(σ,t,x))dσ

and has the sign of Q0. The upper bounds for Ai i = 1, 2 are also obtained noticing that 1 is a stationary solution of
the Cauchy problems. Concerning the solution of the PDE Q, using Hypotheses 2.3 and 2.2, the nonnegativity of Q
and the fact that

∫
Ω Q0(x) ≤ C(τC), we first notice that∫

Ω
r(x)Q(t, x)dx(N(0)− N(t)) ≤ d

dt
N(t) =

∫
Ω

r(x)Q(t, x)dx(h(A1(t), A2(t))− N(t)) ≤
∫

Ω
r(x)Q(t, x)dx(C(τC)− N(t))

for t ∈ [0, T] where we denote N(t) =
∫

Ω Q(t, x)dx.
Hence, we obtain the following inequalities

N(0) ≤ N(t) ≤ C(τC).
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■
Now, we prove Theorem 1.

Proof.[Theorem 1] Step 1. We prove the well-posedness of the system (4). To this end, we apply a fixed point
theorem for the mapping defined in (8) on the set P(T) defined in (6):

P := B ×
{

A ∈ C1([0, T]) | 0 ≤ A(t) ≤ 1, for t ∈ [0, T]
}2

,

where

B :=
{

Q ∈ C1
(
[0, T]; C1(Ω) ∩ L1(Ω)

)
|C(N(0)) ≤

∫
Ω

Q(s, x)dx ≤ C(τC) for s ∈ [0, T]
}

where C(N(0)) and C(τC) are positive constants and

∥Q∥B := sup
0≤s≤T

∥Q(s)∥L1(Ω).

The norm associated to this functional space is

∥(Q, A1, A2)∥P :=

(
sup

0≤s≤T
∥Q(s)∥L1(Ω) + sup

0≤s≤T
|A1(s)|+ sup

0≤s≤T
|A2(s)|

)
.

For X = (Q, A1, A2) ∈ P given, thanks to the Lemmas 1, 2 and 3, the linear problem (7) admits a unique solution

(u, Ã1, Ã2) ∈ C1
(
[0, T]; C1(Ω) ∩ L1(Ω)

)
× C1([0, T])× C1([0, T]).

Also, thanks to Lemma 3, choosing T such that

T <
log
(

C(τC)
N(0)

)
∥r∥∞|C(τC)− N(0)| ×

C(τC)− N(0)
C(τC)− C(N(0))

=
λ1

∥r∥∞ξ1
(24)

where ξ1 ∈ (N(0); C(τC)) and λ1 = C(τC)−N(0)
C(τC)−C(N(0)) and that

T <
log
(

N(0)
C(N(0))

)
∥r∥∞|N(0)− C(N(0))| ×

N(0)− C(N(0)
C(τC)− C(N(0))

=
λ2

∥r∥∞ξ2
(25)

where ξ2 ∈ (C(N(0)); N(0)) and λ2 = N(0)−C(N(0))
C(τC)−C(N(0)) then the solution u of the linear system (7) is such that u ∈ B.

In order to prove that S has a fixed point, we introduce the following maps :

F : P → B, F (X ) = u,

Γ1 : P → C1([0, T]), Γ1(X ) = Ã1,

Γ2 : P → C1([0, T]), Γ2(X ) = Ã2.

The contraction property of S is implied by some stability properties on the mappings F , Γ1 and Γ2. In the
following, we denote Xi = (Qi, Ai

1, Ai
2) for i = 1, 2.

First, using the results in Lemma 1 and the assumptions of the function θ stated in Hypothesis 2.4, we note that

sup
0≤t≤T

|Γ1(X1)− Γ1(X2)| ≤ C
(

rA1 , 1
(θ−)2

)
TeC(θ)T sup

0≤t≤T

∣∣∣∣θ (N(t;X1)

N(0)

)
− θ

(
N(t;X2)

N(0)

)∣∣∣∣ ,

≤ C
(

rA1 , 1
(θ−)2 , Cl(θ)

)
TeC(θ)T sup

0≤t≤T
∥Q1(t)− Q2(t)∥L1(Ω),

(26)

where 0 < C
(

rA1 , 1
(θ−)2 , Cl(θ)

)
< ∞ and 0 < C(θ) < ∞ are two constants.

Similarly, using the results in Lemma 2 and the assumptions on the function rA2 stated in Hypothesis 2.4, we
note that

sup
0≤t≤T

|Γ2(X2)− Γ2(X1)| ≤ C(A0
2)T sup

0≤t≤T

∣∣∣∣rA2

(
Nc(t;X1)

N(t;X1)

)
− rA2

(
Nc(t;X2)

N(t;X2)

)∣∣∣∣ ,

≤ C(A0
2, Cl(rA2 ))T sup

0≤t≤T

∣∣∣∣Nc(t;X1)N(t;X2)− Nc(t;X2)N(t;X1)

N(t;X1)N(t;X2)

∣∣∣∣ ,

≤ C
(

A0
2, Cl(rA2 ),

1
C(N(0))2 , C(τC)

)
T sup

0≤t≤T
∥Q1(t)− Q2(t)∥L1(Ω),

(27)
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where 0 < C
(

A0
2, Cl(rA2 ),

1
C(N(0))2 , C(τC)

)
< ∞ is a constant. Moreover, one can check that the constant

C
(

A0
2, Cl(rA2 ),

1
C(N(0))2 , C(τC)

)
is bounded by above and below by strictly positive constants independant of the

initial data A0
2 and Q0 since there exist constants m1 > 0 and m2 > 0 such that

m1 < A0
2 < 1 and m2 < C(N(0)) < C(τC).

Also, thanks to the stability result of Lemma 3, we note that

sup
0≤t≤T

∥F (X1)−F (X2)∥L1(Ω) ≤ C(T)T∥X1 −X2∥P . (28)

Finally, using the inequaties (26), (27) and (28), we obtain that there exit two constants 0 < C1 < ∞ and 0 < C2 < ∞
such that

∥S(X1)− S(X2)∥P ≤ C1(T)TeC2T∥X1 −X2∥P
where, using the notations previously introduced and those of Hypotheses 2.1, 2.2, 2.3 and 2.4, we have

• C1(T) = C
(

Cl(rA2 ), A0
2, 1

C(N(0))2 , C(τC), rA1 , 1
(θ−)2 , Cl(θ), Cl(∂x f ), ∥∂xg∥∞, Cl(g), T

)
,

• C2 = C (C(θ), r+, |C(τC)− C(N(0))|) .

Moreover, we introduce the new constants C̃1(T) and C̃2 independent of A0
2 and C(N(0)) such that

C1(T) ≤ C̃1

(
Cl(rA2 ),

1
(m2)2 , C(τC), rA1 , 1

(θ−)2 , Cl(θ), Cl(∂x f ), ∥∂xg∥∞, Cl(g), T
)

and
C2 ≤ C̃2 (C(θ), r+, |C(τC)− m2|) .

Since the map
g : t ∈ [0, T] 7→ g(t) := C̃1(t)teC̃2t

is continuous, increasing and g(0) = 0, there exists T1 > 0 such that

C̃1(T1)T1eC̃2T1 < 1. (29)

Choosing T1 > 0 satisfying 24,25 and 29 with T1 < T̃ that is

T1 < min

(
λ1

r+C(τC))
,

e−C̃2 T̃

C̃1(T̃)
,

λ2
r+C(τC))

)

it follows that S is a strict contraction on P . Consequently, the contraction mapping Theorem implies there exists
a unique X ∈ P of (4) on the time interval [0, T1].
Step 2. Now, we prove that we can extend the solution to [0, T] for any T > 0. In order to do so, since Q(t) ∈
C1(Ω) ∩ L1(Ω) for 0 ≤ t ≤ T1, we prove that we can repeat the previous arguments to extend the solution to the
time interval [T1, 2T1]. We first note that Lemma 4 ensures that any solution Q of (4) satisfies

N(0) ≤
∫

Ω
Q(t, x)dx ≤ C(τC).

It implies that N(T1) ≥ N(0). Hence, there exists a positive constant C(N(T1)) such that

0 < C(N(T1)) < N(T1) ≤ C(τC)

and that

C(N(T1)) = N(T1)− (N(0)− C(N(0)))
C(τC)− N(T1)

C(τC)− N(0)
. (30)

Moreover, we define the space on which we apply the contraction mapping Theorem as the following

P1 = B1 ×
{

A ∈ C1([T1, 2T1]) | 0 ≤ A(t) ≤ 1, for t ∈ [T1, 2T1]
}2

,

where

B1 :=
{

Q ∈ C1
(
[T1, 2T1]; C1(Ω) ∩ L1(Ω)

)
|C(N(T1)) ≤

∫
Ω

Q(s, x)dx ≤ C(τC) for s ∈ [T1, 2T1]

}
.

Hence, we can proceed similarly as in Step 1. Thanks to (30), we have

λ1 =
C(τC)− N(0)

C(τC)− C(N(0))
=

C(τC)− N(T1)

C(τC)− C(N(T1))
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and the dependance to the initial condition which appears in (24) does not cause an issue since

λ1
r+C(τC)

≤ λ1

log
(

C(τC)
N(T1)

)
∥r∥∞|C(τC)− N(T1)|

=
λ1

∥r∥∞ξ

where ξ ∈ (N(T1); C(τC)). As for the dependance to the initial condition which appears in (25), thanks to (30), we
have

λ2 =
N(0)− C(N(0))
C(τC)− C(N(0))

=
N(T1)− C(N(T1))

C(τC)− C(N(T1))

and

λ2
r+C(τC)

≤ λ2

log
(

N(T1)
C(N(T1))

)
∥r∥∞|N(T1)− C(N(T1))|

=
λ2

∥r∥∞ξ

where ξ ∈ (C(N(T1)); N(T1)).
Also, thanks to (30) and the fact that N(0) ≤ N(T1), the following holds

C(N(T1)− C(N(0)) =
C(τC)− C(N(0))

C(τC)− N(0)
(

N(T1)− N(0)
)
≥ 0.

Then, we have that
e−C̃2 T̃

C̃1(T̃)
≤ e−C2(C(N(T1))T̃

C1(T̃, C(N(T1)))
.

Using Lemmas 1, 2 and 3 and since 2T1 − T1 = T1 < T̃, we obtain the strict contraction on the mapping on P1 with
the same condition

T1 < min

(
λ1

r+C(τC))
,

e−C̃2 T̃

C̃1(T̃)
,

λ2
r+C(τC))

)
.

Hence, by iterating, we extend the solution to the full interval [0, T].
Step 3. The uniqueness of the solution of the system is direct consequence of the stability properties of Lemmas 1, 2
and 3 and the structural property of our system which implies that X = 0 is a stationary solution.

■

B Details about the numerics
The dynamical system is implemented in Python and the algorithm can be found at
(https://github.com/MarieJosec/PDE_Axons_Innerv).

B.1 Scheme for the numerical approximation of the solution
A classical upwind scheme in space and an explicit Euler scheme in time is proposed to approximate the system
that can be written as

∂tQ(t, x) + ∂x[F(x, A1(t), A2(t), N(t), Nc(t))Q(t, x)] = R(x, Q(t, x), A1(t), A2(t), N(t)),

d
dt A1(t) = G1(A1(t), N(t)),

d
dt A2(t) = G2(A2(t), Nc(t), N(t)),

Note that the function F always takes non negative values.

Consider a constant step "time" discretization of the interval [0, T] with tn = ndt and n ∈ {0, · · · , NT}, where
T = tNT and dt is the time step. We also consider "space" discretization of the interval [−L, L], xi = (i + 1

2 )h,
and i ∈ {−p, · · · , p − 1}, p ∈ N∗, where h = L

p is the space step. We will use a finite volume approach and
thus introduce the points xi+ 1

2
= (i + 1)h and xi− 1

2
= ih that can be viewed as being the vertices of volume cells

Mi = [xi− 1
2
, xi+ 1

2
] whose centers are the xi where L = xp− 1

2
.

We look for an approximation Qn
i of Q(tn, xi), Nn (resp. Nn

c ) an approximation of
∫ L
−L Q(tn, x) dx

(resp.
∫ L

0 Q(tn, x) dx), An
1 (resp. An

2 ) an approximation of A1(tn) (resp. A2(tn)). To secure the positivity of An
1 and

An
2 , we approximate the logarithmic function An

1 and An
2 to then go back to the approximation of An

1 and An
2 by

taking the exponential function.

The scheme is then the following:

h
dt
(Qn+1

i − Qn
i ) +

(
F(xi+ 1

2
, An

1 , An
2 , Nn, Nn

c )Q
n
i − F(xi− 1

2
, An

1 , An
2 , Nn, Nn

c )Q
n
i−1

)
= hR(xi, Qn

i , An
1 , An

2 , Nn),
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for n ≥ 0 and i ∈ {−p + 1, · · · , p − 1} and

1
dt (log(An+1

1 )− log(An
1 )) = G1(exp(An

1 ), Nn), n ≥ 0,

1
dt (log(An+1

2 )− log(An
2 )) = G2(exp An

2 , Nn
c ), n ≥ 0,

An+1
1 = exp(log(An+1

1 )), n ≥ 0,

An+1
2 = exp(log(An+1

2 )), n ≥ 0.

We use a trapezoidal rule to approximate the integral terms:
Nn = h

2

[
Qn
−p + ∑

p−2
i=−p+1 2Qn

i + Qn
p−1

]
,

Nn
c = h

2

[
Qn

0 + ∑
p−2
i=i 2Qn

i + Qn
p−1

]
.

The approximation of the boundary conditions can be naturally written as

F(xi, An
1 , An

2 , Nn, Nn
c )Q

n
i = 0, n ≥ 0, i ∈ {−p, p − 1},

and the initial condition is approximated by
Q0

i = Q0(xi), i ∈ {−p, · · · , p − 1},

A0
1, A0

2 given.

Note that the stability of the transport scheme requires the CFL condition

dt
h

F(xi+ 1
2
, An

1 , An
2 , Nn, Nn

c ) ≤ 1, ∀n ≥, ∀i = −p, · · · , p − 1.

B.2 Calibration through an optimization method
For a given parameter set ϑ, the computation of our 2-dimensional criterion G(ϑ) = (G1(ϑ), G2(ϑ)) requires two
numerical simulation approximations, one acting as if we were in the control group (AA) and a second one includ-
ing a denervation treatment (OHDA). The integrals over time intervals are computed with a trapezoidal rule based
on the discretization of the numerical scheme. Needless to say here that the computation of the gradient ∇ϑGi(ϑ)
of any coordinate of the criterion is not straightforward. This means that we have no guide to find the sets of pa-
rameters with small value of the criterion. The space we have to explore is the whole hypercube H of dimension
14 defined by the range column of Table 1. That is why we rely on a two-stage algorithm, see Figure 12. At first, we
explore naively the whole range of parameters, from which we adjust an instrumental Gaussian distribution trun-
cated to H. In a second stage, the instrumental distribution is used to draw new parameter sets that are informed
by the data and the biological knowledge and we seek among those draws for the best parameter sets according to
our criterion.

We start the algorithm with a massive exploration of the whole hypercube H of dimension 14 defined by the
range column of Table 1 drawn as a Sobol sequence, that is to say using a quasi-Monte Carlo algorithm. This gives
us the collection J0 of size nQMC

0 = 218 parameter sets that are distributed uniformly over the hypercube H. The
2-dimensional criterion is then computed for each parameter set ϑ in J0.

Among the parameter sets in J0, we select the 0.2% best sets according to the first component of the criterion
G1(ϑ), i.e. the 0.2% parameter sets that have the smallest value of G1(ϑ). This collection is filtered again according
to the second component of the criterion G2(ϑ), i.e. we keep only the 20% best sets according to G2(ϑ). This gives
us the collection J1 of parameter sets that are consistent with the cell data and the chronological knowledge, i.e.
that have low values of both G1(ϑ) and G2(ϑ).

To adjust the instrumental distribution to the collection J1, we compute the mean and the covariance matrix of
the collection, see Table 4. The instrumental distribution is then the multivariate Gaussian distribution centered at
the means given in Table 4, with a diagonal covariance matrix set according to the observed variances of this Table,
and truncated (or conditioned) to stay in H.

The second stage of the algorithm starts with many quasi-Monte Carlo draws from the instrumental distribu-
tion, using a transformation of another Sobol sequence of dimension 14. The nQMC

2 = 218 draw form the collection
J2 of parameter sets. The 2-dimensional criterion is then computed for each parameter set ϑ in J2. This collection
is then filtering to keep only the 0.7% best sets according to the first component of the criterion G1(ϑ), and then
among them the 50% best sets according to the second component of the criterion G2(ϑ). This gives us the final
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collection J3 of parameter sets that are consistent with the cell data and the chronological knowledge, i.e. that have
low values of both G1(ϑ) and G2(ϑ). The final collection J3 is summarized in Figure 17.

π0 β δ γr sr τC µ1 µ2 rA1 r̄A2 x1,π ϵ1,π sθ sA2

Mean 3.069 0.526 0.497 4.202 5.046 184.452 0.234 0.444 0.032 2.1 34.249 4.77 16.006 4.382

Variance 2.814 0.297 0.29 2.93 2.833 48.647 0.516 0.294 0.024 1.551 3.706 2.839 2.134 2.916

Table 4: Summary statistics of the collection J1 of parameter sets.

Figure 17: Distribution of the collection J3 of parameter sets that are calibrated using our 2-dimensional criterion
to fit the data and a few biological knowledge. These boxplots should be compared with the admissible ranges
defined in Table 1.
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