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A B S T R A C T

The pancreatic innervation undergoes dynamic remodeling during the development of pancreatic ductal
adenocarcinoma (PDAC). Denervation experiments have shown that different types of axons can exert either
pro- or anti-tumor effects, but conflicting results exist in the literature, leaving the overall influence of the
nervous system on PDAC incompletely understood. To address this gap, we propose a continuous mathematical
model of nerve-tumor interactions that allows in silico simulation of denervation at different phases of tumor
development. This model takes into account the pro- or anti-tumor properties of different types of axons
(sympathetic or sensory) and their distinct remodeling dynamics during PDAC development. We observe a
‘‘shift effect’’ where an initial pro-tumor effect of sympathetic axon denervation is later outweighed by the
anti-tumor effect of sensory axon denervation, leading to a transition from an overall protective to a deleterious
role of the nervous system on PDAC tumorigenesis. Our model also highlights the importance of the impact of
sympathetic axon remodeling dynamics on tumor progression. These findings may guide strategies targeting
the nervous system to improve PDAC treatment.
1. Introduction

The nervous system plays an important role in regulating various
bodily functions and disease processes, including cancer development
and progression (Winkler et al., 2023). Denervation studies have shown
that the peripheral nervous system (PNS) can either promote or inhibit
cancer growth, depending on the specific types of nerves and cancers
involved. For example, in mouse models of pancreatic ductal adeno-
carcinoma (PDAC), selective ablation of pancreatic sympathetic inner-
vation has been associated with accelerated tumor growth, increased
metastasis and decreased survival (Guillot et al., 2022). Conversely,
removal or silencing of sensory neurons has been shown to slow tumor
growth and improve survival (Saloman et al., 2016; Sinha et al.,
2017; Liddle, 2007). These findings, together with others, suggest a
broad model in which the autonomic nervous system (including both its
sympathetic and parasympathetic branches) has an anti-tumor property
in PDAC, whereas the sensory nervous system has an inverse pro-tumor
activity (Fig. 1) .

According to the data presented, the combined effect of the PNS
on PDAC tumor progression results from a mixture of pro- and anti-
tumor activities. This combined effect can be assessed in experimental

∗ Corresponding author at: Université Paris-Saclay, INRAE, MaIAGE (UR 1404), 78350 Jouy-en-Josas, France.
E-mail address: mathieu.mezache@inrae.fr (M. Mezache).

models by surgical denervation of the pancreas, which disrupts the
mixed nerve of sympathetic and sensory axons supplying the pancreas.
Such an intervention mimics procedures performed in patients (eg.
celiac neurolysis and splanchnicectomy) to manage abdominal pain
in unresectable PDAC. However, surgical denervation studies in mice
have led to divergent results. A pro-tumor effect was observed when
denervation was performed before the onset of pathology (Guillot et al.,
2022), whereas an anti-tumor effect was observed when denervation
was performed after tumor establishment (Renz et al., 2018a). The
reasons behind these conflicting results are not yet understood. One
hypothesis suggests a switch in sympathetic function over the course
of pathology. Initially, sympathetic axons may have an anti-tumor
effect in the early (pre-)cancer stages, before possibly switching to a
promoting role on tumor growth at a later stage. Another interpretation
is that the relative abundance of pro- and anti-tumoral axons may vary
at different denervation times. Indeed, studies have shown different
remodeling patterns for sympathetic and sensory innervation. Higher
levels of sympathetic innervation are found in pre-cancerous lesions
compared to both healthy and cancerous tissues, while sensory axons
https://doi.org/10.1016/j.jtbi.2024.111967
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Fig. 1. Graphical description of the state-of-the-art concerning the interactions between sensory axons, sympathetic axons and tumor cells (PDAC). The arrow with the symbol →

enotes a promoting effect and the arrow with the symbol ⊣ denotes an inhibiting effect.
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are markedly increased within the cancerous lesions (Guillot et al.,
2022; Demir et al., 2015).

These findings highlight the importance of the PNS as a potential
therapeutic target for the modulation of PDAC. However, they also
highlight the need for a deeper understanding of the individual and
ombined effects of the different axon types, taking into account their
emodeling patterns and influence on the tumor, in order to develop
trategies to deplete or inhibit the PNS in PDAC. To address this need,
e develop a mathematical model that allow us to study the conse-
uences of denervating sensory and/or sympathetic axons at different
imes during tumor development and progression.

So far, two mathematical models have been developed to better
understand the influence of the PNS on cancer. The first model in-
vestigated the pro-tumoral effect of the autonomic nervous system in
rostate cancer (Lolas et al., 2016). However, due to the opposite func-
ion of the sympathetic innervation in pancreatic cancer, another math-
matical model was developed to specifically study PDAC (Chauvet
t al., 2023). This model formalized the interactions between cancer
rogression and axons using a compartmentalized differential equations
odel, where each compartment corresponds to a stage of cancer pro-

ression (healthy, pre-cancerous, cancerous). The asymptotic behavior
f the system shows that the pathological state, where only cancer cells
ersist, is globally asymptotically stable. The impact of denervation was
imulated in silico and recapitulated the biological data of denervation
erformed at early stage, before the onset of pathology. However, other
imes of denervation have not been investigated.

The aim of this paper is to introduce a new continuous mathematical
odel describing the relationship between axons and cancer, and to

imulate in silico denervation of sympathetic and sensory neurons at
ifferent times. The continuous model considers the cell phenotype
from healthy to cancerous) as a continuous variable. Consequently,
he description of cancer progression and axon remodeling occurring
uring this process becomes more precise.

We organized the paper as follows. In Section 2.1, we set up the
model illustrating the effect that PNS axons have on cancer develop-
ment and progression. A theoretical study on the well-posedness of the
model is given in Section 2.2. This is followed by a qualitative study in
Section 2.3 where we show that the final state of the disease can belong
2 
to one out of three cases: either no cancer cells exist, either cancer and
healthy cells co-exist, or only cancer cells exist. Also, explicit bounds
on the time of appearance of the first cancer cells are given under some
hypotheses on the parameters. Next, in Section 3, we give precision on
the parameters of the model and explain how to denervate in silico. We
then calibrate the model in Section 4 by minimizing a 2-dimensional
criterion. We obtain several sets of parameters that fit the data. Using
some of the sets of parameters obtained, we apply numerical simu-
lations to study in silico denervation using an indicator of invasive
potential detailed in Section 5.1. In Section 5.2, we perform in silico
denervation separately for each axon type (sympathetic or sensory) or
simultaneously at defined time points. The dynamical system and its in
silico denervation are implemented using a finite volume approach and
the algorithm can be found at (https://github.com/MarieJosec/PDE_
Axons_Innerv). In Section 5.3, denervation is performed for each axon
ype or for both at different time points. The results recapitulate the
ifferent outcomes of surgical denervation observed in Guillot et al.

(2022) and Renz et al. (2018a) [Renz et al. 2018a] and support a ‘shift
effect’ of PNS function in PDAC from anti-tumor to pro-tumor. The
model predicts that this transition does not occur through a change in
sympathetic function, but rather depends on the remodeling dynamics
of the sympathetic and sensory axons and on the strength of the
sympathetic inhibition on tumor growth.

2. Mathematical model

In this section, we establish and explore an original continuous
odel for studying cancer progression and its regulation by axons.

Initially, a compartmental model was introduced in Chauvet et al.
(2023) to investigate the interactions. However, this model, based on
rdinary differential equations (ODEs), focused on discrete stages of
ancer progression from a healthy state to a tumoral stage. Each stage
as treated as a variable, compartmentalizing the different steps, which

ailed to capture the continuous nature of the biological process. To
ddress this limitation, we introduce another mathematical model that
dopts a continuous framework for cell phenotypes, spanning from a
ealthy state to a tumoral stage, thereby bringing it closer to the reality

of the biological process. This model also considers the heterogeneity

https://github.com/MarieJosec/PDE_Axons_Innerv
https://github.com/MarieJosec/PDE_Axons_Innerv
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of the cell phenotype. In alignment with recent literature (cf. Eftimie
nd Gibelli, 2020, which introduces a phenotype-structured model to

describe the heterogeneous population of macrophages), we propose
employing structured population dynamics in the model.

2.1. Model presentation

We focus on the pancreas as the domain of our model, by taking
nto account the pancreatic cells and the nerve axons. Despite the fact
hat parasympathetic nerves have a proven effect on pancreatic cancer,

cf. Renz et al. (2018b), to our knowledge there are no quantitative
ata on parasympathetic remodeling in PDAC tumorigenesis. Hence,
e choose to focus on modeling sensory/sympathetic versus PDAC

interactions (cf. Fig. 1). In this model, we denote the unknowns 𝑄,
1 and 𝐴2 where:

• 𝑄(𝑡, 𝑥) is the density of cells structured by the progression state of
the disease. The variable 𝑡 corresponds to time with 𝑡 ∈ [0,+∞)
and the variable 𝑥 corresponds to the phenotype of the cell where
𝑥 ∈ 𝛺 with 𝛺 ∶= R or 𝛺 ∶= (−𝐿, 𝐿) with the constant 𝐿 > 0 (finite
truncated domain defined for the purposes of numerical simula-
tions). Cells with a positive phenotype correspond to cancerous
cells. Whereas for 𝑥 ≤ 0, we start from healthy cells undergoing
precancerous phenotypes before reaching the cancerous state. The
lower the phenotype variable 𝑥 is, the healthier the cells 𝑄(𝑡, 𝑥)
are.

• The variable 𝐴1(𝑡) is the normalized density of the sympathetic
axons with respect to time 𝑡 ∈ [0,+∞). We denote by ‘‘normalized
density’’ an original density value which has been scaled by
dividing it by the maximum density in order to obtain a value
on standardized scale.

• The variable 𝐴2(𝑡) is the normalized density of sensory axons with
respect to time 𝑡 ∈ [0,+∞).

Hence, the variables 𝐴𝑖 for 𝑖 = 1, 2 are unit-less and are bounded,
.e. 𝐴𝑖(𝑡) ∈ (0, 1) for 𝑡 ≥ 0.

The total amount of pancreatic cells 𝑁(𝑡) and the total amount of
cancer cells 𝑁𝑐 (𝑡) can be obtained from the density 𝑄 by

𝑁(𝑡) = ∫𝛺
𝑄(𝑡, 𝑥)𝑑 𝑥, 𝑁𝑐 (𝑡) = ∫𝛺

𝜓(𝑥)𝑄(𝑡, 𝑥)𝑑 𝑥,

where 𝜓 is an indicator function whose support is a subset of R+. These
wo macroscopic quantities play significant roles in the dynamics of the
odel. They allow to compute crucial indicators such as the proportion

f cancer cells or the growth of the size of the pancreas induced by
ancer cells. For instance, the ratio 𝑁𝑐 (𝑡)∕𝑁(𝑡) corresponds to the total
mount of cancer cells at time 𝑡 over the total amount of cells at time
. If the ratio is equal to 1 then all the cells are cancerous ones and if
he ratio is equal to 0, then no cancer cells are present at time 𝑡. Also
he ratio 𝑁(𝑡)∕𝑁(0) gives information on the growth of the size of the
ancreas.

Moreover, we introduce the notation  ∶= (𝑄, 𝐴1, 𝐴2) to group the
unknowns into a tuple. Hence, the dynamic of 𝑄(𝑡, 𝑥) is given by the
following transport-growth equation :
𝜕𝑡𝑄(𝑡, 𝑥) + 𝜕𝑥

[

𝑓 (𝑡, 𝑥;)𝑄(𝑡, 𝑥)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Progression of the disease

= 𝑔(𝑡, 𝑥;)
⏟⏞⏟⏞⏟

Growth term

.

Progression of the disease. We model the evolution of the disease
s a transport term on the phenotype axis for the cell densities 𝑄 in the

partial differential equation governing the dynamics of cells. The speed
of progression of the disease (i.e. the transport speed) denoted 𝑓 (𝑡, 𝑥;)
is regulated by the presence of the axons and the cancer cells. It takes
the following form

𝑓 (𝑡, 𝑥;) ∶= 𝜋(𝑥)
[

1 − 𝛽(𝑥)𝜌(𝐴1(𝑡)) + 𝛿(𝑥)𝐴2(𝑡)
]

+ 𝜂
(

𝑥, 𝑁𝑐 (𝑡)𝑁(𝑡)

)

(1)

where
3 
• 𝜋(𝑥) represents a basal amplitude for the speed of disease pro-
gression. Since we expect the transformation of healthy cells to
be slow at early stages, we consider the transfer to be almost
negligible for 𝑥 ≪ 0. This transport is then expected to increase
up to a plateau observed during the early PDAC stage. Moreover,
we naturally assume that at the boundary of the phenotype axis
(+∞ or 𝐿), the function 𝜋 vanishes.

• The basal amplitude is modulated by the presence of the sympa-
thetic axons that slow down the disease progression (cf. Guillot
et al., 2022). The function 𝛽 modulates the maximum rate of the
regulation depending on the phenotype variable 𝑥. The function
𝜌 modulates the basal amplitude negatively because of the in-
hibiting mechanism of 𝐴1, under the assumption that a sufficient
density of sympathetic axons is required to have an impact on
the cancer progression process. Thus, the function 𝜌 vanishes for
small values of 𝐴1. Details about the mathematical expression
and the parameters of the function 𝜌 are given in Section 3.1.

• The basal amplitude is also regulated by the presence of sen-
sory axons that speed up the disease progression (cf. Saloman
et al., 2016). The function 𝛿 modulates the maximum rate of the
regulation depending on the phenotype variable 𝑥.

• Moreover, we assume that cancer cells in the pancreas are induc-
ing an acceleration of the cancer progression of the healthy cells
in the late stages of the disease. This assumption is formalizing the
crosstalk between PDAC cells and other cells where the tumori-
genic environment facilitates the ability of cancer cells to survive
and proliferate to the detriment of healthy cells (cf. Alexander
and Cukierman, 2016). In order to model this response, we intro-
duce the function 𝜂 which contributes to the cancer progression
acceleration. This function takes as variables the ratio 𝑁𝑐 (𝑡)∕𝑁(𝑡)
which quantifies the presence and the proportion of pathological
cells in the system and the phenotype variable 𝑥. Also, we assume
that 𝜂 is compactly supported and its support is located in a neigh-
borhood corresponding to the healthy cells on the phenotype
axis.

An additional assumption in our model is that the cancer progression
is non-reversible. For instance, once cells start to progress towards a
cancerous state, they cannot recover, meaning that they cannot have
an healthy phenotype state later in time. This implies that the transport
term 𝑓 remains non-negative.

Growth term. In the model, the growth of the cancer cell densities
is modeled by a logistic-type growth which is given by the growth term
𝑔:

𝑔(𝑡, 𝑥;) ∶= 𝑟(𝑥)𝑄(𝑡, 𝑥)
(

1 − 𝑁(𝑡)
𝜏𝐶

− 𝜇1𝐴1(𝑡) + 𝜇2𝐴2(𝑡)
)

. (2)

The function 𝑟 of the phenotype variable 𝑥 is the basal growth rate of
the proliferating cells. Since growth starts at pre-cancerous stages and
accelerate around cancerous stages, (cf. Klein et al., 2002), the support
of the function 𝑟 is located in its neighborhood on the phenotype axis.
This growth process is regulated by the axons (cf. Biankin et al., 2012).

n the one hand, the presence of the sympathetic axons inhibits or
romotes the growth of cancer cells depending on the sign of 𝜇1 which

is the amplitude of the modulation (cf. Renz et al., 2018a and Guillot
et al., 2022) This mechanism is modeled by the term −𝜇1𝐴1(𝑡), if 𝜇1 > 0,
hen the sympathetic axons play an inhibitory role, whereas if 𝜇1 < 0,
he sympathetic axons play a promoting role on tumor growth. On
he other hand, the presence of sensory axons amplifies the growth
f cancer cells (cf. Banh et al., 2020) , and this is modeled by the
erm +𝜇2𝐴2(𝑡) where 𝜇2 ≥ 0. Moreover, the saturation rate of the cells
ensities is linked to the parameters 𝜏𝐶 (the carrying capacities), 𝜇1 and
2.

Sympathetic axons growth dynamics. One interesting dynamics
for the sympathetic axons is that a small increase of the density of these
axons is observed early in precancerous stage of cancer progression
process, whereas once cancer is established the density of sympathetic
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axons is reduced (see the biological data in Fig. 9 in Section 4.1). Hence,
n order to model the time evolution of the sympathetic axons, we use
 logistic law with an Allee effect. We denote by 𝜃 the function that

enables the Allee effect. The function 𝜃 takes as argument the ratio
𝑁(𝑡)∕𝑁(0) and it allows to change the dynamics of the sympathetic
xons evolution during disease progression. Starting from the healthy
tate, 𝑁(𝑡) = 𝑁(0) at least from small time 𝑡 i.e. the total concentration
f cells remains constant, then taking 𝜃(1) < 𝐴1(0) and the amount
f sympathetic axons increases. Moreover, 𝜃 is an increasing function
uch that if 𝑁(𝑡) > 𝑁(0) i.e. there are proliferative cells in the system,
hen at some point 𝜃 (𝑁(𝑡)∕𝑁(0)) > 1 and the amount of sympathetic
xons decreases. Details of the properties of the function 𝜃 are given in

Hypothesis 2.4 and its mathematical expression is given in Section 3.1.
Thus the dynamics of the sympathetic axons are given by the following
differential equation:

𝑑
𝑑 𝑡𝐴1(𝑡) = 𝑟𝐴1

𝐴1(𝑡)

⎛

⎜

⎜

⎜

⎝

𝐴1(𝑡)

𝜃
(

𝑁(𝑡)
𝑁(0)

) − 1
⎞

⎟

⎟

⎟

⎠

(1 − 𝐴1(𝑡))

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Logistic law with Allee effect

,

where 𝑟𝐴1
> 0 is the growth rate of sympathetic axons.

Sensory axons growth dynamics. The remodeling of the sensory
xons start at cancerous stages (see the biological data in Fig. 10 in
ection 4.1). Hence, one natural way to model the time evolution of
ensory axons is to use a logistic law with a growth rate which is
odulated by the presence of cells with non-negative phenotype values.
e denote 𝑟𝐴2

the increasing function taking as argument 𝑁𝑐 (𝑡)∕𝑁(𝑡)
hich model the growth rate of sensory axons. The dynamics of the

ensory axons are given by the following differential equation:
𝑑
𝑑 𝑡𝐴2(𝑡) = 𝑟𝐴2

(

𝑁𝑐 (𝑡)
𝑁(𝑡)

)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
Impact of cancer cells on growth

𝐴2(𝑡)(1 − 𝐴2(𝑡))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Logistic law

.

For instance, if there is no proliferative cells, then

𝑟𝐴2

(

𝑁𝑐 (𝑡)
𝑁(𝑡)

= 0
)

= 0

and the amount of sensory axons remains constant. As soon as
𝑐 (𝑡)∕𝑁(𝑡) > 0 which implies 𝑟𝐴2

(

𝑁𝑐 (𝑡)∕𝑁(𝑡)
)

> 0 then the sensory
xons follow the logistic law. Since we assume that 𝑟𝐴2

is monotonous,
hen the more cancer cells there are in the system, the faster the growth
f sensory axon is. Details of the properties of the function 𝑟𝐴2

are
given in Hypothesis 2.4 and its mathematical expression is given in
ection 3.1.

Complete dynamical system. The system that mathematically for-
alizes the impact of axons on tumor progression consists in a partial
ifferential equation (PDE) for cell dynamics and two differential equa-
ions for axon dynamics. It couples a growth-transport equation for 𝑄
ith two ODEs with non-local terms for 𝐴1 and 𝐴2:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑄(𝑡, 𝑥)+𝜕𝑥
[

𝑓 (𝑡, 𝑥;)𝑄(𝑡, 𝑥)] = 𝑔(𝑡, 𝑥;), 𝑡 > 0, 𝑥 ∈ 𝛺

𝑑
𝑑 𝑡𝐴1(𝑡) = 𝑟𝐴1

𝐴1(𝑡)

(

𝐴1(𝑡)

𝜃
(

𝑁(𝑡)
𝑁(0)

) − 1
)

(1 − 𝐴1(𝑡)), 𝑡 > 0,

𝑑
𝑑 𝑡𝐴2(𝑡) = 𝑟𝐴2

(

𝑁𝑐 (𝑡)
𝑁(𝑡)

)

𝐴2(𝑡)
(

1 − 𝐴2(𝑡)
)

, 𝑡 > 0.

(3)

The system (3) is completed with the following initial conditions:

𝑄(0, 𝑥) = 𝑄0(𝑥) for 𝑥 ∈ 𝛺 , 𝐴1(0) ≅ 𝐴𝑒𝑞1 and 𝐴2(0) = 𝐴0
2,

where 𝐴𝑒𝑞1 > 0 corresponds to the average density of sympathetic axons
in a healthy pancreas which has been normalized and 0 < 𝐴0

2 ≪ 1 corre-
sponds to the average density a sensory axons in a healthy pancreas also
normalized. For modeling purposes, if there is no observations showing
the presence of sensory axons in a healthy pancreas, we still consider
that there is a negligible amount of sensory axons in the system at the
initial state. Otherwise, the growth dynamics could not take place since

𝐴2(𝑡) = 0 is an unstable steady-state. One point to note is that if we

4 
consider initially that the pancreas is essentially composed of healthy
cells then one way to cope with this assumptions is to assume that 𝑄0 is
compactly supported and that the following holds on the support of the
initial datum 𝑠𝑢𝑝𝑝(𝑄0) ⊂ 𝛺∕R+. Finally, we add the following boundary
condition on the PDE

𝑓 (𝑡, 𝑥;)𝑄(𝑡, 𝑥) = 0, 𝑥 ∈ 𝜕 𝛺 ,
which ensures Dirichlet boundary conditions and allows us to neglect
any processes acting outside of our domain. This boundary condition
is a strong assumption which is sufficient to prove the well-posedness
of the model and the fact that no mass is lost on the boundary of the
domain. It is ensured by the compact support of the transport term 𝑓
(cf. Hypothesis 2.2).

2.2. Well-posedness of the model

We denote by  ∶= (𝑄, 𝐴1, 𝐴2) the solution of the system (3). We
note that  is solution of a non-conservative system that is a particular
ase of the following system :
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑡𝑄(𝑡, 𝑥) + 𝑓 (𝑡, 𝑥;)𝜕𝑥𝑄(𝑡, 𝑥) + 𝑐(𝑡, 𝑥;)𝑄(𝑡, 𝑥) = 0 for 𝑡 > 0, 𝑥 ∈ 𝛺 , (a)

𝑓 (𝑡, 𝑥;)𝑄(𝑡, 𝑥) = 0 for 𝑥 ∈ 𝜕 𝛺 , 𝑡 ≥ 0, (b)

𝑄(0, 𝑥) = 𝑄0(𝑥) for 𝑥 ∈ 𝛺 , (c)

𝑑
𝑑 𝑡𝐴1(𝑡) = 𝑟𝐴1

𝐴1(𝑡)
⎛

⎜

⎜

⎝

𝐴1 (𝑡)

𝜃
(

𝑁(𝑡)
𝑁(0)

) − 1
⎞

⎟

⎟

⎠

(1 − 𝐴1(𝑡)) for 𝑡 > 0, (d)

𝐴1(0) = 𝐴0
1 ∈ (0, 1), (e)

𝑑
𝑑 𝑡𝐴2(𝑡) = 𝑟𝐴2

(

𝑁𝑐 (𝑡)
𝑁(𝑡)

)

𝐴2(𝑡)
(

1 − 𝐴2(𝑡)
)

for 𝑡 > 0, (f)

𝐴2(0) = 𝐴0
2 ∈ (0, 1), (g)

(4)

where 𝑁(𝑡) ∶= ∫𝛺 𝑄(𝑡, 𝑥)𝑑 𝑥 and 𝑁𝑐 (𝑡) ∶= ∫𝛺 𝜓(𝑥)𝑄(𝑡, 𝑥)𝑑 𝑥 such that 𝜓 is
iven and nonnegative and supp(𝜓) ⊂ 𝛺 ∩ R+ and that ‖𝜓 𝑄(𝑡)‖1(𝛺) ≤
𝑄(𝑡)‖1(𝛺) for 𝑡 ≥ 0. We also introduce the function 𝑔 which allows to
ewrite Eq. (4) in a conservative form :
𝑔(𝑡, 𝑥;) ∶= 𝑐(𝑡, 𝑥;) − 𝜕𝑥𝑓 (𝑡, 𝑥;), (5)

implying that

𝜕𝑡𝑄(𝑡, 𝑥) + 𝜕𝑥
(

𝑓 (𝑡, 𝑥;)𝑄(𝑡, 𝑥) ) +𝑔(𝑡, 𝑥;)𝑄(𝑡, 𝑥) = 0 for 𝑡 > 0, 𝑥 ∈ 𝛺 .
In the following, we study the well-posedness of system (4) and start
with the different hypotheses required for that.

Hypothesis 2.1 (Initial Condition). Assume 𝑄0 ∈ 1(𝛺) is nonnegative
such that

0 < 𝐶(𝑁(0)) < ∫𝛺
𝑄0(𝑥)𝑑 𝑥 = ‖𝑄0‖1(𝛺) < 𝐶(𝜏𝐶 ) <∞

with 𝐶(𝑁(0)) and 𝐶(𝜏𝐶 ) positive constants.

Hence, we denote  the following set:

(𝑇 ) ∶=
{

(𝑄, 𝐴1, 𝐴2) ∈ 1 ([0, 𝑇 ];1(𝛺) ∩ 1(𝛺)
)

× 1([0, 𝑇 ]) × 1([0, 𝑇 ]) such that

𝐶(𝑁(0)) ≤ ∫𝛺
𝑄(𝑡, 𝑥)𝑑 𝑥 ≤ 𝐶(𝜏𝐶 ) and 0 ≤ 𝐴𝑖(𝑡) ≤ 1, 𝑖 = 1, 2, 𝑡 ∈ [0, 𝑇 ]

}

.

(6)

We also assume the following conditions on the functions given by the
ransport term and the growth term. Given  ∈ (𝑇 ), for 𝑇 > 0, we
ave the following hypotheses :

Hypothesis 2.2 (Transport Term). Assume that 𝑖 ∈ (𝑇 ), for 𝑇 > 0
for 𝑖 = 1, 2 then

𝑓 (⋅;) ∈ 
(

[0, 𝑇 ];1
𝑐 (𝛺)

)

with |𝜕𝑥𝑓 (𝑡, 𝑥;)| < ∞, 𝑓 (𝑡, 𝑥;) ≥ 0

for 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝛺,
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𝑓 (𝑡, 𝑥;) = 𝜕𝑥𝑓 (𝑡, 𝑥;) = 0 for 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝜕 𝛺
and there exist constants 𝐶𝑙(𝑓 ) > 0, 𝐶𝑙(𝜕𝑥𝑓 ) > 0 such that

‖𝑓 (𝑡;1) − 𝑓 (𝑡;2)‖∞(𝛺) ≤ 𝐶𝑙(𝑓 )‖1 − 2‖ and
‖𝜕𝑥(𝑓 (𝑡;1) − 𝑓 (𝑡;2))‖∞(𝛺) ≤ 𝐶𝑙(𝜕𝑥𝑓 )‖1 − 2‖ .

Hypothesis 2.3 (Growth Term). Assume that 𝑖 ∈ (𝑇 ), for 𝑇 > 0 for
𝑖 = 1, 2 then

𝑔(⋅;) ∈ 
(

[0, 𝑇 ];1
𝑐 (𝛺)

)

with |𝑔(𝑡, 𝑥;)| < ∞, |𝜕𝑥𝑔(𝑡, 𝑥;)| < ∞

for 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝛺

and there exists a constant 𝐶𝑙(𝑔) > 0 such that

‖𝑔(𝑡;1) − 𝑔(𝑡;2)‖∞(𝛺) ≤ 𝐶𝑙(𝑔)‖1 − 2‖ .

Moreover, assume that the growth term is a logistic-type growth term,
i.e

−𝑔(𝑡, 𝑥;) ∶= 𝑟(𝑥)
(

ℎ
(

𝐴1(𝑡), 𝐴2(𝑡)
)

−∫𝛺
𝑄(𝑡, 𝑦)𝑑 𝑦

)

where there exist constants 0 ≤ 𝑟− < 𝑟+ < ∞ and 𝐶(𝜏𝐶 ) > 0 such that

𝑟− ≤ 𝑟(𝑥) ≤ 𝑟+ for 𝑥 ∈ 𝛺

and there exists a small perturbation 0 < 𝜀 such that

𝐶(𝜏𝐶 ) − 𝜀 ≤ ℎ(𝑥, 𝑦) ≤ 𝐶(𝜏𝐶 ) for (𝑥, 𝑦) ∈ [0, 1]2.

Hypothesis 2.4 (Coupling Axons and Cell Densities). Assume 𝜃 ∈ (R+)
and 𝑟𝐴2

∈ (R+) such that

𝑟𝐴2
(𝑥) ≥ 0, ∀𝑥 ∈ R

and that for any compact set 𝐾 ⊊ R+, there exist a constant 𝐶𝑙(𝜃) > 0
nd a constant 𝐶𝑙(𝑟𝐴2

) > 0 such that ∀(𝑥, 𝑦) ∈ 𝐾 ×𝐾

|𝜃(𝑥) − 𝜃(𝑦)| ≤ 𝐶𝑙(𝜃)|𝑥 − 𝑦| and |𝑟𝐴2
(𝑥) − 𝑟𝐴2

(𝑦)| ≤ 𝐶𝑙(𝑟𝐴2
)|𝑥 − 𝑦|.

Moreover, the image of 𝜃 satisfies

Im(𝜃) ⊂ [𝜃−, 𝜃+] with 𝜃− ∈ (0, 𝐴0
1), 𝜃+ > 1.

Remark 1. The Hypothesis 2.1 allows to consider an initial state of
ealthy cells for the system. As for Hypotheses 2.2 and 2.3, they give

sufficient conditions on the tumor progression term (the transport term
) and on the proliferation term (the reaction term 𝑐) in order to
nsure the well-posedness. The Hypothesis 2.4 states some regularity

assumptions on the terms formalizing the effect of the cells on the axons
densities as well as additional conditions in order to have a coupling
term biologically relevant (cf. Section 2.1).

Remark 2. In our model,

𝑓 (𝑡, 𝑥;) = 𝜋(𝑥)(1 − 𝛽(𝑥)𝜌(𝐴1(𝑡)) + 𝛿(𝑥)𝐴2(𝑡)) + 𝜂
(

𝑥, 𝑁𝑐 (𝑡)𝑁(𝑡)

)

and

𝑐(𝑡, 𝑥;) = 𝜕𝑥𝑓 (𝑡, 𝑥;) − 𝑟(𝑥)
(

1 − 𝑁(𝑡)
𝜏𝐶

− 𝜇1𝐴1(𝑡) + 𝜇2𝐴2(𝑡)
)

.

Hence the conditions on 𝑓 and 𝑐 stated in Hypotheses 2.2 and 2.3 are
enforced when the following detailed assumptions are fulfilled :

• Let 𝜋 ∈ 1
𝑐 (𝛺), 𝛽 ∈ 1(𝛺), 𝛿 ∈ 1(𝛺) and 𝜂

(

⋅, 𝑁𝐶 (𝑡)𝑁(𝑡)

)

∈ 1
𝑐 (𝛺) such

that

sup
𝑥∈𝛺

|𝜋′(𝑥)| + |𝛽′(𝑥)| + |𝛿′(𝑥)| + |𝜂′(𝑥)| ≤ 𝐶

for a constant 𝐶 > 0.
et 𝑟 ∈ 1

𝑐 (𝛺) and Lipschitz continuous.

More details about these functions will be given in Section 3.1.
5 
Theorem 1. Assume that the Hypothesis 2.1, 2.2, 2.3 and 2.4 are
atisfied, then the system (4) admits a unique solution
(𝑄, 𝐴1, 𝐴2) ∈ 1([0, 𝑇 ];1(𝛺)) × 1([0, 𝑇 ]) × 1([0, 𝑇 ]), for all 𝑇 > 0

such that
∀𝑠 ∈ [0, 𝑇 ] 0 ≤ 𝐴𝑖(𝑠) ≤ 1, 𝑖 = 1, 2,
and there exists a positive constant 𝐶(𝜏𝐶 ) > 0

∀𝑠 ∈ [0, 𝑇 ] ∫𝛺
𝑄0(𝑥)𝑑 𝑥 ≤ ∫𝛺

𝑄(𝑠, 𝑥)𝑑 𝑥 ≤ 𝐶(𝜏𝐶 ).

Proof. The system (4) couples an transport–reaction partial differential
equation (PDE) for the cancer progression with two differential equa-
tions for the axons densities. Axons dynamic is governed by non-local
terms that depend on the solution of the PDE. Inversely, the dynamic
of tumor progression modeled by the transport term and the reaction
term is also governed by the axons. The proof of the well-posedness of
the solution of this non-linear system relies on the contraction mapping
theorem.

Consider  = (𝑄, 𝐴1, 𝐴2) ∈ 1([0, 𝑇 ];1(𝛺) ∩ 1(𝛺)) × 1([0, 𝑇 ]) ×
1([0, 𝑇 ]) given. Define 𝑁(𝑠) ∶= ∫𝛺 𝑄(𝑠, 𝑥)𝑑 𝑥 and 𝑁𝑐 (𝑠) ∶=
∫𝛺 𝜓(𝑥)𝑄(𝑠, 𝑥)𝑑 𝑥 such that 0 < 𝑁(0) ≤ 𝑁(𝑠) ≤ 𝐶(𝜏𝐶 ) for 𝑠 ∈ [0, 𝑇 ].
We introduce the linear system associated to (4):
⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑠𝑢(𝑠, 𝑥) + 𝑓 (𝑠, 𝑥;)𝜕𝑥𝑢(𝑠, 𝑥) + 𝑐(𝑠, 𝑥;)𝑢(𝑠, 𝑥) = 0, for 𝑠 ∈ (0, 𝑇 ), 𝑥 ∈ 𝛺 ,
𝑓 (𝑠, 𝑥)𝑢(𝑠, 𝑥)= 0, for 𝑥 ∈ 𝜕 𝛺 , 𝑠 ∈ (0, 𝑇 ),

𝑢(0, 𝑥) = 𝑄0(𝑥), for 𝑥 ∈ 𝛺 ,

𝑑
𝑑 𝑠𝐴1(𝑠) = 𝑟𝐴1

𝐴1(𝑠)
⎛

⎜

⎜

⎝

𝐴1(𝑠)

𝜃
(

𝑁(𝑠)
𝑁(0)

) − 1
⎞

⎟

⎟

⎠

(1 − 𝐴1(𝑠)), 𝐴1(0) = 𝐴0
1,

𝑑
𝑑 𝑠𝐴2(𝑠) = 𝑟𝐴2

(

𝑁𝑐 (𝑠)
𝑁(𝑠)

)

𝐴2(𝑠)
(

1 − 𝐴2(𝑠)
)

, 𝐴2(0) = 𝐴0
2.

(7)

We denote

 ∶=
{

𝑄 ∈ 1([0, 𝑇 ];1(𝛺) ∩ 1(𝛺)) | 𝐶(𝑁(0))

≤ ∫𝛺
𝑄(𝑠, 𝑥)𝑑 𝑥 ≤ 𝐶(𝜏𝐶 ) for 𝑠 ∈ [0, 𝑇 ]

}

where 𝐶(𝑁(0)) is a constant such that 0 < 𝐶(𝑁(0)) ≤ 𝑁(0), the norm
on  is given by

‖𝑄‖ ∶= sup
0≤𝑠≤𝑇

‖𝑄(𝑠)‖1(𝛺).

and  is the following mapping :
 ∶ ×1([0, 𝑇 ]) ×1([0, 𝑇 ]) → ×1([0, 𝑇 ]) ×1([0, 𝑇 ]), (𝑄, 𝐴1, 𝐴2) ↦ (𝑢, 𝐴1, 𝐴2).

(8)

The norm associated to the set (𝑇 )
(

we use the notation  = (𝑇 )
in the following for the sake of clarity

)

defined in (6) or by

 ∶=  ×
{

𝐴 ∈ 1([0, 𝑇 ]) ∣ 0 ≤ 𝐴(𝑡) ≤ 1, for 𝑡 ∈ [0, 𝑇 ]}2 ,
is given by

‖(𝑄, 𝐴1, 𝐴2)‖ ∶=
(

‖𝑄‖ + sup
0≤𝑠≤𝑇

|𝐴1(𝑠)| + sup
0≤𝑠≤𝑇

|𝐴2(𝑠)|
)

.

The proof of the well-posedness of the system (4) works as follows.
First, we prove that the linear system (7) associated to (4) admits a
unique solution. Second, we prove that the map  is a contraction
on the set (𝑇 ) for 𝑇 small enough. Third, we use a bootstrap ar-
gument to conclude the existence of a solution of (4). The final step
is the uniqueness result. All these steps relies on Lemmas detailed in
Appendix A.

Step 1. For  =
(

𝑄, 𝐴1, 𝐴2
)

∈  given, thanks to Lemmas 1, 2 and 3,
the linear problem (7) admits a unique solution
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(𝑢, 𝐴1, 𝐴2) ∈ 1 ([0, 𝑇 ];1(𝛺) ∩ 1(𝛺)
)

× 1([0, 𝑇 ]) × 1([0, 𝑇 ]).
Also, thanks to Lemma 3, choosing 𝑇 such that

𝑇 <
log

(

𝐶(𝜏𝐶 )
𝑁(0)

)

‖𝑟‖∞|𝐶(𝜏𝐶 ) −𝑁(0)|
×

𝐶(𝜏𝐶 ) −𝑁(0)
𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))

=
𝜆1

‖𝑟‖∞𝜉1
(9)

where 𝜉1 ∈ (𝑁(0);𝐶(𝜏𝐶 )) and 𝜆1 =
𝐶(𝜏𝐶 )−𝑁(0)

𝐶(𝜏𝐶 )−𝐶(𝑁(0)) and that

𝑇 <
log

(

𝑁(0)
𝐶(𝑁(0))

)

‖𝑟‖∞|𝑁(0) − 𝐶(𝑁(0))|
×
𝑁(0) − 𝐶(𝑁(0))
𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))

=
𝜆2

‖𝑟‖∞𝜉2
(10)

where 𝜉2 ∈ (𝐶(𝑁(0));𝑁(0)) and 𝜆2 =
𝑁(0)−𝐶(𝑁(0))
𝐶(𝜏𝐶 )−𝐶(𝑁(0)) then the solution 𝑢 of

he linear system (7) is such that 𝑢 ∈ .

Step 2. In order to prove that  has a fixed point, we introduce the
following maps :
 ∶  → ,  () = 𝑢,

𝛤1 ∶  → 1([0, 𝑇 ]), 𝛤1() = 𝐴1,

𝛤2 ∶  → 1([0, 𝑇 ]), 𝛤2() = 𝐴2.

The contraction property of  is implied by some stability properties
on the mappings  , 𝛤1 and 𝛤2. In the following, we denote 𝑖 =
(𝑄𝑖, 𝐴𝑖1, 𝐴𝑖2) for 𝑖 = 1, 2.

First, using the results in Lemma 1 and the assumptions of the
unction 𝜃 stated in Hypothesis 2.4, we note that

sup
0≤𝑡≤𝑇

|𝛤1(1) − 𝛤1(2)| ≤ 𝐶
(

𝑟𝐴1
, 1
(𝜃− )2

)

𝑇 𝑒𝐶(𝜃)𝑇 sup
0≤𝑡≤𝑇

|

|

|

|

|

𝜃
(

𝑁(𝑡;1)
𝑁(0)

)

− 𝜃
(

𝑁(𝑡;2)
𝑁(0)

)

|

|

|

|

|

,

≤ 𝐶
(

𝑟𝐴1
, 1
(𝜃− )2

, 𝐶𝑙(𝜃)
)

𝑇 𝑒𝐶(𝜃)𝑇 sup
0≤𝑡≤𝑇

‖𝑄1(𝑡) −𝑄2(𝑡)‖1 (𝛺),

(11)

where 0 < 𝐶
(

𝑟𝐴1
, 1
(𝜃−)2

, 𝐶𝑙(𝜃)
)

< ∞ and 0 < 𝐶(𝜃) < ∞ are two
constants.

Similarly, using the results in Lemma 2 and the assumptions on the
function 𝑟𝐴2

stated in Hypothesis 2.4, we note that

sup
0≤𝑡≤𝑇

|𝛤2(2) − 𝛤2(1)| ≤ 𝐶(𝐴0
2)𝑇 sup

0≤𝑡≤𝑇

|

|

|

|

|

𝑟𝐴2

(

𝑁𝑐 (𝑡;1)
𝑁(𝑡;1)

)

− 𝑟𝐴2

(

𝑁𝑐 (𝑡;2)
𝑁(𝑡;2)

)

|

|

|

|

|

,

≤ 𝐶(𝐴0
2, 𝐶𝑙(𝑟𝐴2

))𝑇 sup
0≤𝑡≤𝑇

|

|

|

|

𝑁𝑐 (𝑡;1)𝑁(𝑡;2) −𝑁𝑐 (𝑡;2)𝑁(𝑡;1)
𝑁(𝑡;1)𝑁(𝑡;2)

|

|

|

|

,

≤ 𝐶
(

𝐴0
2, 𝐶𝑙(𝑟𝐴2

), 1
𝐶(𝑁(0))2

, 𝐶(𝜏𝐶 )
)

𝑇 sup
0≤𝑡≤𝑇

‖𝑄1(𝑡) −𝑄2(𝑡)‖1 (𝛺),

(12)

where 0 < 𝐶
(

𝐴0
2, 𝐶𝑙(𝑟𝐴2

), 1
𝐶(𝑁(0))2 , 𝐶(𝜏𝐶 )

)

< ∞ is a constant. More-

over, one can check that the constant 𝐶
(

𝐴0
2, 𝐶𝑙(𝑟𝐴2

), 1
𝐶(𝑁(0))2 , 𝐶(𝜏𝐶 )

)

is
bounded by above and below by strictly positive constants independant
f the initial data 𝐴0

2 and 𝑄0 since there exist constants 𝑚1 > 0 and
2 > 0 such that

𝑚1 < 𝐴0
2 < 1 and 𝑚2 < 𝐶(𝑁(0)) < 𝐶(𝜏𝐶 ).

Also, thanks to the stability result of Lemma 3, we note that

sup
0≤𝑡≤𝑇

‖ (1) −  (2)‖1(𝛺) ≤ 𝐶(𝑇 )𝑇 ‖1 − 2‖ . (13)

Finally, using the inequalities (11), (12) and (13), we get that there
xist two constants 0 < 𝐶1 <∞ and 0 < 𝐶2 < ∞ such that

‖(1) − (2)‖ ≤ 𝐶1(𝑇 )𝑇 𝑒𝐶2𝑇 ‖1 − 2‖

where, using the notations introduced in Lemmas 1, 2 and 3 and those
of Hypotheses 2.1, 2.2, 2.3 and 2.4, we have

• 𝐶1(𝑇 ) = 𝐶
(

𝐶𝑙(𝑟𝐴2
), 𝐴0

2,
1

𝐶(𝑁(0))2 , 𝐶(𝜏𝐶 ), 𝑟𝐴1
, 1
(𝜃−)2

, 𝐶𝑙(𝜃), 𝐶𝑙(𝜕𝑥𝑓 ),
‖𝜕𝑥𝑔‖∞, 𝐶𝑙(𝑔), 𝑇

)

,

• 𝐶2 = 𝐶
(

𝐶(𝜃), 𝑟+, |𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))|
)

.

6 
Moreover, we introduce the new constants 𝐶̃1(𝑇 ) and 𝐶̃2 indepen-
ent of 𝐴0

2 and 𝐶(𝑁(0)) such that

𝐶1(𝑇 ) ≤ 𝐶1

(

𝐶𝑙(𝑟𝐴2
), 1

(𝑚2)2
, 𝐶(𝜏𝐶 ), 𝑟𝐴1

, 1
(𝜃−)2

, 𝐶𝑙(𝜃), 𝐶𝑙(𝜕𝑥𝑓 ), ‖𝜕𝑥𝑔‖∞, 𝐶𝑙(𝑔), 𝑇
)

and

𝐶2 ≤ 𝐶̃2
(

𝐶(𝜃), 𝑟+, |𝐶(𝜏𝐶 ) − 𝑚2|
)

.

Since the map

𝑔 ∶ 𝑡 ∈ [0, 𝑇 ] ↦ 𝑔(𝑡) ∶= 𝐶̃1(𝑡)𝑡𝑒𝐶̃2𝑡

is continuous, increasing and 𝑔(0) = 0, there exists 𝑇1 > 0 such that

𝐶̃1(𝑇1)𝑇1𝑒𝐶̃2𝑇1 < 1. (14)

Choosing 𝑇1 > 0 satisfying (9),(10) and (14) with 𝑇1 < 𝑇̃ that is
𝑇1 < min

(

𝜆1
𝑟+𝐶(𝜏𝐶 )

, 𝑒
−𝐶̃2 𝑇̃

𝐶̃1(𝑇̃ )
,

𝜆2
𝑟+𝐶(𝜏𝐶 )

)

,

it follows that  is a strict contraction on  . Consequently, the
contraction mapping Theorem implies there exists a unique  ∈  of
(4) on the time interval [0, 𝑇1].
Step 3. Now, we prove that we can extend the solution to [0, 𝑇 ] for any
𝑇 > 0. In order to do so, since 𝑄(𝑡) ∈ 1(𝛺) ∩ 1(𝛺) for 0 ≤ 𝑡 ≤ 𝑇1, we
rove that we can repeat the previous arguments to extend the solution
o the time interval [𝑇1, 2𝑇1]. We first note that Lemma 4 ensures that
ny solution 𝑄 of (4) satisfies

𝑁(0) ≤ ∫𝛺
𝑄(𝑡, 𝑥)𝑑 𝑥 ≤ 𝐶(𝜏𝐶 ).

It implies that 𝑁(𝑇1) ≥ 𝑁(0). Hence, there exists a positive constant
(𝑁(𝑇1)) such that

0 < 𝐶(𝑁(𝑇1)) < 𝑁(𝑇1) ≤ 𝐶(𝜏𝐶 )

and that

𝐶(𝑁(𝑇1)) = 𝑁(𝑇1) − (𝑁(0) − 𝐶(𝑁(0)))
𝐶(𝜏𝐶 ) −𝑁(𝑇1)
𝐶(𝜏𝐶 ) −𝑁(0)

. (15)

Moreover, we define the space on which we apply the contraction
mapping Theorem as the following

1 = 1 ×
{

𝐴 ∈ 1([𝑇1, 2𝑇1]) ∣ 0 ≤ 𝐴(𝑡) ≤ 1, for 𝑡 ∈ [𝑇1, 2𝑇1]
}2 ,

where

1 ∶=
{

𝑄 ∈ 1 ([𝑇1, 2𝑇1];1(𝛺) ∩ 1(𝛺)
)

|𝐶(𝑁(𝑇1))

≤ ∫𝛺
𝑄(𝑠, 𝑥)𝑑 𝑥 ≤ 𝐶(𝜏𝐶 ) for 𝑠 ∈ [𝑇1, 2𝑇1]

}

.

Hence, we can proceed similarly as in Step 1 and Step 2. Thanks to
(15), we have

𝜆1 =
𝐶(𝜏𝐶 ) −𝑁(0)

𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))
=

𝐶(𝜏𝐶 ) −𝑁(𝑇1)
𝐶(𝜏𝐶 ) − 𝐶(𝑁(𝑇1))

and the dependance to the initial condition which appears in (9) does
not cause an issue since

𝜆1
𝑟+𝐶(𝜏𝐶 )

≤ 𝜆1
log

(

𝐶(𝜏𝐶 )
𝑁(𝑇1)

)

‖𝑟‖∞|𝐶(𝜏𝐶 ) −𝑁(𝑇1)|
=

𝜆1
‖𝑟‖∞𝜉

where 𝜉 ∈ (𝑁(𝑇1);𝐶(𝜏𝐶 )). As for the dependance to the initial condition
which appears in (10), thanks to (15), we have

𝜆2 =
𝑁(0) − 𝐶(𝑁(0))
𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))

=
𝑁(𝑇1) − 𝐶(𝑁(𝑇1))
𝐶(𝜏𝐶 ) − 𝐶(𝑁(𝑇1))

and

𝜆2
𝑟+𝐶(𝜏𝐶 )

≤ 𝜆2
log

(

𝑁(𝑇1)
𝐶(𝑁(𝑇1))

)

‖𝑟‖∞|𝑁(𝑇1) − 𝐶(𝑁(𝑇1))|
=

𝜆2
‖𝑟‖∞𝜉

where 𝜉 ∈ (𝐶(𝑁(𝑇1));𝑁(𝑇1)).
Also, thanks to (15) and the fact that 𝑁(0) ≤ 𝑁(𝑇1), the following

olds
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𝐶(𝑁(𝑇1)) − 𝐶(𝑁(0)) = 𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))
𝐶(𝜏𝐶 ) −𝑁(0)

(

𝑁(𝑇1) −𝑁(0)
)

≥ 0.

Then, we have that
𝑒−𝐶̃2 𝑇̃

𝐶̃1(𝑇̃ )
≤ 𝑒−𝐶2(𝐶(𝑁(𝑇1)))𝑇̃

𝐶1(𝑇̃ , 𝐶(𝑁(𝑇1)))
.

Using Lemmas 1, 2 and 3 and since 2𝑇1 − 𝑇1 = 𝑇1 < 𝑇̃ , we obtain
the strict contraction on the mapping on 1 with the same condition

𝑇1 < min
(

𝜆1
𝑟+𝐶(𝜏𝐶 )

, 𝑒
−𝐶̃2 𝑇̃

𝐶̃1(𝑇̃ )
,

𝜆2
𝑟+𝐶(𝜏𝐶 )

)

.

Hence, by iterating, we extend the solution to the full interval [0, 𝑇 ].
Step 4. The uniqueness of the solution of the system is direct con-
sequence of the stability properties of Lemmas 1, 2 and 3 and the
structural property of our system which implies that  = 0 is a
tationary solution. ■

Remark 3. The Theorem 1 state the well-posedness on any finite
time interval of the solution of (4). However, one can prove the global
well-posedness with the same arguments assuming additional regularity
assumptions (on the time variable 𝑡 ∈ R+ instead of 𝑡 ∈ [0, 𝑇 ]) on the
functions 𝜃 and 𝑟𝐴2

(e.g. no singularities). The main reason allowing
he extension of the result about the well-posedness comes from the

fact that assuming Hypothesis 2.1 holds and 0 < 𝐴0
𝑖 < 1 for 𝑖 = 1, 2 then

the trajectories (∫𝛺 𝑄(⋅, 𝑥)𝑑 𝑥, 𝐴1(𝑡), 𝐴2(𝑡)) remain bounded away from 0.
However, finer stability estimates are required to conclude. Since this
study focuses on the interactions between cells and axons during the
tumorigenesis for the pancreatic cancer, the transient behavior (instead
of the asymptotic behavior) is the main point of interest. The result of
Theorem 1 is sufficient to pursue this goal.

2.3. Qualitative study of the system

The aim of this section is to study how the transport term (1) and
the proliferation term (2) of the system (4) impact the final state of the
model’s dynamics. First, we show that, depending on the assumptions

ade about the functions 𝜋 (the basal speed of disease progression), 𝜂
the speed of disease progression due to the presence of cancer cells), 𝑟
the basal proliferation rate of cancer cells) and 𝑄0 (the initial distribu-

tion of cells with respect to their phenotypes), the different behaviors of
the model’s dynamics can be summed up in three categories. Secondly,
we obtain explicit bounds on the first time of appearance of cells with
cancerous phenotypes. This result is obtained under some assumptions
on the transport term and relies on the characteristic curves of the
equation.

2.3.1. Behavior of the model
We recall that our phenotype domain 𝛺 ⊂ R can either be the

whole real line or a segment centered in 0. Hence, a distinct separation
for the cells with positive and negative phenotypes is assumed. The
rigin separates the cancer-induced proliferative cells from the healthy
ne. Moreover, at time 𝑡 = 0 the cells are supposed to be at a non-
ancerous and thus at a non-proliferating state. This assumption is
ormally translated in our model by the following hypothesis on the
ocation on the phenotype axis of the initial distribution 𝑄0 (i.e. its
upport) and on the support of the proliferation rate 𝑟 :

Hypothesis 2.5. Assume 𝑄0 is the initial condition of (4) which fulfills
Hypothesis 2.1. Moreover, let 𝑄0 be compactly supported and

supp(𝑄0)
⋂

supp(𝑟) = ∅.

Hypothesis 2.5 implies that the population of cells in a healthy
pancreas remain constant until the apparition of cancer cells. Moreover,
we also assume the following :
7 
Hypothesis 2.6. Let

𝜋(𝑥) ≥ 0, 𝜂(𝑥) ≥ 0, 𝛿(𝑥) ≥ 0 and 1 − 𝛽(𝑥)𝜌(𝑦) ≥ 0 ∀𝑥 ∈ 𝛺 , ∀𝑦 ∈ [0, 1].
Hypothesis 2.6 implies that the transport term 𝑓 (⋅;) is nonnega-

ive. It ensures the modeling assumptions stating that the phenotypic
ransfer is unidirectional: from healthy to cancer cells. The immediate
onsequence of this assumption is that the behavior of the system is
ainly dictated by the location on the phenotype axis of the transport

term support (i.e. the supports of 𝜋 and 𝜖).
Once the Hypotheses 2.5 and 2.6 are assumed, the model dynamics

can exhibit several types of behavior that can be associated to one of
the following states:

• a stationary state where there is no cancer progression,
• abimodal state, where the cancer progression takes place but the

system converges towards a bimodal distribution (i.e. an asymp-
totic state in which healthy cells and cancer cells are present),

• a pathological state where the healthy cells are totally replaced by
cancer cells.

These three behaviors are determined by more refined assumptions on
the functions involved in the system (4). The assumptions categorizing
the dynamical behavior are summarized in Fig. 2.

The stationary state. The conditions ensuring this state are schematized
in Fig. 2(a). Since there is no intersection between the support of the
nitial condition and the support of the transport term, there is no
ossible progression of the cancer. This behavior corresponds to the
ynamics of the model when there are only healthy cells without pro-
iferative cells (cf. Fig. 3(a)). Moreover, since there is no proliferative

cells, the sensory axons density remains constant and the sympathetic
axons density stays constant or follows a logistic growth (cf. Fig. 3(b)).

The bimodal state. The conditions ensuring the bimodal state are
schematized in Fig. 2(b). The support of the initial density of cells on
he phenotype axis is intersecting with the support of the functions
mplied in the progression towards the cancerous phenotype (the
unctions 𝜋 and 𝜂 in (1)). The function 𝜋 transports a proportion of

the cell densities towards the cancer phenotype whereas the function 𝜂
starts accelerating the transport of the cell densities from the healthy
state to the cancerous state only when cancer cells are present in the
system. Nevertheless, in the bimodal state, the supports of 𝜋 and
𝜂 are not intersecting each other. In that case, the system dynamics
tend towards a bimodal population distribution. The bimodal state
corresponds to a state where there are cancer cells in the system after
some time. However a proportion of non-cancerous cells is also present
and persists through time (cf. Figs. 3(c) and 4(a)). Concerning the axons
dynamics, in contrast to the stationary case, the sympathetic axons are
first increasing thanks to the logistic growth and then decreasing thanks
to the Allee effect (cf. Fig. 3(d)) and the sensory axons are following a
logistic growth (since there are cancer cells in the system).

The pathological state. The asymptotic behavior corresponding to the
pathological case is the opposite of the one from the stationary case.

fter a finite time, the cancer cells are present in the system and a
rogression towards cancerous phenotypes occurs for the remaining
ealthy cells (cf. Fig. 3(e)). Then, after some time, there are only

cancer cells in the system. If a proportion of healthy cells remains after
the start of the cancer progression (i.e. supp(𝑄0) ∩ supp(𝜋) ≠ ∅ and
supp(𝜂)∕supp(𝜋) ≠ ∅), a second transport phenomenon towards the
cancer phenotypes takes place because the supports of the function 𝜋
and the function 𝜂 are intersecting each other (cf. Figs. 2(c), 3(e) and
4(b)). This means that in this state, the cancer cells play a more promi-
nent role in the cancer progression. Also, the cancer cell proliferation
is controlled by the function 𝑟, its support on the phenotype axis and
the various parameters involved in the saturation phenomena. In this
case, since all cells are cancer cells after a finite time, the total amount
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Fig. 2. Scheme of the supports of the functions governing the dynamics of the cancer cells progression.
.5,

a

of cancer cells is higher as compared to the one in the bimodal state
cf. Figs. 3(c) and 3(e)). However, the axons dynamics in the bimodal
tate and the pathological state are similar since in both state cancer

cells are present (cf. Fig. 3(f)).

2.3.2. Explicit bounds on the time to appearance of the first cancer cells
To obtain explicit bounds on the time to appearance of the first

cancer cells, we state the following hypothesis which hold either on
he bimodal case or the pathological case.

Hypothesis 2.7. Let

supp(𝑄0)
⋂

supp(𝜋) ≠ ∅, supp(𝑟)
⋂

supp(𝜋) ≠ ∅

and

𝜋 ∶ 𝐾 ⊊( supp(𝑄0)
⋂

supp(𝜋)
)

∕supp(𝑟) → R∗
+, 𝑥↦ 𝜋(𝑥)

be monotonous and increasing.
Hypothesis 2.7 is stating that at least a proportion of cells from the

nitial condition progress towards the cancerous phenotype and that
he cells can reach a proliferative state. Moreover, it also state that the
unction 𝜋 involved in the transport term is positive and increasing in
 specific subset of its definition domain. The second statement ensures
hat the progression towards cancer cells happens in finite time and that

progression is faster when the location on the phenotype axis is towards
the pre-cancerous and cancerous states than when it is towards the
healthy state. Hence, we consider the time 𝑡∗, the time to appearance
of the first cancer cells, with the following definition.

Definition 1. We denote 𝑡∗ the first time when cells can proliferate,
i.e.

𝑡∗ ∶= inf {𝑡 ∈ R∗
+ | min(supp(𝑟)) ∈ supp(𝑄(𝑡, ⋅))

}

.

Finally, we obtain an upper bound and a lower bound on the time
𝑡∗. The bounds depend on the assumptions made about the functions
in the transport term (𝜋, 𝛽, 𝜌, 𝛿 in (1)), those in the growth term (𝑟 in
(2)) and the initial condition 𝑄0 (cf. Figs. 2(b) or 2(c)).

Proposition 1 (Appearance of the Proliferative Cells). Assume Hypostheses 2
2.6 and 2.7 hold. We denote (cf. Fig. 4)
𝑀0 = max

(

supp(𝑄0)
⋂

supp(𝜋)
)

and 𝑟0 = min(supp(𝑟)).

Then there exist two positive constants 0 < 𝑚1(𝜋(𝑀0), 𝛽 , 𝜌) < 𝑚2(𝜋 , 𝛿) such
that

𝑡∗ ∈
[

𝑟0 −𝑀0
𝑚2

;
𝑟0 −𝑀0
𝑚1

]

.

8 
Proof (Proposition 1). Let 𝑡 ∈ (0, 𝑡∗), then the following equation holds
for 𝑄:
𝜕𝑡𝑄(𝑡, 𝑥) + 𝜕𝑥 (𝑓 (𝑡, 𝑥)𝑄(𝑡, 𝑥)) = 0,

since supp(𝑄0)
⋂ supp(𝑟) = ∅. It implies that

𝑄(𝑡, 𝑥) = 𝑄0(𝑋(0, 𝑡, 𝑥)) × exp
(

−∫

𝑡

0
𝜕𝑥𝑓

|

|

|(𝑡,𝑥)=(𝑠,𝑋(𝑠,𝑡,𝑥))
𝑑 𝑠

)

for 𝑡 ∈ (0, 𝑡∗) and 𝑥 ∈ 𝛺 where 𝑋 denote the characteristic curves, i.e.
{ 𝑑

𝑑 𝑠𝑋(𝑠, 𝑡, 𝑥) = 𝑓 (𝑠, 𝑋(𝑠, 𝑡, 𝑥)),
𝑋(𝑡, 𝑡, 𝑥) = 𝑥.

Then, assuming 𝑡 ∈ (0, 𝑡∗), we have the following
supp(𝑄(𝑡, ⋅)) = supp(𝑄0(𝑋(0, 𝑡, ⋅))).

Hence, the bounds on 𝑡∗ can be found by studying the characteristics.
Since Hypothesis 2.6 hold, then there exist two functions 𝑓1 ∶ 𝛺 → R∗

+
nd 𝑓2 ∶ 𝛺 → R∗

+ with
𝑓1(𝑦) = 𝜋(𝑦)(1 − 𝛽(𝑦)𝜌(1)),
𝑓2(𝑦) = 𝜋(𝑦)(1 + 𝛿(𝑦))

such that
𝑓1(𝑋(𝑠, 𝑡, 𝑥)) ≤ 𝑑

𝑑 𝑠𝑋(𝑠, 𝑡, 𝑥) ≤ 𝑓2(𝑋(𝑠, 𝑡, 𝑥)).

In order to estimate the bounds on 𝑡∗, we focus on the characteristic
starting at 𝑀0 = max(supp(𝑄0)

⋂ supp(𝜋)) at time 0 (cf. Fig. 4). Since
𝑓 (𝑡, 𝑥) ≥ 0 for 𝑡 ≥ 0 and 𝑥 ∈ 𝛺 then
𝑋(𝑡, 0, 𝑀0) ≥𝑀0, for 𝑡 ≥ 0.

On the first hand, there exists 𝜀 > 0 arbitrary small such that 𝜋′(𝑥) > 0
for 𝑥 ∈ [𝑀0 − 𝜀, 𝑀0 + 𝜀] ⊂

(

supp(𝑄0)
⋂ supp(𝜋)

)

∕supp(𝑟) and
max𝑥∈𝛺 𝛽(𝑥)𝜌(1) < 1, we have that
0 < 𝜋(𝑀0)

(

1 − max
𝑥∈𝛺

𝛽(𝑥)𝜌(1)
)

≤ 𝑓1(𝑋(𝑡, 0, 𝑀0)), for 𝑡 ∈ (0, 𝑡∗). (16)

On the other hand, since 𝑡 ∈ (0, 𝑡∗) then 𝑁𝑐 (𝑡) = 0, we have that
𝑓2(𝑋(𝑡, 0, 𝑀0)) ≤ max

𝑥∈𝛺
𝜋(𝑥)

(

1 + max
𝑥∈𝛺

𝛿(𝑥)
)

, for 𝑡 ∈ (0, 𝑡∗). (17)

We denote 𝑚1 = 𝜋(𝑀0)(1 − max𝑥∈𝛺 𝛽(𝑥)𝜌(1)) and 𝑚2 = max𝑥∈𝛺 𝜋(𝑥)(1 +
max𝑥∈𝛺 𝛿(𝑥)), using the bounds in (16) and (17), we obtain
𝑀0 + 𝑚1𝑡 ≤ 𝑋(𝑡, 0, 𝑀0) ≤𝑀0 + 𝑚2𝑡.

Finally, we obtain a bound for 𝑡∗ using the estimates on the character-
istic starting at 𝑀0:
𝑟0 −𝑀0
𝑚2

≤ 𝑡∗ ≤
𝑟0 −𝑀0
𝑚1

. ■
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Fig. 3. Numerical simulations of the system (4) (cf. Appendix B for the details of the numerics). The sub Figs. 3(a), 3(c) and 3(f) show in the form of a heatmap the evolution
of cell populations over time as a function of their phenotypes. The vertical axis is the time and the horizontal axis is the phenotype. The color map is an indicator of the cells
densities. The sub Figs. 3(b), 3(d) and 3(f) describe the evolution of the normalized densities of sympathetic axons denoted 𝐴1 and sensory axons denoted 𝐴2.
The dynamics of the mathematical model illustrate the different
states of pancreatic cancer tumorigenesis. Moreover, depending on
the information available on the pro or anti-tumoral interactions be-
tween the axons and the cells, our model can be adapted to esti-
mate the bounds on the time of appearance of the first cancer cells
(Proposition 1).
9 
3. Parametrization and modeling of the denervation

In order to confront our model to the data and be able to extract
biological information from it, we need to parametrize the dynamical
system and introduce degrees of freedom. The parametrization given in
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Fig. 4. Scheme of the characteristic curves and the supports of the functions 𝜂, 𝑄0 and 𝜋 for the system (3) under the assumptions of Hypothesis 2.7. The red dashed lines are
the characteristic curves. The red region is the region where the density of cells is non-zero. The thick red line is a dirac mass which contains part of the densities of the system
the characteristic curves are equal to 0). The time 𝑡∗ is the time of appearance of the first cancer cells (cf. Definition 1). The slope of the characteristic curves is changing at

time 𝑡∗ because of the effect of the sensory axons and the effect of the cancer cells (through the function 𝜂) on the cancer progression.
Table 1
Details on the parameters involved in the model.

Name Range/Value Units Description

Discretization
𝑇 70 day life time of a mouse
𝐿 50 – phenotype domain
𝑑 𝑡 min

(

0.9𝑑 𝑥
𝜋0 (1+𝛿)

, 0.005
)

day time step
𝑑 𝑥 0.05 – space step

Initial condition 𝑄0 100 cells/mm3 amount of healthy cells at time 0 days
𝐴1(0) 0.15445 – amount of sympathetic axons at time 0 days
𝐴2(0) 0.004 – amount of sensory axons at time 0 days

Speed of progression

𝜋0 [0.1, 10] day−1 Basal amplitude of the speed
𝑥1,𝜋 [30, 49] – phenotype at which progression starts
𝜖1,𝜋 [10−4 , 10] – steepness of the switch to progression
𝑥2,𝜋 10 – phenotype at which progression stops
𝜖2,𝜋 10 – steepness of the switch to no progression
𝛽 [10−4 , 1] – modulation by the sympathetic axons
𝛿 [10−4 , 1] – modulation by the sensory axons

Tumor growth

𝛾𝑟 [10−2 , 10] day−1 maximum proliferation rate
𝑠𝑟 [0.2, 10] – rate of proliferation
𝜏𝑐 [120, 300] cells/mm3 carrying capacity of total concentration of cells
𝜇1 [−1, 1] – modulation by the sympathetic axons
𝜇2 [10−4 , 1] – modulation by the sensory axons

Axon growth

𝐴𝑒𝑞1 0.1544 – Fixed from the data
𝑟𝐴1

[10−4 , 5] day−1 Growth rate of the sympathetic axons
𝑠𝜃 [13, 20] – steepness of decrease
𝑟̄𝐴2

[10−4 , 5] day−1 Growth rate of the sensory axons
𝑠𝐴2

[10−4 , 10] – steepness of increase
c
u

𝑡
s
t

Table 1 is described in Section 3.1. To understand the regulation com-
ing from the nervous system, we also need to introduce a mathematical
model of the denervation treatment. This is done in Section 3.2.

3.1. Details of the model and its parameters

Choice of the domain. We propose to use functions 𝜋 and 𝑄0 compactly
upported so that we can reduce the study of the transport equation
o a finite domain 𝛺 = (−𝐿, 𝐿) (cf. Section 2.3). We are then able to
pproximate the solution of the model using an upwind finite volume
 d

10 
scheme for the transport equation and explicit Euler scheme for the
ODE (cf. Appendix B). In the following, we fix 𝐿 = 50. We use a
onstant time step 𝑑 𝑡 and space step ℎ ensuring CFL conditions for the
pwind scheme.

Initial conditions. We set 𝑄0(𝑥) to be the concentration of cells at time
= 0 days. Since initially, only healthy acinar cells are observed, and
ince negative values of 𝑥 close to 50 correspond to healthy cells, we
hen suppose 𝑄0(𝑥) follows a gaussian distribution centered at −𝑥𝑖𝑛𝑖𝑡
efined by the following :
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Fig. 5. Illustration of the basal amplitude for the speed of disease progression 𝜋.
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Fig. 6. Illustration of the initial distribution of cells on the phenotype axis and the
asal amplitude of the transport speed of the disease progression.

𝑄0(𝑥) = 𝑄0
exp {−(𝑥+𝑥𝑖𝑛𝑖𝑡)2

4 }
√

4𝜋

with 𝑄0 = 100, and 𝑥𝑖𝑛𝑖𝑡 = 40.
We note that 𝑁(0) is close to 𝑄0. Also, the choices of 𝑄0, 𝐿 and 𝑥𝑖𝑛𝑖𝑡

are arbitrary and impact the values of many of the parameters.
As for the axons, at time 𝑡 = 0 days, a negligible amount of sensory

axons, and a small amount of autonomic axons are present. Moreover,
the axon densities in the mathematical model (3) are renormalized and
nitless. Based on the biological data provided, we consider

𝐴1(0) = 0.15445, 𝐴2(0) = 0.004.

Cancer progression. The experimental data that we have is not quanti-
ied on the impact that cancer cells have on cancer progression of the
ealthy cells in the late stages of the disease. Therefore, we impose in
hat follows 𝜂 = 0 such that

𝑓 (𝑡, 𝑥;) = 𝜋(𝑥)(1 − 𝛽 𝜌(𝐴1) + 𝛿 𝐴2).

This implies that transport to cancer phenotypes is no longer affected
by the presence of cancer cells at a very advanced stage of the disease.
The advantage of this modeling approach is that it reduces the number
of parameters without significantly impacting the system’s transient
dynamics.

• The function 𝜋 represents a basal amplitude for the speed of
disease progression:
𝜋(𝑥) = 𝜋0

(

t anh(𝜖1,𝜋 (𝑥 + 𝐿 − 𝑥1,𝜋 )) + t anh(𝜖2,𝜋 (−𝑥 + 𝐿 − 𝑥2,𝜋 ))
)

∕2.

Since initially the transdifferentiation of healthy cells is considered to
be slow, we require the transport to be almost negligible around the
lower bound of the phenotype domain. At some phenotype −𝐿+𝑥1,𝜋 ∈
(−𝐿, 0), we expect to see an increase in the transport speed. A constant
amplitude is then observed during the PanIN/PDAC phase. We impose
the assumption that after 𝑥 = 𝐿 − 𝑥2,𝜋 we have decreasing transport
speed in amplitude which vanishes in a neighborhood of the upper
bound of the domain. This implies that no more transport takes place
since cells have reached their PDAC phenotype for 𝑥 ≥ 𝐿 − 𝑥2,𝜋 (cf.
Fig. 5 and Fig. 6).

– Initially the amount of sensory axons is almost negligible
and increases only after the presence of PDAC cancer cells.
We then expect the speed before the presence of cancer cells
to be
𝑓 (𝑡, 𝑥;) ≅ 𝜋0(1 − 𝛽 𝜌(𝐴1)).
11 
Since the cancer cells are seen around 35 days, the position of the
nitial distribution on the phenotype axis provides information on the
pproximate value of the parameters linked to cancer progression and
he following can be considered
𝜋0(1 − 𝛽 𝜌(𝐴1)) ≅

𝑥𝑖𝑛𝑖𝑡
35

.

But as 𝜌(𝐴1) < 1, we then have
𝜋0(1 − 𝛽) ≤ 𝜋0(1 − 𝛽 𝜌(𝐴1)) ≤ 𝜋0

which gives,

𝜋0 ∈
[

𝑥𝑖𝑛𝑖𝑡
35

,
𝑥𝑖𝑛𝑖𝑡

35(1 − 𝛽)
]

.

The parameter 𝑥1,𝜋 is closely related to the location on the phenotype
axis where the cancer progression starts. We note that based on Sec-
tion 2.3, we would like to secure that supp(𝑄0)

⋂ supp(𝜋) ≠ ∅ so that
umorigenesis takes place. Since 𝑄0 is constructed such that 𝑄0(𝑥) ≈ 0

for 𝑥 ≥ −20, we would then like to ensure that min{supp(𝜋)} ≤ −30.
Thus, we choose 𝐿 − 𝑥1,𝜋 ∈ [30, 49] so that 𝑥1,𝜋 ∈ [1, 20].
The parameter 𝜖1,𝜋 determines the rapidity of increase in the speed of
transport. No biological information has been provided on this value
but keeping in mind that it is essential for supp(𝑄0)

⋂ supp(𝜋) ≠ ∅, we
then take 𝜖1,𝜋 ∈ [10−4, 10].
The parameter 𝑥2,𝜋 is linked to the location on the phenotype axis
where the transport decreases and stops. The idea of introducing 𝑥2,𝜋
s to avoid losing mass at the boundary value 𝐿. Thus, we choose 𝑥2,𝜋
o that 𝐿 − 𝑥2,𝜋 < 50. Here, we fix this value to 𝑥2,𝜋 = 10.

The parameter 𝜖2,𝜋 determines the speed at which the transport speed
is reduced. Since we do not expect any transport to happen after all
susceptible cells have attained their cancerous state, we then choose
𝜖2,𝜋 = 10 so that 𝜋(𝑥) vanishes fast after 𝐿 − 𝑥2,𝜋 .

The parameters 𝛽 and 𝛿 represent the maximum rate of the regulation
f the progression by the sympathetic and sensory axons respectively.
ince no biological information is provided about their value and since
hey represent a modulation, we choose (𝛽 , 𝛿) ∈ [10−4, 1] × [10−4, 1].

The function 𝜌 is a function that removes the effect of regulation for
small values of 𝐴1 and that is linear for larger values of 𝐴1. This
regulation through the function 𝜌 is motivated by the fact that the
utonomous axons are non-negligibly present in healthy pancreas. We
enote 𝐴𝑒𝑞1 the renormalized value of 𝐴1 at the healthy state. To ensure
hat the quantity 𝐴1 does not artificially affect the cancer progression
hen 𝐴1 < 𝐴𝑒𝑞1 , we construct 𝜌 as the following :

Cancer growth. The proliferation is generated by a logistic growth.
More precisely,

𝑔(𝑡, 𝑥;) ∶= 𝑟(𝑥)𝑄(𝑡, 𝑥)
(

1 − 𝑁(𝑡)
𝜏𝐶

− 𝜇1𝐴1(𝑡) + 𝜇2𝐴2(𝑡)
)

.
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Fig. 7. Illustration of the behavior of the basal growth rate of the pre-tumor and tumor
ells.

• The function 𝑟 represents the basal growth rate of the pre-tumor
and tumor cells (see Fig. 7). We expect for proliferation to start
taking place in the presence of pre-cancerous cells, i.e. in a
neighborhood of 0−. Hence, we consider that

𝑟(𝑥) = 1
2
𝛾𝑟(1 + t anh(𝑠𝑟𝑥)).

– The maximum proliferation rate that the cells can exhibit is
𝛾𝑟. Here, we take 𝛾𝑟 ∈ [10−2, 10].

– The parameter 𝑠𝑟 determines the rate at which proliferation
takes place. For small values of 𝑠𝑟, then the proliferation
increases in rate in precancerous lesions, whereas for big
values of 𝑠𝑟, the tumor growth increases in rate only in late
stages of precancerous lesions. We choose 𝑠𝑟 ∈ [0.2, 10].

he growth rate of the pre-tumor and tumor cells can be regulated by
he presence of axons through the term

−𝜇1𝐴1(𝑡) + 𝜇2𝐴2(𝑡).

In that, we consider that the sympathetic axons either slow down or
ccelerate tumor growth whereas the sensory axons only accelerate
umor growth. The parameters 𝜇1 and 𝜇2 modulate the impact that
he axons have on the proliferation. We consider that 𝜇1 ∈ [−1, 1] and
2 ∈ [10−4, 1].
t is important to point out that even if cells proliferate, the total

quantity of cells is limited and there is no explosion in finite time. In
other words, we require 1 − 𝑁(𝑡)

𝜏𝐶
− 𝜇1𝐴1(𝑡) + 𝜇2𝐴2(𝑡) < ∞ with 𝜏𝐶 being

the carrying capacity of the amount of cells in the absence of axons.
Thus, using the fact that 𝐴𝑖 ≤ 1 for 𝑖 = 1, 2 we have,
𝑁(𝑡) ≤ 𝜏𝐶 (1 − 𝜇1𝐴1(𝑡) + 𝜇2𝐴2(𝑡)) ≤ 𝜏𝐶 (1 + 𝜇2 + 𝜇−1 ),

≤ 𝐶(𝜏𝐶 ),

with 𝐶(𝜏𝐶 ) = 𝜏𝐶 (1 + 𝜇2 + 𝜇−1 ) where 𝑥− = 1
2 (|𝑥| − 𝑥). Since 𝑁(0) = 100,

e then require 𝑁(0) ≤ 𝜏𝐶 . We choose 𝜏𝐶 ∈ [120, 300].

Sympathetic axons growth. We introduced an Allee effect in the growth
erm of the sympathetic axons (similar to what is seen in Lolas et al.,

2016). We recall that the dynamics of 𝐴1 is given by the following

𝑟𝐴1
𝐴1(𝑡)

⎛

⎜

⎜

⎜

⎝

𝐴1(𝑡)

𝜃
(

𝑁(𝑡)
𝑁(0)

) − 1
⎞

⎟

⎟

⎟

⎠

(1 − 𝐴1(𝑡)).

• The parameter 𝑟𝐴1
is the growth rate of the autonomic axons. The

bigger the value of 𝑟𝐴1
is, the steeper the increase or decrease of

𝐴1 is. We consider 𝑟𝐴1
∈ [10−4, 5].

• In the light of what is done in Lolas et al. (2016), we also propose
to modulate the threshold 𝜃 with the total amount of cells:

𝜃
(

𝑁(𝑡)
𝑁(0)

)

=
𝐴𝑒𝑞1
2

+ 1
2
t anh

(

𝑠𝜃

(

𝑁(𝑡)
𝑁(0)

− 1 − 0.1
))

+ 1
2

(18)

where 𝐴𝑒𝑞1 is the density of the sympathetic axons at the healthy state
and 𝑠𝜃 is the steepness of the decrease speed of 𝐴1. The value of 𝐴𝑒𝑞1
is estimated from the data (cf. Table 1). In order to ensure a biological

eaning, the following has to hold: for small time 𝑡, 𝜃
(

𝑁(𝑡)
)

≈ 𝜃(1),
𝑁(0)

12 
and we want 𝜃(1) < 𝐴1(0) with 𝐴1(0) ≈ 𝐴𝑒𝑞1 to observe initially an
increase in the autonomic axon density. Thus, we want

𝑠𝜃 ≥
t anh−1(1 − 𝐴𝑒𝑞1 )

10−1
.

It leads us to consider 𝑠𝜃 ∈ [13, 20]. For large values of the ratio 𝑁(𝑡)
𝑁(0) ,

we have 𝜃
(

𝑁(𝑡)
𝑁(0)

)

≈ 1 + 𝐴𝑒𝑞1
2 > 1 leading to a decrease in the autonomic

axon density.

Sensory axons growth. The sensory axons follow a logistic growth reg-
ulated by the presence of PDAC

𝑟𝐴2

(

𝑁𝑐 (𝑡)
𝑁(𝑡)

)

𝐴2(1 − 𝐴2)

with 𝑟𝐴2
(𝑠) = 𝑟̄𝐴2

t anh(𝑠𝐴2
𝑠). The parameter 𝑟̄𝐴2

is the maximum growth
rate of the sensory axons. We consider 𝑟̄𝐴2

∈ [10−4, 5]. The parameter
𝑠𝐴2

modulates the steepness of the increase of the growth of 𝐴2. Here,
we consider 𝑠𝐴2

∈ [10−4, 10].

3.2. Modeling denervation treatment

Testing the effects of denervation in preclinical models often re-
quires the use of numerous animals, raising ethical concerns. Therefore,
the use of a mathematical model to predict the effects of denervation
becomes highly valuable, allowing for the replacement and reduction
of the number of animals used. In the literature, the role of axons
in cancer progression has been studied through chemical or surgical
denervation. In our mathematical model, denervation is implemented
by setting parameters related to the targeted axon to 0 after the time
of the intervention.

Specifically, denervating sympathetic axons is equivalent to sup-
pressing the influence of 𝐴1 on cell transport and proliferation. This
is achieved by setting the parameters as follows after the denervation
time:

𝛽 = 0, 𝜇1 = 0.
Conversely, denervating sensory axons is equivalent to suppressing the
nfluence of 𝐴2 on cell transport and proliferation, after the denervation
ime, the parameters are set as:

𝛿 = 0, 𝜇2 = 0.
For denervating both axons, the parameters are set as follows after the
enervation time:

𝛽 = 0, 𝜇1 = 0, 𝛿 = 0, 𝜇2 = 0.
We have to adapt the notations given above to take into account the

bove mathematical denervation when useful. The dynamical system
efined in Section 2, in particular in Eq. (3) is parameterized by 𝜗 as
xplained in Section 3.1 and models the control treatment (AA). The

total amount of cells and the total amount of cancer cells arising from
this dynamical system is denoted by 𝑁(𝑡|𝜗,AA) and 𝑁𝑐 (𝑡|𝜗,AA), respec-
tively. The dynamical system that models the denervation treatment is
obtained from the same dynamical system, yet the value of 𝜗 is changed
after time of the intervention, where some components are set to 0 as
explained above. The total amount of cells and the total amount of
cancer cells arising from this second dynamical system is denoted by
𝑁(𝑡|𝜗,OHDA) and 𝑁𝑐 (𝑡|𝜗,OHDA), respectively.

4. Calibration

In this section, we focus on the calibration of the model to the
iological data at our disposal. It is rather complex in our case since

• a small number of biological data is provided, with variability in
samples as described in Section 4.1,
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• the model is far from being linear in the parameters and the pre-
dictions returned by the mathematical model cannot be written
explicitly as a function of the parameters,

• we do not have at our disposal a likelihood function to explain
the difference between the predictions of model and the data.

Moreover, the set of parameters is of rather high dimension (𝑑 = 14)
and we need to avoid selecting the best set of parameters that would
overfit the few observed data and would not reflect the biological
phenomenon we are trying to capture.

To this aim, we propose in Section 4.2 a 2-dimension criterion to
measure the quality of the calibration of the model to the data and to
our biological knowledge explained in Section 4.1: (1) a mean squared
error criterion based on the cell distribution and axon evolution, that

easures the difference between model outcomes and data, and (2) a
riterion based on the biological knowledge we have on the chronology
f cell evolution. As described in Section 4.3, we managed to extract

biologically relevant sets of parameters that are consistent with the
cell data and the chronological knowledge by exploring the parameter
pace with a multi-stage quasi-Monte Carlo algorithm that starts from
 flat, uniform prior over the parameter space which is the hypercube
iven by the range column of Table 1, and ends with the 0.4% best
ets of parameters according to the criterion, that are presented in
ection 4.4 and in Appendix B.2.

4.1. Biological data

The selection of experimental data for calibrating the mathematical
odel is crucial and should align with the characteristics of the rel-

vant preclinical model. The calibration process encompasses various
spects of the animal model, incorporating chronological insights into
ancer progression derived from the literature. Additionally, data on
ympathetic nerve axons density, sensory nerve axons density, and cell

density at different stages of cancer progression are considered during
the calibration process.

Mice model and data acquisition methods. In this study, we use the
𝐾 𝑟𝑎𝑠𝐿𝑆 𝐿−𝐺12𝐷∕+; 𝐶 𝑑 𝑘𝑛2𝑎(𝐼 𝑛𝑘4𝑎∕𝐴𝑟𝑓 )𝑙 𝑜𝑥∕𝑙 𝑜𝑥; 𝑃 𝑑 𝑥1-𝐶 𝑟𝑒 (KIC) mouse
model of pancreatic cancer. The overexpression of a mutated form of
the oncogene 𝐾 𝑅𝐴𝑆 in pancreatic cells induces transdifferentiation,
where healthy acinar cells (the functional unit of the exocrine pan-
creas) transform into ductal cell-like cells, leading to the formation of
acinar to ductal metaplasia (ADM). Subsequently, ADM can progress
to form premalignant pancreatic intraepithelial neoplasia (PanIN). The
deletion of tumor-suppressor genes Ink4 A and Arf further accelerates
tumor development, resulting in PDAC itself. The KIC mice model
successfully replicates the stepwise progression observed in human
pancreatic cancer (cf. Aguirre et al., 2003, and Fig. 8). Several mouse
pancreases at the time points of 6.5 weeks and 8 weeks are utilized in
the experiments to accommodate biological heterogeneity. The tech-
nique used to quantify nerve axons density and cell density within
lobules of the pancreatic tissue is detailed in the source data file
f Guillot et al. (2022). In short, data comes from the quantification

of 3D cleared tissue images obtained by Light Sheet Fluorescence
Microscopy. Tissue staining was achieved through immunostaining
and tissue clearing using the iDISCO+ protocol. Tyrosine hydroxylase
antibody staining (TH), an enzyme involved in the biosynthesis of
norepinephrine (one of the main neurotransmitters of the sympathetic
nervous system), and Calcitonin gene-related peptide (CGRP) antibody
were used to visualize sympathetic and sensory innervation respec-
tively. Regions of Interest (ROI), namely asymptomatic (ASYM), ADM,
PanIN, and PDAC, were segmented based on the autofluorescence
signal of the tissue, and their volumes were measured. Axonal net-
works were manually reconstructed to measure the total axon length
in each ROI. The unitless axon density was calculated as follows:
(

(axons length sum × 1000)(μm)∕(volume of each Regions of Interest
13 
(ROI))
1
3 (μm)

)

. Densities obtained through experimentation were nor-
alized by first dividing by the cubic root of the volume in which the
ensity was measured and then by an affine transformation to obtain

proportions. This normalization facilitates the comparison of quantities
both within the experimental data and with the outputs provided by the

athematical model (cf. Figs. 9 and 10).
The method used to describe the proportion of tissue categorized

y their phenotypes in histological sections through the pancreas of a
.5-week-old mouse can be found in the source data file of Guillot et al.

(2022) (cf. Fig. 11).

Knowledge on the chronological process. Based on the previous charac-
terization of the KIC model (seen in Aguirre et al., 2003 and in our
personal observation), the time of observation of ADM lobules denoted
𝑡adm is around 17 days, the first appearance of relatively advanced-
staged PanIN lobules denoted 𝑡panin is observed around 24.5 days, and
the first appearance of PDAC lobules denoted 𝑡𝑒𝑎𝑟𝑙 𝑦pdac is observed around
5 days. The median survival of a KIC mouse model is 9 weeks and
o, at 6.5 weeks (= 𝑡pdac) the mice has already developed a tumor,
ut at 8 weeks (= 𝑡𝑎𝑑 𝑣𝑎𝑛𝑐 𝑒𝑑pdac ), the cancer is really aggressive. All these

chronological assumptions are summarized in Fig. 8. Additionally, we
include a time interval of plus or minus three days around the above
emporal values to account for variability in observations.

Sympathetic and sensory nerve axons quantification. The normalized den-
sities of sympathetic and sensory nerve axons are shown in Fig. 9 and
Fig. 10, respectively, quantified at 6.5 weeks of the KIC age. For sensory
xons, density measurements were also performed at 8 weeks for the
DAC lesions. Also, each sample of density measurements from the data
oes not only characterize the axon densities but also the tissue stages

from where it was observed (ROI). This additional information may not
e fully exploited by the model because information about space is not
aken into account in the construction of the model. One way to use all
nformation of the data is to extrapolate a dynamic based on the ROI
ype of the data origin. Since we know that 𝑡asym, 𝑡adm, 𝑡panin, and 𝑡pdac are
he times of observation of each ROI type during cancer progression, we
hen consider that the quantification of the normalized densities of the
xons in each ROI type corresponds to those times respectively. Those
imings are stated on the 𝑥-axis of Figs. 9 and 10. Hence, the dynamics

of the axons are illustrated by the green curves in Figs. 9 and 10. It
allows to combine qualitative information (chronological knowledge)
to quantitative information and ensures a more precise calibration of
the mathematical model.

PDAC cell concentration. Fig. 11 illustrates the data extracted for the
ormalized cancer cell concentration at 6.5 weeks. We set the time
f observation for the data and aim to identify model dynamics that
losely match these data points at 6.5 weeks. Through observation, we
ote that the proportion of PDAC cells is higher in OHDA samples than
n AA samples.

4.2. A 2-dimensional criterion

The first dimension of our criterion is a mean squared error criterion
that measures the difference between model outcomes and data. We
consider the following data:

• 𝑛 biological samples of cell distributions 𝑝𝑖 ∈ (0; 1) under treat-
ment 𝑢𝑖 ∈ {AA,OHDA} (𝑖 = 1,… , 𝑛) that should be compared to
the proportion of proliferating cells 𝑝(𝑡|𝜗, 𝑢) given by the model,
on average over time 𝑡 ∈ (0, 𝑇 )

• 𝑚 biological samples of axon density 𝑎𝑖 ∈ (0; 1) in AA (𝑖 =
𝑛 + 1,… , 𝑛 + 𝑚) that should be compared to the axon density
evolution 𝐴(𝑡|𝜗) given by the model, on average over the time
range 𝑡 ∈ 𝐼𝑖 corresponding to the kind of tissues of 𝑖th biological
sample (ADM, PanIN, PDAC or mature PDAC). Moreover, 𝑧𝑖 ∈
{𝐴1, 𝐴2} indicates whether the observed density 𝑎𝑖 is a density of
sympathetic (𝐴 ) or sensory (𝐴 ) axons.
1 2
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Fig. 8. Diagram outlining the chronological assumptions regarding cancer progression in pancreas of KIC mice, drawing from Aguirre et al. (2003) and our firsthand observations.
The indicated times represent the estimated average time at which each new stage is expected to be observed for the first time. The bold red segments indicate a time interval
of plus or minus three days around the mentioned temporal values, encompassing variations in chronological estimates.

Fig. 9. Whisker Plot of Normalized Sympathetic Nerve Axon Density: Data from different KIC mice depict the sympathetic axonal density within various ROI in the pancreas at
6.5 weeks of age, categorized as ASYMP, ADM, PanIN, or PDAC. The quantification involved 4 ASYMP, 5 ADM, 6 PanIN, and 7 PDAC ROIs (Guillot et al., 2022). The dotted blue
points correspond to the data. The green curve represents the mean density in each ROI, with identified stages on the 𝑥-axis extrapolated from the chronological knowledge of
each ROI type.

Fig. 10. Whisker Plot of Normalized Sensory Nerve Axon Density: Data from different KIC mice depict the sympathetic axonal density within various ROI in the pancreas at 6.5
weeks and 8 weeks of age, categorized as ASYMP, ADM, PanIN, or PDAC. The quantification involved 6 ASYMP, 6 ADM, 6 PanIN, and 5 PDAC ROIs (Guillot et al., 2022). The
dotted blue points correspond to the data. The green curve represents the mean density in each ROI, with identified stages on the 𝑥-axis extrapolated from the chronological
knowledge of each ROI type.
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Fig. 11. Whisker Plot of Normalized Cancer Cell Concentration: Sympathectomy was conducted through the injection of neurotoxin 6-hydroxydopamine (6-OHDA) vehicle solution
between 3.5 and 4 weeks of the KIC age. We utilized data published in Guillot et al. (2022), where the concentration of cancer cells in 6 KIC mice was quantified at 6.5 weeks.
The mice were distributed as follows: 3 mice injected with ascorbic acid (AA) and 3 mice injected with the neurotoxin 6-hydroxydopamine (OHDA). For each mouse, we obtained
4 biopsies, and for each biopsy, we collected the proportion of PDAC. Therefore, we consider a total of 6 × 4 = 24 quantifications of the proportion of PDAC, with 3 × 4 = 12
quantifications from mice injected with AA and 12 quantifications from mice injected with OHDA. The dotted blue and red points correspond to the data for control mice and
denervated mice respectively.
The first coordinate of our criterion is defined as the mean squared
error (MSE) given by

𝐺1(𝜗) = 2
𝑛

𝑛
∑

𝑖=1

1
|𝐼𝑡pdac | ∫𝐼𝑡pdac

(

𝑝𝑖 − 𝑝
(

𝑡||
|

𝜗, 𝑥𝑖
)

)2

𝑑 𝑡

+ 1
𝑚

𝑛+𝑚
∑

𝑗=𝑛+1

1
|𝐼𝑗 | ∫𝐼𝑗

(

𝑎𝑗 − 𝐴
(

𝑡||
|

𝜗, 𝑧𝑗
)

)2

𝑑 𝑡. (19)

In the first part of the MSE defined in (19), we have integrated the
square difference over a time interval of size 6 because the exact time
(on our time axis) at which the cell distributions were observed is not
known

• 𝑝(𝑡|𝜗, 𝑢𝑖) ∶= 𝑁𝑐 (𝑡|𝜗, 𝑢𝑖)
/

𝑁(𝑡|𝜗, 𝑢𝑖) is the proportion of proliferative
cells given by the model at time 𝑡, 𝑁𝑐 (𝑡|𝜗, 𝑢𝑖) being the amount of
proliferative cells and 𝑁(𝑡|𝜗, 𝑢𝑖) being the total amount of cells at
time 𝑡 given by the model of Section 3.2.

• 𝐼𝑡pdac = [𝑡pdac − 3; 𝑡pdac + 3] is the time range at which the cell
distributions were observed.

In the second part of the MSE defined in (19), we have integrated
the square difference over a time interval of size 6 because the exact
time (on our time axis) at which the axon densities were observed is not
known, but we know the kind of tissues we sampled. More precisely,

• 𝐼𝑗 ∈
{

[𝑡𝐴𝐷 𝑀 − 3; 𝑡𝐴𝐷 𝑀 + 3], [𝑡𝑃 𝐴𝑁 𝐼 𝑁 − 3; 𝑡𝑃 𝐴𝑁 𝐼 𝑁 + 3], [𝑡pdac− 3; 𝑡pdac+
3], [𝑡𝑎𝑑 𝑣𝑎𝑛𝑐 𝑒𝑑pdac − 3; 𝑡𝑎𝑑 𝑣𝑎𝑛𝑐 𝑒𝑑pdac + 3]

}

is the time range corresponding
to the observation of the 𝑗th biological sample, i.e the sample
coming from either the ADM, PanIN, PDAC or mature PDAC
lobules.

• 𝐴(𝑡|𝜗, 𝑧) ∶= 𝐴1(𝑡|𝜗) or 𝐴2(𝑡|𝜗) is the axon density given by the
model at time 𝑡 of type 𝑧 and parameter set 𝜗.

The second component of our criterion is a penalization term to
capture the correct behavior of the model according to the biologi-
cal knowledge we have on the chronology of appearances of PDAC
cells(see Aguirre et al., 2003) in the control group (AA). We do not
expect many PDAC cells at time 𝑡 < 𝑡𝑒𝑎𝑟𝑙 𝑦 where 𝑡𝑒𝑎𝑟𝑙 𝑦 is the first time
pdac pdac
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of appearance of PDAC lobules. Thus, the second component of our
criterion is defined as

𝐺2(𝜗) = 1
𝑡𝑒𝑎𝑟𝑙 𝑦pdac

∫

𝑡𝑒𝑎𝑟𝑙 𝑦pdac

0
𝑝(𝑡|𝜗,AA)𝑑 𝑡, (20)

where 𝑝(𝑡|𝜗) is the proportion of proliferative cells at time 𝑡 given by the
model. The quantity 𝐺2(𝜗) is the mean proportion of proliferative cells
in the control group (AA) over the time range

[

0, 𝑡𝑒𝑎𝑟𝑙 𝑦pdac

]

and it should
be low to respect the biological knowledge we want to introduce in the
calibration process.

4.3. Seeking for parameter sets with low criterion values

The range of parameters that makes sense in the mathematical
model is the hypercube  given in Table 1. Without constraining
𝜗 ∈  with the above criterion 𝐺(𝜗), the dynamics of the model can
change strongly based on the value of 𝜗. Many roads are available to
restrain this range and obtain relevant parameter sets based on the
2-dimensional criterion 𝐺(𝜗) = (𝐺1(𝜗), 𝐺2(𝜗)). We could have tried to
optimize a 1-dimensional criterion such as 𝐺̄𝜆(𝜗) = 𝐺1(𝜗) + 𝜆𝐺2(𝜗),
where 𝜆 is a tuning parameter that defines the trade off between
the data and the chronological information. Yet tuning 𝜆 is difficult.
Moreover, because of non-convexity, many local minima may exist,
exhibiting different dynamics of the model. Instead of minimizing a
𝐺̄𝜆(𝜗), we use a multi-stage algorithm that selects first the best sets 𝜗 of
parameters according to 𝐺1(𝜗) and then refines the selection according
to 𝐺2(𝜗).

The results given by the multi-stage algorithm given in Appendix B
is a (relative large) collection of parameter sets 𝜗 that are consistent
with the cell data and the chronological knowledge, i.e. that have low
values of both 𝐺1(𝜗) and 𝐺2(𝜗). We start with a massive quasi-Monte
Carlo sampling the hypercube  with a uniform distribution that acts
here as a non-informative prior. The massive collection is then filtered
according to both components of 𝐺(𝜗) and re-sample the hypercube
 with an instrumental Gaussian distribution fitted on the filtered
collection. The filtering step is then repeated to get the final collection
of parameter sets.
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Fig. 12. Schematic view of the step-wise algorithm used to select parameter sets.
The collection 0 of parameter sets is distributed uniformly over the hypercube 
of Table 1. The collection 1 is obtained by filtering 0 with 𝐺1(𝜗) ≤ 𝑔1 and then

2(𝜗) ≤ 𝑔2. The collection 2 is obtained by re-sampling  with an instrumental
aussian distribution fitted on 1. The collection 3 is obtained by filtering 2 with
1(𝜗) ≤ 𝑔′1 and then 𝐺2(𝜗) ≤ 𝑔′2. The thresholds 𝑔𝑖 and 𝑔′𝑖 are chosen as some quantiles of

mall order of the collection that is constrained. The final collection 3 is a collection of
parameter sets that are consistent with the cell data and the chronological knowledge,
i.e. that have low values of both 𝐺1(𝜗) and 𝐺2(𝜗) (see Appendix B.2 for more details).

4.4. Relevant sets of parameters

By taking some of the sets of parameters obtained in Section 4.3, as
een in Fig. 13, 𝐴1 and 𝐴2 have variability in their time of remodeling,
s well as there is a difference in the time of arrival of cancer cells.
e observe that despite the variability in dynamics, all parameter sets

btained fit the biological data. In the subsequent sections, we will
utilize some of these parameter sets to conduct a detailed investigation
of in silico denervation

5. Impact of the in silico denervation

The aim of this section is to investigate the effect of denerva-
tion on cancer progression using specific parameter sets selected from
Section 4.4, chosen for their cost-effectiveness and alignment with
biological data outlined in Table 2. Their values for the criteria of fitting
he data (19) are 0.264, 0.2461, and 0.246 respectively. Their values

for the criteria of fitting the chronological assumption (20) are 0.033,
0.002, and 0.014 respectively.

The parameter configurations 2 and 3 outlined in Table 2 are
selected so that sympathetic axons induce an inhibitory effect on tu-
mor growth (𝜇1 > 0). However, they are distinguished by varying
durations for axon remodeling, reflecting patterns observed in the liter-
ature (Guillot et al., 2022) and accommodating the variability inherent
in biological data. Furthermore, in light of findings from a literature
source (Renz et al., 2018a) suggesting a positive impact of 𝐴1 on tumor
growth, we also choose parameter set 1 with 𝜇1 < 0 to investigate this
case.

In what follows, we analyze the effects of varying denervation
timings on either sympathetic or sensory axons, or both, in order to
elucidate their impacts on tumorigenesis.

5.1. Indicator of the invasive potential

To study the effect of denervation and the role of axons in pan-
creatic cancer progression, we investigate the effect of three types of
denervation:
16 
• the denervation of sympathetic axons (𝐴1),
• the denervation of sensory axons (𝐴2),
• the denervation of both types of axons (𝐴1 and 𝐴2).

A quantitative measure of the effect of denervation for any of the
bove three types of denervation can be the difference at a given time
etween the amount of cancer cells in the control case (with both axons
egulating the dynamics) and in the denervated case. Although this
unction allows us to measure the effect of denervation, it does not
llow us to take into account all the specificities of temporal dynamics.
ndeed, the earlier a cancer cell appears, the higher the probability
f accumulating genetic alterations that enhance aggressiveness and
etastasis. So we construct the following function to measure the

mpact of denervation:

(𝑇 ) = 1
𝑇

(

∫

𝑇

0

𝑁𝑐 (𝑡|𝜗,OHDA)
𝑁(𝑡|𝜗,OHDA) 𝑑 𝑡 − ∫

𝑇

0

𝑁𝑐 (𝑡|𝜗,AA)
𝑁(𝑡|𝜗,AA) 𝑑 𝑡

)

(21)

with the notations of Section 3.2. This indicator gives information
about the invasive potential at time 𝑇 because it takes into account
the history of existence of cancer cells over time.

This indicator is positive for an overall pro-tumoral effect of den-
ervation ((𝑇 ) > 0), and conversely it is negative for an overall
nti-tumoral effect of denervation ((𝑇 ) < 0).

5.2. In silico denervation at defined time points

In this section, we apply the three types of denervations stated in
Section 5.1. These denervations are implemented at two specific times:

• at 28 days, which corresponds to the time between the obser-
vation of PanIN and the onset of PDAC for the KIC model (cf.
Section 4.1),

• at 50 days, which corresponds to the time between the onset of
PDAC and the observation of advanced PDAC (cf. Section 4.1).

The dynamics of the model subject to these denervations are illustrated
n Fig. 14.

We denote by 𝑇 the time of observation, then the effects of the
denervations are quantified by the indicator (𝑇 ) given by (21) and
the results are summarized in Table 3. The invasive potential can be
uantitatively compared with the various results in the literature on
he effect of axons on the initiation and progression of PDAC:

• in Saloman et al. (2016), the authors show that ablating sensory
axons prior to the onset of the pathology (referred to as early
denervation) inhibits tumorigenesis of the pancreatic cancer. This
result is translated by (𝑇 ) < 0.

• In Guillot et al. (2022), the authors show that ablating sympa-
thetic axons prior to the onset of the pathology (referred to as
early denervation) leads to an acceleration of tumor growth and
metastasis. This result is translated by (𝑇 ) > 0 in the case of an
early denervation of 𝐴1.

• Finally, in Renz et al. (2018a) and Guillot et al. (2022), the
authors conduct surgical denervation for both 𝐴1 and 𝐴2 after
and before invasive tumor formation, categorized as early and late
denervation, respectively. This procedure results in the ablation
of mixed sympathetic and sensory axons.

– In Renz et al. (2018a) they show that removing the axons
inhibits tumor growth. Hence, this result is that (𝑇 ) < 0 in
the case of late denervation of 𝐴1 and 𝐴2.

– However, in Guillot et al. (2022), early denervation of the
splanchnic nerve leads to a pro-tumoral effect with obser-
vations of metastasis and a smaller survival time of mice.
This result is translated by (𝑇 ) > 0 in the case of early
denervation of 𝐴1 and 𝐴2.
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Fig. 13. Dynamics of the model using different sets of parameters from the relevant sets of parameters obtained. (Top) Evolution of the sympathetic axons (𝐴1). (Middle) Evolution
of the sensory axons (𝐴2). (Bottom) Evolution of the proportion of cancer cells (𝑁𝑐∕𝑁). The blue dots in each sub-figure correspond to the biological data provided for the
sympathetic axons, sensory axons, and the frequency of cancer cells respectively. The red dots in the bottom frame correspond to the frequency of cancer cells observed at
6.5 weeks after an early denervation at 28 days with the use of OHDA, and the dashed red curves correspond to the evolution of the concentration of cancer cells after early
denervation.
Table 2
Different sets of parameters.

𝜋0 𝛽 𝛿 𝛾𝑟 𝑠𝑟 𝜏𝐶 𝜇1 𝜇2 𝑟𝐴1
𝑟̄𝐴2

𝑥1,𝜋 𝜖1,𝜋 𝑠𝜃 𝑠𝐴2

Set 1 2.005 0.73 0.398 1.50 2.68 172.295 −0.176 0.214 0.055 0.241 32.97 5.357 15.131 4.151
Set 2 4.589 0.504 0.829 1.160 2.775 177.807 0.609 0.139 0.077 0.928 34.56 6.555 14.733 1.105
Set 3 1.795 0.535 0.398 4.537 6.097 150.576 0.176 0.678 0.032 0.29 30 4.385 17.609 6.49
Table 3
Values in percentage of the invasive potential (70) (cf. (21)) for the sets of parameters of Table 2. The columns indicate the different denervations, sympathetic axons (𝐴1),
sensory axons (𝐴2) or both types of axons (𝐴1 and 𝐴2), at early stage (28 days) or late stage (50 days).

𝐴1 at 28𝑑 𝐴1 at 50𝑑 𝐴2 at 28𝑑 𝐴2 at 50𝑑 𝐴1 and 𝐴2 at 28𝑑 𝐴1 and 𝐴2 at 50𝑑

Set 1 −2.311 −0.56 −1.697 −1.58 −3.961 −2.249
Set 2 5.893 0.876 −2.163 −1.85 3.435 −0.788
Set 3 2.493 0.441 −6.94 −6.366 −4.482 −5.47
The only nuance to note is that the time at which the effect of den-
ervations is observed in the various articles is not so easily translated
into a quantifiable datum 𝑇 in days. For instance, the mice models used
may differ in terms of chronological progression of the disease and the
different experimental techniques used may also affect the temporal
component of the data in their own way. To make the most of this
variability, the final time of observation 𝑇 is set at 𝑇 = 70 days as the
rounded upper bound of the median survival of mice (63 days in Guillot
et al., 2022) which allows us to observe the effect of the denervation
over the entire time range.

5.2.1. Case when 𝜇1 < 0
Based on Table 3, the invasive potential of parameters set 1 is always

negative for the three types of denervations. Indeed, only an anti-
tumoral result is observed for the early and late denervation as seen
in Fig. 14(b), which do not recapitulate the results shown in Guillot
et al. (2022). Therefore, this set can be considered as a false positive
estimation due to the high variability of the data and the ill-posedeness
of the calibration problem. Thus, in what follows, we focus our study
on the parameters sets 2 and 3 of Table 2 when 𝜇 > 0.
1
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5.2.2. Case when 𝜇1 > 0
In this section, we analyze the impact of axons on tumorigenesis

using parameters sets 2 and 3 from Table 2. Our model posits that
sympathetic axons exert an anti-tumoral effect. Therefore, denervation
of 𝐴1 leads to an increased proportion of cancerous cells revealed by
a positive value for invasive potential, whether denervation occurs
early or late (see Fig. 14 and Table 3). Conversely, sensory axons are
implicated in promoting tumorigenesis. Thus, denervation of 𝐴2 leads
to a decrease in proportion of cancerous cells and a negative value for
invasive potential (see Fig. 14 and Table 3).

Effect of the double denervation of sympathetic and sensory axons. The
impact of denervating sympathetic and sensory axons proves to be com-
plex and subject to diverse outcomes across the two distinct parameter
sets, reflecting biological variability.

Outcome 1. For both set of parameters, early denervation of sympa-
thetic and sensory axons result in a shift from an initial pro-tumoral
effect of denervation (increase proportion of cancer cell compare to
control condition) to a late anti-tumoral effect of denervation (decrease
proportion of cancer cell compare to control condition). This ‘‘shift
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Fig. 14. Model dynamics subject to denervation. (Left) Evolution of the axons. (Right) Evolution of the proportion of cancerous cells 𝑁𝐶 (𝑡)
𝑁(𝑡)

. The different colors show the effect of
different denervations. The first row (resp. second row and third row) corresponds to the dynamics for the parameters set 1 (resp. 2 and 3) in Table 2.
effect’’ is highlighted by the crossing of the green denervated and the
black control curves in Fig. 14.

Outcome 2. For both set of parameters, late denervation of both axons
types inhibits tumorigenesis. In Fig. 14, the green denervated curves
are below the control ones meaning that pathological cancerous cells
are present at a lower level compared to the control scenario.

Outcome 3. However significant difference emerges between the two
sets. For early denervation, invasive potential is positive for parameter
set 2 and negative for parameter set 3. This suggests a higher net
18 
production of cancerous cells over the entire time span for set 2
compared to set 3 (higher area between the green and black curves
before the ‘‘shift effect’’ and a lower area after the curves crossing, see
Fig. 14). This difference between the two sets reflects the dominance
of a specific axon type (sympathetic for set 2 and sensory for set 3) in
pancreatic cancer regulation.

The role of axons in cancer progression can be effectively estab-
lished using the mathematical model and in silico denervation experi-
ments. However, the relevance of in silico results is partly correlated
with the calibration of the model. This calibration becomes more
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Fig. 15. Evolution of the invasive potential with respect to varying denervation times for the parameters set 2 from Table 2. The times of denervations of 𝐴1 (resp. 𝐴2) are
indicated on the 𝑦-axis (resp. the x-axis). The observation time 𝑠𝑖 of the invasive potential is indicated in days above each heatmaps.
complex when the data is scarce and highly variable. Consequently, the
parameter sets obtained during calibration exhibit different dynamics
and denervation effects. Moreover, it is important to note that both the
timing of denervation and the duration of observation post-denervation
are critical factors in understanding the denervation’s effects.

5.3. In silico denervation for varying times

Using the mathematical model, we investigate the temporal dynam-
ics by denervating both sympathetic and sensory axons at various time
points. Subsequently, we construct heatmaps at different observation
times to have an evolving illustration of the invasive potential.

5.3.1. Heatmap construction and interpretation
Studying experimentally the effect of different types of denervation

can be time consuming and expensive. However, the mathematical
model allows to perform a large number of in silico denervations
and hence gives insights on the role of the axons in tumorigenesis.
In this Section, using the parameters sets 2 and 3 of Table 2, we
perform denervations varying the time of denervation of both axons
independently and we quantify their pro- or anti-tumoral effect at
different times during the tumorigenesis process. The results of the in
silico denervations are illustrated by the two sequences of heatmaps of
Figs. 15 and 16.

First, we introduce the finite sequence (𝑠𝑖) ∈ {5, 10,… , 70} which
corresponds to the observation times for the effect of denervations.
Then, we denote by 𝑡𝐴1

(resp. 𝑡𝐴2
) the time of denervation of the

sympathetic axons 𝐴1 (resp. the sensory axons 𝐴2). Each heatmap of
Fig. 15 or 16 corresponds to a grid where the 𝑦-axis corresponds to the
different values taken by 𝑡𝐴1

and the 𝑥-axis to those taken by 𝑡𝐴2
. The

following holds

𝑡𝐴𝑗 ∈ [0, 𝑠𝑖], 𝑗 = 1, 2,
since it makes no sense to look at the effect of denervation before
denervation has taken place.

The cell from the heatmap 𝑠𝑖 located at (𝑡𝐴1
, 𝑡𝐴2

) corresponds to the
invasive potential at time 𝑠𝑖 subject to the denervation of sympathetic
axons at time 𝑡𝐴1

and subject to the denervation of sensory axons at
time 𝑡 (cf. (21) and Section 5.1). We keep track of the denervation
𝐴2
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time in the notation of the index evaluated at time 𝑠𝑖 as follows:

(

𝑠𝑖; 𝑡𝐴1
, 𝑡𝐴2

)

. Hence, two kind of results are observed:

• if (𝑠𝑖; 𝑡𝐴1
, 𝑡𝐴2

) > 0, then the cell is colored in blue. Hence, the
aggressiveness of the tumor is encoded by this color. The darker
the blue, the stronger the pro-tumoral effect of the denervation.

• If (𝑠𝑖; 𝑡𝐴1
, 𝑡𝐴2

) < 0, then the cell is colored in brown. Hence, the
possibility of tumor remission through denervation is encoded by
this color. The darker the brown, the stronger the anti-tumoral
effect of the denervation.

Moreover, the sequence of heatmaps illustrates the dynamical evo-
lution of the invasive potential. For instance, the red, blue, green, and
black stars on the heatmaps of Fig. 15 (resp. Fig. 16) correspond to
the invasive potential of the early denervated and control curves of the
parameters set 2 (resp. set 3) of Table 2 illustrated by the red, blue,
green and black curves of Fig. 14(d) (resp. Fig. 14(f)).

5.3.2. Impact of the time-varying denervations on the evolution of the
tumorigenesis

In the following, a more qualitative approach of model validation
is proposed. A detailed description of the interesting elements of the
model dynamics subject to time-varying denervations is given. We
discuss the possibility of establishing the best time and strategy of
denervation.

Different times of remodeling of sympathetic axons explain the
different apparition times of the pro-tumoral effect of denerva-
tions. The pro-tumoral effect of denervation starts to be observed at
𝑠𝑖 = 25 days for parameters set 2 (cf. Fig. 15) and at 𝑠𝑖 = 40 days
for parameters set 3 (cf. Fig. 16) due to the darkening of the blue
color in the lower halves of the heatmaps. The difference in the time
of observation 𝑠𝑖 can be explained due to the difference in the time of
arrival of sympathetic axons and the difference in the impact they have
on cancer growth. By referring to Table 2, the parameters 𝑟𝐴1 and 𝜇1
are larger for set 2 than set 3, explaining the larger and earlier effect
that sympathetic axons denervation exhibits on tumor growth as seen
in Fig. 15 compared to Fig. 16.

In the early stages of the tumorigenesis, the strong pro-tumoral
effect of denervation is associated to the early denervation of
sympathetic axons. For 𝑠 ≤ 50, the denervations associated with
𝑖
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Fig. 16. Evolution of the invasive potential with respect to varying denervation times for the parameters set 3 from Table 2. The times of denervations of 𝐴1 (resp. 𝐴2) are
indicated on the 𝑦-axis (resp. the x-axis). The observation time 𝑠𝑖 of the invasive potential is indicated in days above each heatmaps.
a strong pro-tumoral effect are localized in the lower halves of the
heatmaps for both sets of parameters, corresponding to early denerva-
tion of sympathetic axons. The time of denervation of sensory axons has
almost no effect in the lower halves of the heatmaps, as the blue region
extends homogeneously along the 𝑥-axis. The fact that the denervations
of sensory axons do not play a significant role in this time range
can be explained due to the late remodeling of sensory axons and
the delay between the denervation time of this type of axons and its
impact on the dynamics of the model. Thus, in that time range, all
types of denervations are mainly impacted by the denervation of the
sympathetic axons.

In the late stages of the tumorigenesis, the impact of sensory
axons’ denervation becomes significant as the dynamics for both
parameters sets undergo the shift effect described in the previous
section. For 𝑠𝑖 ≥ 55, the sensory axons starts to display its inhibiting
effect on cancer cells which can be seen through expanding brown
areas or lightening blue areas on the upper halves of the heatmaps. It
illustrates the antagonistic role of both types of axons: the sympathetic
axons playing an anti-tumoral role on the early stages of tumorigenesis
and the sensory axons playing a pro-tumoral role on the late stages of
the tumorigenesis.

The sympathetic axons’ (resp. sensory axons’) impact on cancer
growth dominates in Fig. 15 (resp. Fig. 16). On the one hand, the
regulation of the sympathetic axons plays the most significant role on
tumorigenesis for parameters set 2 since the denervation of this type
of axons highlights a strong deviation of its dynamic from the control
one (illustrated by the opacity level of the blue region in Fig. 15). On
the other hand, the regulation of the sensory axons dominates for the
parameters set 3 since the anti-tumoral effect of denervation becomes
more and more significant as time passes. The brown area in Fig. 16
expands from the upper region at 𝑠𝑖 = 55 days to three-quarter of
the heatmap’s area at 𝑠𝑖 = 70 days (everywhere but the south-east
corner corresponding to the latest denervation of sensory axons and
the earliest denervation of sympathetic axons).

The effect of denervation takes time to be seen. Although an
initial pro-tumoral effect of the denervation of both types of axons
is always seen due to the dominant blue areas in the heatmaps for
small/intermediate values of 𝑠𝑖, a later anti-tumoral effect of denerva-
tion is also observed when compared to the control curve after the first
20 
remodeling of sensory axons. If the effect of sensory axons on cancer
growth is strong enough, then the arrival of sensory axons may be
sufficient for the overall anti-tumoral effect caused by it is denervation
to compensate the previous pro-tumoral effect that has taken place. In
Fig. 16, if we compare the heatmaps at 𝑠𝑖 = 50 and 𝑠𝑖 = 60 days, we
see areas going from blue to brown. In that case, the final state of the
disease (for large 𝑠𝑖) is a reduction of tumor, contrary to what can be
observed initially for small 𝑠𝑖. In Fig. 15, the stronger pro-tumoral effect
resulting from the denervation of 𝐴1 takes longer to be compensated by
the anti-tumoral effect of the denervation of 𝐴2. However, it is possible
to conjecture that the dynamics obtained of parameters set 2 at a later
observation time (𝑠𝑖 ≫ 70 days) will be similar to the ones displayed in
the last frame Fig. 16 (parameters set 3 at observation time 70 days).

6. Conclusion

This study presents mathematical tools to model and simulate the
joint effect of PNS axons (promoting and/or inhibiting cancer progres-
sion and proliferation) in pancreatic cancer tumorigenesis. It extends
the previous model presented in Chauvet et al. (2023) by considering
the cell phenotype as a continuous variable. This new mathematical
formalism provides a more accurate description of tumor progression
and associated neuroplastic changes. The mathematical model is then
finely calibrated to the available data by measuring the goodness
of fit between the model output and the biological knowledge with
a two-dimensional criterion and by selecting the relevant calibrated
parameter sets with a multi-stage quasi-Monte Carlo algorithm. In addi-
tion, a quantitative indicator of the balance between the two opposing
pro- and anti-tumor effects of denervation is calculated numerically.
This balance can be visualized over time for several parameter sets
reflecting biological variability.

From a biological point of view, the mathematical model reconciles
all the biological data found in the literature and provides an explana-
tion for the opposite effects of surgical denervation performed at early
and late stages of PDAC. Specifically, the mathematical model shows
that when sympathetic axons increase tumor growth, the model does
not replicate the biological data from the literature. This rules out the
hypothesis of a functional switch of the sympathetic nervous system
during tumorigenesis. However, when sympathetic axons have a consis-
tently inhibitory effect on tumor growth, the model recapitulates all the
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data. This can be explained by the ‘‘shift effect’’ from a global harmful
o a protective role of the PNS, resulting from the compensation of the

pro-tumor effect of denervating sympathetic axons by the anti-tumor
effect of denervating sensory axons.

In addition, the model identifies different sets of parameters that
ay reflect biological variability of tumor innervation. These different

ets highlight the importance of the level of sympathetic inhibition on
umor growth. For example, strong sympathetic inhibition on tumor
rowth masks the anti-tumor effect of sensory axon denervation. In this

case, targetting the PNS may have little or no benefit for PDAC treat-
ment. However, if the sympathetic inhibition of tumor growth is weak,
the anti-tumor effect of the sensory denervation becomes significant. In
his scenario, targetting sensory axons would be beneficial. However,
t is important to note that the beneficial effects are observed with a
elay. Indeed, the model highlights a latency period between denerva-
ion and observable benefits. Therefore, in terms of clinical applications
or the treatment of pancreatic cancer, future knowledge of both the
ensity of tumor innervation and the activity of sympathetic axons will
e crucial for adapting the denervation strategy. This highlights the
mportance of a patient-specific approach to the timing of nerve block
n the treatment of pancreatic cancer.

This study also highlights the fact that tumorigenesis is a constantly
volving process with inherent biological variability. To account for the
iological variability and complexity of this process, the temporal com-
onents of the data need to be further investigated. On the one hand,
aving additional data or at least longitudinal components as data helps
o reduce the uncertainty of the parameter estimation problem. On the
ther hand, the predictive quality of the model also depends to a large
xtent on the data used to calibrate it.

An improvement in the mathematical model could be to include
elements of the tumor microenvironment. The complexity of pancreatic
cancer tumorigenesis and its neuroregulation is also related to its
nteractions with the tumor microenvironment. A first step could be

to incorporate spatial structure into the model. The spatio-temporal
dynamics of such a model would certainly make it difficult to es-
tablish macroscopic properties and then draw biologically relevant
conclusions. Conversely, a more realistic model will allow more precise
investigation of biophysical properties, such as tissue stiffness and its
effect on axon growth, or more complex regulatory processes, such as
additional regulation by the immune system.
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Appendix A. Results for the well-posedness

In this section, we give the mathematical arguments used to prove
the well-posedness of the model. The proof of Theorem 1 will require
four steps. First, we prove that the map  is well defined, i.e the
ystem (7) admits a unique solution. Second, we prove that the map
 is a contraction. Third, we use a bootstrap argument to conclude the
existence of a solution of (4). The final step is the uniqueness result.
All these steps relies on the following Lemmas.

Lemma 1. Let 𝑇 > 0, 𝜃 ∈ ([0, 𝑇 ]) such that Hypothesis 2.4 holds and
𝑟 > 0. The Cauchy problem :
⎧

⎪

⎨

⎪

⎩

𝑑
𝑑 𝑡 𝑦(𝑡)= 𝑟𝑦(𝑡) (1 − 𝑦(𝑡))

(

𝑦(𝑡)
𝜃(𝑡) − 1

)

, 𝑡 ∈ [0, 𝑇 ],
𝑦(0) = 𝑦0 ∈ (0, 1),

(22)

admits a unique solution 𝑦 ∈ 1([0, 𝑇 ]) associated to 𝜃 ∈ ([0, 𝑇 ]) and
𝑦(𝑡) ∈ (0, 1), ∀𝑡 ∈ [0, 𝑇 ].

Moreover, assume 𝑦1 (resp. 𝑦2) is the unique solution of (22) associated
to the Allee effect term 𝜃1 ∈ ([0, 𝑇 ]) (resp. 𝜃2 ∈ ([0, 𝑇 ])) where 𝑦1(0) =
𝑦2(0) = 𝑦0 ∈ (0, 1). Let 𝜃𝑖 ∈ ([0, 𝑇 ]) such that Hypothesis 2.4 holds and
𝑖 = 1, 2 then
|𝑦1(𝑡) − 𝑦2(𝑡)| ≤ 𝐶1(𝜃−)𝑟𝑡𝑒𝐶2(𝜃− ,𝜃+)𝑡‖𝜃1 − 𝜃2‖∞([0,𝑡]),

where 𝐶1 > 0 and 𝐶2 > 0 only depend on 𝜃− > 0 and 𝜃+ > 1.

Proof (Lemma 1). The local existence is a direct consequence of the
Picard–Lindelöf Theorem. Moreover, since 𝑦(𝑡) = 0 and 𝑦(𝑡) = 1 are
two stationary solutions, it implies that the solution with initial datum
𝑦0 stays in(0, 1) and thus is globally defined. We focus on the proof of
the second item. We introduce the function 𝑓 ∶ (𝑦, 𝜃) ∈ (0, 1) × R∗

+ ↦

𝑟𝑦 (1 − 𝑦)
(

𝑦
𝜃 − 1

)

. Let us note that

|𝑦1(𝑡) − 𝑦2(𝑡)| ≤ ∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃1(𝑠)) − 𝑓 (𝑦2(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠,

≤ ∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃1(𝑠)) − 𝑓 (𝑦1(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠

+ ∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃2(𝑠)) − 𝑓 (𝑦2(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠.

On the one hand, we have

∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃1(𝑠)) − 𝑓 (𝑦1(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠

≤ ∫

𝑡

0
𝑟𝑦1(𝑠)2(1 − 𝑦1(𝑠))

|

|

|

|

1
𝜃1(𝑠)

− 1
𝜃2(𝑠)

|

|

|

|

𝑑 𝑠,

≤
‖𝜃1 − 𝜃2‖∞([0,𝑡])

min𝜎∈[0,𝑡] |𝜃1(𝜎)𝜃2(𝜎)| ∫

𝑡

0
𝑟𝑦1(𝑠)2(1 − 𝑦1(𝑠))𝑑 𝑠.

Moreover, the mapping 𝑦 ∈ (0, 1) ↦ 𝑦2(1 −𝑦) admits a unique maximum
in 𝑦 = 2∕3. Hence, we get

∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃1(𝑠)) − 𝑓 (𝑦1(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠 ≤ 4𝑟𝑡
27 min𝑠∈[0,𝑡] |𝜃1(𝑠)𝜃2(𝑠)|

‖𝜃1 − 𝜃2‖∞([0,𝑡]).

(23)

On the second hand, we have

∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃2(𝑠)) − 𝑓 (𝑦2(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠

≤
𝑡
|𝑓 (𝑦1(𝑠), 𝜃2(𝑠)) − 𝑓 (𝑦2(𝑠), 𝜃2(𝑠))|

|𝑦1(𝑠) − 𝑦2(𝑠)|𝑑 𝑠,
∫0 |𝑦1(𝑠) − 𝑦2(𝑠)|
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≤ ∫

𝑡

0
|𝜕𝑦𝑓 (𝑐 , 𝜃2(𝑠))||𝑦1(𝑠) − 𝑦2(𝑠)|𝑑 𝑠,

where 𝑐 ∈ (0, 1) is a constant coming from the mean value theorem.
oreover, we have

|

|

|

|

𝜕𝑦𝑓 (𝑦, 𝜃)||
|𝑦=𝑐

|

|

|

|

=
|

|

|

|

𝑟
[

−1 + 2
(

1 + 1
𝜃

)

𝑐 − 3
𝜃 𝑐

2
]

|

|

|

|

,

≤ 𝑟max
(

(𝜃 − 1)2
3𝜃

+ 1
3 , 1

)

.

Hence, we get

∫

𝑡

0
|

|

𝑓 (𝑦1(𝑠), 𝜃2(𝑠)) − 𝑓 (𝑦2(𝑠), 𝜃2(𝑠))|| 𝑑 𝑠

≤ ∫

𝑡

0
𝑟max

(

(𝜃2(𝑠) − 1)2
3𝜃2(𝑠)

+ 1
3 , 1

)

|𝑦1(𝑠) − 𝑦2(𝑠)|𝑑 𝑠. (24)

Finally, using the bounds (23), (24) and Grönwall’s inequality, we get
the following result

|𝑦1(𝑡) − 𝑦2(𝑡)| ≤ 4𝑟𝑡e
∫ 𝑡0 𝑟max

(

(𝜃2(𝜎)−1)
2

3𝜃2(𝜎)
+ 1
3 ,1

)

𝑑 𝜎
27 min𝑠∈[0,𝑡] |𝜃1(𝑠)𝜃2(𝑠)|

‖𝜃1 − 𝜃2‖∞([0,𝑡]).

■

Lemma 2. Let 𝑇 > 0, 𝑟 ∈ ([0, 𝑇 ])⋂1([0, 𝑇 ]) and 𝐾 ∈ R∗
+. The Cauchy

problem :
⎧

⎪

⎨

⎪

⎩

𝑑
𝑑 𝑡𝑥(𝑡)= 𝑟(𝑡)𝑥(𝑡)

(

1 − 𝑥(𝑡)
𝐾

)

, 𝑡 ∈ [0, 𝑇 ),
𝑥(0) = 𝑥0 ∈ (0, 𝐾),

(25)

admits a unique solution associated to 𝑟 ∈ ([0, 𝑇 ])⋂1([0, 𝑇 ]) given by
𝑥(𝑡) = 𝐾

1 + 𝐴𝑒− ∫ 𝑡0 𝑟(𝑠)𝑑 𝑠
,

where 𝐴 = 𝐾−𝑥0
𝑥0

.
Moreover, assume 𝑥1 (resp. 𝑥2) is the unique solution of (25) associ-

ted to the growth rate 𝑟1 ∈ ([0, 𝑇 ])⋂1([0, 𝑇 ]) (resp. 𝑟2 ∈ ([0, 𝑇 ])⋂
1([0, 𝑇 ])) where 𝑟𝑖(𝑡) > 0, for 𝑡 ∈ [0, 𝑇 ] and 𝑖 = 1, 2 then
|𝑥1(𝑡) − 𝑥2(𝑡)| ≤ 𝐾 𝐴𝑡

(

1 + 𝐴min𝑖=1,2 𝑒
−𝑡‖𝑟𝑖‖∞([0,𝑡])

)2
‖𝑟1 − 𝑟2‖∞([0,𝑡]).

Proof (Lemma 2). The Picard–Lindelöf Theorem ensures that the Cauchy
roblem (25) admits a unique solution that stays in (0, 𝐾). We focus
ow on the proof of the second item. In the following, we use the
otation 𝑛𝑖(𝑡) = 𝑒− ∫ 𝑡0 𝑟𝑖(𝑠)𝑑 𝑠 for 𝑖 = 1, 2 and 𝑡 ∈ [0, 𝑇 ]. Hence, we have

|𝑥1(𝑡) − 𝑥2(𝑡)| ≤ 𝐾
|𝐴(𝑛1(𝑡) − 𝑛2(𝑡))|

|(1 + 𝐴𝑛1(𝑡))(1 + 𝐴𝑛2(𝑡))|
≤ 𝐾 𝐴

(

1 + 𝐴min𝑖=1,2 𝑛𝑖(𝑡)
)2 ∫

𝑡

0
|𝑟1(𝑠) − 𝑟2(𝑠)|𝑑 𝑠

≤ 𝐾 𝐴𝑡
(

1 + 𝐴min𝑖=1,2 𝑒
−𝑡‖𝑟𝑖‖∞([0,𝑡])

)2
‖𝑟1 − 𝑟2‖∞([0,𝑡])

since the following inequality holds for (𝑥, 𝑦) ∈ R+ × R+

|𝑒−𝑥 − 𝑒−𝑦| ≤ |𝑥 − 𝑦|. ■

In order to be able to state the next Lemma on well-posedness of
he linear PDE, we introduce the characteristics associated to (7) by :
{ 𝑑

𝑑 𝑠𝑋(𝑠, 𝑡, 𝑥;)= 𝑓 (𝑠, 𝑋(𝑠, 𝑡, 𝑥;);), 𝑠 ∈ R

𝑋(𝑡, 𝑡, 𝑥;) = 𝑥.
(26)

Lemma 3. Let  ∈  (set defined in (6)) be given and assume
that Hypothesis 2.1 on 𝑄0 holds. Let 𝑓 and 𝑐 defined in (7) such that
he Hypotheses 2.2 and 2.3 hold. Then the PDE defined in (7) has unique
olution 𝑢 ∈ 1 ([0, 𝑇 ],1(𝛺) ∩ 1(𝛺)

)

given by
𝑢(𝑡, 𝑥;) = 𝑄 (𝑋(0, 𝑡, 𝑥;)) × exp

( 𝑡
−𝑐(𝜎 , 𝑋(𝜎 , 𝑡, 𝑥;))𝑑 𝜎

)

0 ∫0

22 
and we have
1. ∫𝛺 𝑄0(𝑥)𝑑 𝑥𝑒−𝐶1𝑡 ≤ ‖𝑢(𝑡)‖1(𝛺) ≤ ∫𝛺 𝑄0(𝑥)𝑑 𝑥𝑒𝐶1𝑡, for 𝑡 ∈ [0, 𝑇 ],
2. ‖𝜕𝑥𝑢(𝑠)‖1(𝛺) ≤ 𝐶2𝑡𝑒𝐶1𝑡, for 𝑡 ∈ [0, 𝑇 ]

with 𝐶𝑖 > 0 for 𝑖 = 1, 2 and 𝐶1 = 𝑟+ sup0≤𝑡≤𝑇 |

|

ℎ(𝐴1(𝑡), 𝐴2(𝑡)) −𝑁(𝑡)|
|

.
Moreover, let 𝑖 = (𝑄𝑖, 𝐴𝑖1, 𝐴𝑖2) ∈  and assume that 𝑢(𝑡, 𝑥;𝑖) is the

nique solution associated to 𝑖 for 𝑖 = 1, 2, then
sup

0≤𝑡≤𝑇
‖𝑢(𝑡;1) − 𝑢(𝑡;2)‖1(𝛺) ≤ 𝐶(𝑇 )𝑇 ‖1 − 2‖

where 0 < 𝐶(𝑇 ) <∞.

Proof. First step. The existence of the unique solution of (7) under
the assumptions of Lemma 3 is a classical result and can be found for
instance in Chapter 6 of Perthame (2006). It relies on the existence
and the regularity of the characteristics (26) that hold since 𝑓 ∈

(

[0, 𝑇 ],1
𝑐 (𝛺)

)

.
Now, given  ∈  , we rewrite Eq. (7) in its conservative global

form (linear version of (4)):
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜕𝑡𝑢(𝑡, 𝑥) + 𝜕𝑥(𝑓 (𝑡, 𝑥;)𝑢(𝑡, 𝑥)) + 𝑔(𝑡, 𝑥;)𝑢(𝑡, 𝑥) = 0, for 𝑡 ∈ (0, 𝑇 ), 𝑥 ∈ 𝛺 ,
𝑓 (𝑡, 𝑥,)𝑢(𝑡, 𝑥)= 0, for 𝑥 ∈ 𝜕 𝛺 , 𝑡 ∈ (0, 𝑇 ),

𝑢(0, 𝑥) = 𝑄0(𝑥), for 𝑥 ∈ 𝛺 .

(27)

Hence, we have that
𝑑
𝑑 𝑡 ∫𝛺

𝑢(𝑡, 𝑥)𝑑 𝑥 = ∫𝛺
−𝑔(𝑡, 𝑥;)𝑢(𝑡, 𝑥)𝑑 𝑥,

with 𝑔(𝑡, 𝑥;) defined in (5). We recall that 𝑔(𝑡, ⋅;𝑖) ∈ 1
𝑐 (𝛺), 0 ≤

𝑖(𝑡) ≤ 1 for 𝑡 ∈ [0, 𝑇 ] and 𝑖 = 1, 2 (cf. the definition of the set  (6)).
Second step. We now prove the estimates on 𝑢 and on 𝜕𝑥𝑢. First, one

can notice that 𝑢(𝑡, 𝑥) ≥ 0 for 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝛺 since 𝑄0 ≥ 0. On the
first hand, using the assumptions on 𝑔 from Hypothesis 2.3 and the fact
hat  ∈  , we have
𝑑
𝑑 𝑡 ‖𝑢(𝑡)‖1 (𝛺) =

𝑑
𝑑 𝑡 ∫𝛺 𝑢(𝑡, 𝑥)𝑑 𝑥 ≤ ∫𝛺

|𝑔(𝑡, 𝑥)𝑢(𝑡, 𝑥)|𝑑 𝑥,

≤ ‖𝑔‖∞ ([0,𝑇 ]×𝛺) ∫𝛺
𝑢(𝑡, 𝑥)𝑑 𝑥,

≤ ‖𝑟‖∞ (𝛺) sup
0≤𝑠≤𝑇

|

|

ℎ(𝐴1(𝑠), 𝐴2(𝑠)) −𝑁(𝑠)|
|∫𝛺

𝑢(𝑡, 𝑥)𝑑 𝑥.

On the other hand, we have for 0 ≤ 𝑡 ≤ 𝑇

−‖𝑟‖∞(𝛺) sup
0≤𝑠≤𝑇

|

|

ℎ(𝐴1(𝑠), 𝐴2(𝑠)) −𝑁(𝑠)|
|∫𝛺

𝑢(𝑡, 𝑥)𝑑 𝑥 ≤ 𝑑
𝑑 𝑡‖𝑢(𝑡)‖1(𝛺).

Then, we obtain the first estimate of Lemma 3 using Gronwall’s
emma. As for the second estimate, since 𝑓 (𝑡, 𝑥) = 𝜕𝑥𝑓 (𝑡, 𝑥) = 0 for
𝑥 ∈ 𝜕 𝛺, we have
𝑑
𝑑 𝑡‖𝜕𝑥𝑢(𝑡)‖1(𝛺) ≤ ∫𝛺

|𝑔(𝑡, 𝑥)||𝜕𝑥𝑢(𝑡, 𝑥)|𝑑 𝑥 + ∫𝛺
|𝜕𝑥𝑔(𝑡, 𝑥)|𝑢(𝑡, 𝑥)𝑑 𝑥,

≤ ‖𝑔‖∞([0,𝑇 ]×𝛺)‖𝜕𝑥𝑢(𝑡)‖1(𝛺)

+ 𝐶
(

𝑁(0), ‖𝜕𝑥𝑔‖∞([0,𝑇 ]×𝛺)
)

𝑒𝑡‖𝑔‖∞([0,𝑇 ]×𝛺) .

Once again, using Gronwall’s lemma, we obtain the following estimate
for 𝑡 ∈ [0, 𝑇 ]
‖𝜕𝑥𝑢(𝑡)‖1(𝛺) ≤ 𝐶

(

𝑁(0), ‖𝜕𝑥𝑔‖∞([0,𝑇 ]×𝛺)
)

𝑡𝑒𝑡‖𝑔‖∞([0,𝑇 ]×𝛺) .

Third step. Now, we prove the stability condition. We denote 𝑢𝑖 ∶=
𝑢(⋅;𝑖) and 𝑣 ∶= 𝑢1−𝑢2. We obtain that 𝑣 satisfies the following problem

⎧

⎪

⎨

⎪

⎩

𝜕𝑡𝑣 + 𝑓1𝜕𝑥𝑢1 − 𝑓2𝜕𝑥𝑢2 + 𝑐1𝑢1 − 𝑐2𝑢2 = 0, in (0, 𝑇 ] ×𝛺 ,
𝑣(𝑡, 𝑥) = 0, for 𝑥 ∈ 𝜕 𝛺 , 𝑡 ∈ [0, 𝑇 ]
𝑣(0, 𝑥)= 0, 𝑥 ∈ 𝛺 ,

(28)

where 𝑓 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥; ) and 𝑐 (𝑡, 𝑥) = 𝑐(𝑡, 𝑥; ). It implies that
𝑖 𝑖 𝑖 𝑖
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𝑑
𝑑 𝑡‖𝑣‖1(𝛺) = ∫𝛺

sign(𝑢1 − 𝑢2)
[

𝜕𝑥(𝑓2𝑢2 − 𝑓1𝑢1) + (𝑔1𝑢1 − 𝑔2𝑢2)
]

𝑑 𝑥

where 𝑔𝑖(𝑡, 𝑥) = 𝑔(𝑡, 𝑥;𝑖) defined in (5).
We denote

𝐼1(𝑡) ∶= ∫𝛺
sign(𝑢1 − 𝑢2)𝜕𝑥(𝑓2𝑢2 − 𝑓1𝑢1)𝑑 𝑥 and

𝐼2(𝑡) ∶= ∫𝛺
sign(𝑢1 − 𝑢2)(𝑔1𝑢1 − 𝑔2𝑢2)𝑑 𝑥.

On the first hand, we have
𝐼1(𝑡) = ∫𝛺

sign(𝑢1 − 𝑢2)𝜕𝑥(𝑓2(𝑢2 − 𝑢1)) + sign(𝑢1 − 𝑢2)𝜕𝑥((𝑓2 − 𝑓1)𝑢1)𝑑 𝑥,

≤ ∫𝛺
𝜕𝑥

(

−𝑓2|𝑢2 − 𝑢1|
)

𝑑 𝑥 + ∫𝛺
|

|

|

𝜕𝑥
(

(𝑓2 − 𝑓1)𝑢1
)

|

|

|

𝑑 𝑥,

≤ ∫𝛺
|

|

𝜕𝑥(𝑓2 − 𝑓1)𝑢1 + (𝑓2 − 𝑓1)𝜕𝑥𝑢1|| 𝑑 𝑥,

≤ ‖𝜕𝑥(𝑓2 − 𝑓1)‖∞(𝛺)‖𝑢1‖1(𝛺) + ‖(𝑓2 − 𝑓1)‖∞(𝛺)‖𝜕𝑥𝑢1‖1(𝛺).

Using Hypothesis 2.2 and the estimates on 𝑢, we obtain
𝐼1(𝑡) ≤ ‖1 − 2‖

(

𝐶0 + 𝐶2𝑡
)

𝑒𝑡𝐶1 (29)

On the second hand, we have
𝐼2(𝑡) ≤ ∫𝛺

|𝑔1 − 𝑔2||𝑢1|𝑑 𝑥 + ∫𝛺
|𝑔2||𝑢1 − 𝑢2|𝑑 𝑥,

≤ ‖𝑢1‖1(𝛺)‖𝑔1 − 𝑔2‖∞(𝛺) + ‖𝑔2‖∞(𝛺)‖𝑢1 − 𝑢2‖1(𝛺).

Using Hypothesis 2.3 and the estimates on 𝑢, we obtain
𝐼2(𝑡) ≤ ‖1 − 2‖𝐶3𝑒

𝑡𝐶1 + 𝐶1‖𝑣‖1(𝛺). (30)

We note that the constant 𝐶1 in the inequalities (29) and (30) is the
same and depends on the uniform bound of the growth term 𝑔 which is
roportional to the distance between the integral of the initial condition
nd the saturation constant 𝐶(𝜏𝐶 ).

Thanks to the inequalities (29) and (30) and using the notations of
Hypotheses 2.2 and 2.3, we obtain
𝑑
𝑑 𝑡‖𝑣‖1(𝛺) ≤ 𝐶1‖𝑣‖1(𝛺) +

(

𝐶0 + 𝐶3 + 𝐶2𝑡
)

𝑒𝑡𝐶1‖1 − 2‖ ,

where

• 0 < 𝐶0 = 𝐶
(

𝐶𝑙(𝜕𝑥𝑓 ), ‖𝑄0‖1
)

,
• 0 < 𝐶1 = 𝑟+ |

|

𝐶(𝜏𝐶 ) − 𝐶(𝑁(0))|
|

,
• 0 < 𝐶2 = 𝐶

(

𝐶𝑙(𝑓 ), ‖𝑄0‖1 , ‖𝜕𝑥𝑔‖∞
)

,
• 0 < 𝐶3 = 𝐶

(

𝐶𝑙(𝑔), ‖𝑄0‖1
)

.

Finally, using the Gronwall’s Lemma on the previous inequality and
aking the supremum over the interval [0, 𝑇 ], we obtain

sup
0≤𝑡≤𝑇

‖𝑣(𝑠)‖1(𝛺) ≤ 𝑇
(

𝐶0 + 𝐶3 +
𝐶2
2
𝑇
)

𝑒𝑇 𝐶1‖1 − 2‖ .

■

Lemma 4. Assume that  ∶= (𝑄, 𝐴1, 𝐴2) ∈ 1 ([0, 𝑇 ];1(𝛺) ∩ 1(𝛺)
)

×
1([0, 𝑇 ]) × 1([0, 𝑇 ]) is a solution of the system (4) and () =  for the
mapping defined in (8). Assume Hypotheses 2.1–2.3 hold. Then

• (nonnegativity) 𝑄(𝑡, 𝑥) ≥ 0 and 𝐴𝑖(𝑡) ≥ 0 for 𝑖 = 1, 2 and ∀(𝑡, 𝑥) ∈
[0, 𝑇 ] ×𝛺,

• (boundedness) ∫𝛺 𝑄0(𝑥)𝑑 𝑥 ≤ ∫𝛺 𝑄(𝑡, 𝑥)𝑑 𝑥 ≤ 𝐶(𝜏𝐶 ) and 𝐴𝑖(𝑡) ≤ 1 for
𝑖 = 1, 2 and 𝑡 ∈ [0, 𝑇 ].

Proof. The nonnegativity property of the solution of system (4) is
mmediately obtained using the characteristics for 𝑄 and noticing that
0 is a stationary solution for 𝐴𝑖 for 𝑖 = 1, 2. The solution can be written
as

𝑡

𝑄(𝑡, 𝑥) = 𝑄0(𝑋(0, 𝑡, 𝑥))𝑒− ∫0 𝑐(𝜎 ,𝑋(𝜎 ,𝑡,𝑥))𝑑 𝜎

23 
and has the sign of 𝑄0. The upper bounds for 𝐴𝑖 with 𝑖 = 1, 2 are also
obtained noticing that 1 is a stationary solution of the Cauchy problems.
Concerning the solution of the PDE 𝑄, using Hypotheses 2.2 and 2.3,
the nonnegativity of 𝑄 and the fact that ∫𝛺 𝑄0(𝑥) ≤ 𝐶(𝜏𝐶 ), we first
otice that

∫𝛺
𝑟(𝑥)𝑄(𝑡, 𝑥)𝑑 𝑥(𝑁(0) −𝑁(𝑡)) ≤ 𝑑

𝑑 𝑡𝑁(𝑡)

= ∫𝛺
𝑟(𝑥)𝑄(𝑡, 𝑥)𝑑 𝑥(ℎ(𝐴1(𝑡), 𝐴2(𝑡)) −𝑁(𝑡)) ≤ ∫𝛺

𝑟(𝑥)𝑄(𝑡, 𝑥)𝑑 𝑥(𝐶(𝜏𝐶 ) −𝑁(𝑡))

for 𝑡 ∈ [0, 𝑇 ] where we denote 𝑁(𝑡) = ∫𝛺 𝑄(𝑡, 𝑥)𝑑 𝑥.
Hence, we obtain the following inequalities

𝑁(0) ≤ 𝑁(𝑡) ≤ 𝐶(𝜏𝐶 ). ■

Appendix B. Details about the numerics

The dynamical system is implemented in Python and the algorithm
can be found at (https://github.com/MarieJosec/PDE_Axons_Innerv).

B.1. Scheme for the numerical approximation of the solution

A classical upwind scheme in space and an explicit Euler scheme in
ime is proposed to approximate the system that can be written as
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝜕𝑡𝑄(𝑡, 𝑥) + 𝜕𝑥[𝐹 (𝑥, 𝐴1(𝑡), 𝐴2(𝑡), 𝑁(𝑡), 𝑁𝑐 (𝑡))𝑄(𝑡, 𝑥)]
= 𝑅(𝑥, 𝑄(𝑡, 𝑥), 𝐴1(𝑡), 𝐴2(𝑡), 𝑁(𝑡)),

𝑑
𝑑 𝑡𝐴1(𝑡) = 𝐺1(𝐴1(𝑡), 𝑁(𝑡)),
𝑑
𝑑 𝑡𝐴2(𝑡) = 𝐺2(𝐴2(𝑡), 𝑁𝑐 (𝑡), 𝑁(𝑡)),

Note that the function 𝐹 always takes non negative values.
Consider a constant step ‘‘time’’ discretization of the interval [0, 𝑇 ]

ith 𝑡𝑛 = 𝑛𝑑 𝑡 and 𝑛 ∈ {0,… , 𝑁𝑇 }, where 𝑇 = 𝑡𝑁𝑇 and 𝑑 𝑡 is the time
tep. We also consider ‘‘space’’ discretization of the interval [−𝐿, 𝐿],
𝑖 = (𝑖 + 1

2 )ℎ, and 𝑖 ∈ {−𝑝,… , 𝑝 − 1}, 𝑝 ∈ N∗, where ℎ = 𝐿
𝑝 is the

pace step. We will use a finite volume approach and thus introduce
he points 𝑥𝑖+ 1

2
= (𝑖 + 1)ℎ and 𝑥𝑖− 1

2
= 𝑖ℎ that can be viewed as being

he vertices of volume cells 𝑀𝑖 = [𝑥𝑖− 1
2
, 𝑥𝑖+ 1

2
] whose centers are the 𝑥𝑖

where 𝐿 = 𝑥𝑝− 1
2
.

We look for an approximation 𝑄𝑛𝑖 of 𝑄(𝑡𝑛, 𝑥𝑖), 𝑁𝑛 (resp. 𝑁𝑛
𝑐 ) an

approximation of ∫ 𝐿−𝐿𝑄(𝑡𝑛, 𝑥) 𝑑 𝑥 (resp.∫ 𝐿0 𝑄(𝑡𝑛, 𝑥) 𝑑 𝑥), 𝐴𝑛1 (resp. 𝐴𝑛2) an
approximation of 𝐴1(𝑡𝑛) (resp. 𝐴2(𝑡𝑛)). To secure the positivity of 𝐴𝑛1
and 𝐴𝑛2, we approximate the logarithmic function 𝐴𝑛1 and 𝐴𝑛2 to then
go back to the approximation of 𝐴𝑛1 and 𝐴𝑛2 by taking the exponential
function.

The scheme is then the following:
ℎ
𝑑 𝑡 (𝑄

𝑛+1
𝑖 −𝑄𝑛

𝑖 ) +
(

𝐹 (𝑥𝑖+ 1
2
, 𝐴𝑛1, 𝐴𝑛2, 𝑁𝑛, 𝑁𝑛

𝑐 )𝑄
𝑛
𝑖 − 𝐹 (𝑥𝑖− 1

2
, 𝐴𝑛1, 𝐴𝑛2, 𝑁𝑛, 𝑁𝑛

𝑐 )𝑄
𝑛
𝑖−1

)

= ℎ𝑅(𝑥𝑖, 𝑄𝑛
𝑖 , 𝐴𝑛1, 𝐴𝑛2, 𝑁𝑛),

for 𝑛 ≥ 0 and 𝑖 ∈ {−𝑝 + 1,… , 𝑝 − 1} and
⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

1
𝑑 𝑡 (log(𝐴𝑛+11 ) − log(𝐴𝑛1)) = 𝐺1(exp(𝐴𝑛1), 𝑁𝑛), 𝑛 ≥ 0,
1
𝑑 𝑡 (log(𝐴𝑛+12 ) − log(𝐴𝑛2)) = 𝐺2(exp𝐴𝑛2, 𝑁𝑛

𝑐 ), 𝑛 ≥ 0,

𝐴𝑛+11 = exp(log(𝐴𝑛+11 )), 𝑛 ≥ 0,

𝐴𝑛+12 = exp(log(𝐴𝑛+12 )), 𝑛 ≥ 0.

We use a trapezoidal rule to approximate the integral terms:
⎧

⎪

⎨

⎪

⎩

𝑁𝑛 = ℎ
2

[

𝑄𝑛−𝑝 +
∑𝑝−2
𝑖=−𝑝+1 2𝑄

𝑛
𝑖 +𝑄

𝑛
𝑝−1

]

,

𝑁𝑛
𝑐 = ℎ

2

[

𝑄𝑛0 +
∑𝑝−2
𝑖=𝑖 2𝑄

𝑛
𝑖 +𝑄

𝑛
𝑝−1

]

.

The approximation of the boundary conditions can be naturally written
as

https://github.com/MarieJosec/PDE_Axons_Innerv
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Fig. 17. Distribution of the collection 3 of parameter sets that are calibrated using our 2-dimensional criterion to fit the data and a few biological knowledge. These boxplots
should be compared with the admissible ranges defined in Table 1.
𝐹 (𝑥𝑖, 𝐴𝑛1, 𝐴𝑛2, 𝑁𝑛, 𝑁𝑛
𝑐 )𝑄

𝑛
𝑖 = 0, 𝑛 ≥ 0, 𝑖 ∈ {−𝑝, 𝑝 − 1},

and the initial condition is approximated by
⎧

⎪

⎨

⎪

⎩

𝑄0
𝑖 = 𝑄0(𝑥𝑖), 𝑖 ∈ {−𝑝,… , 𝑝 − 1},

𝐴0
1, 𝐴0

2 given.

Note that the stability of the transport scheme requires the CFL
condition
𝑑 𝑡
ℎ
𝐹 (𝑥𝑖+ 1

2
, 𝐴𝑛1, 𝐴𝑛2, 𝑁𝑛, 𝑁𝑛

𝑐 ) ≤ 1, ∀𝑛 ≥, ∀𝑖 = −𝑝,… , 𝑝 − 1.

B.2. Calibration through an optimization method

For a given parameter set 𝜗, the computation of our 2-dimensional
criterion 𝐺(𝜗) = (𝐺1(𝜗), 𝐺2(𝜗)) requires two numerical simulation ap-
proximations, one acting as if we were in the control group (AA) and
24 
a second one including a denervation treatment (OHDA). The integrals
over time intervals are computed with a trapezoidal rule based on the
discretization of the numerical scheme. Needless to say here that the
computation of the gradient ∇𝜗𝐺𝑖(𝜗) of any coordinate of the criterion
is not straightforward. This means that we have no guide to find the
sets of parameters with small value of the criterion. The space we have
to explore is the whole hypercube  of dimension 14 defined by the
range column of Table 1. That is why we rely on a two-stage algorithm,
see Fig. 12. At first, we explore naively the whole range of parameters,
from which we adjust an instrumental Gaussian distribution truncated
to . In a second stage, the instrumental distribution is used to draw
new parameter sets that are informed by the data and the biological
knowledge and we seek among those draws for the best parameter sets
according to our criterion.

We start the algorithm with a massive exploration of the whole
hypercube  of dimension 14 defined by the range column of Table 1
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Table 4
Summary statistics of the collection 1 of parameter sets.

𝜋0 𝛽 𝛿 𝛾𝑟 𝑠𝑟 𝜏𝐶 𝜇1 𝜇2 𝑟𝐴1
𝑟̄𝐴2

𝑥1,𝜋 𝜖1,𝜋 𝑠𝜃 𝑠𝐴2

Mean 3.069 0.526 0.497 4.202 5.046 184.452 0.234 0.444 0.032 2.1 34.249 4.77 16.006 4.382
Variance 2.814 0.297 0.29 2.93 2.833 48.647 0.516 0.294 0.024 1.551 3.706 2.839 2.134 2.916
drawn as a Sobol sequence, that is to say using a quasi-Monte Carlo
lgorithm. This gives us the collection 0 of size 𝑛QMC

0 = 218 parameter
ets that are distributed uniformly over the hypercube . The 2-
imensional criterion is then computed for each parameter set 𝜗 in
0.

Among the parameter sets in 0, we select the 0.2% best sets
ccording to the first component of the criterion 𝐺1(𝜗), i.e. the 0.2%

parameter sets that have the smallest value of 𝐺1(𝜗). This collection is
filtered again according to the second component of the criterion 𝐺2(𝜗),
i.e. we keep only the 20% best sets according to 𝐺2(𝜗). This gives us the
collection 1 of parameter sets that are consistent with the cell data and
the chronological knowledge, i.e. that have low values of both 𝐺1(𝜗)
and 𝐺2(𝜗).

To adjust the instrumental distribution to the collection 1, we
compute the mean and the covariance matrix of the collection, see
Table 4. The instrumental distribution is then the multivariate Gaussian
distribution centered at the means given in Table 4, with a diagonal
covariance matrix set according to the observed variances of this Table,
nd truncated (or conditioned) to stay in .

The second stage of the algorithm starts with many quasi-Monte
arlo draws from the instrumental distribution, using a transformation

of another Sobol sequence of dimension 14. The 𝑛QMC
2 = 218 draw form

he collection 2 of parameter sets. The 2-dimensional criterion is then
omputed for each parameter set 𝜗 in 2. This collection is then filtering
o keep only the 0.7% best sets according to the first component of
he criterion 𝐺1(𝜗), and then among them the 50% best sets according
o the second component of the criterion 𝐺2(𝜗). This gives us the final

collection 3 of parameter sets that are consistent with the cell data and
he chronological knowledge, i.e. that have low values of both 𝐺1(𝜗)

and 𝐺2(𝜗). The final collection 3 is summarized in Fig. 17.
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