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Inhibition of anaerobic digestion by various ammonia sources resulted in 
subtle differences in metabolite dynamics 

Xiaoqing Wang , Stephany Campuzano , Angéline Guenne , Laurent Mazéas , Olivier Chapleur * 

Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l’Environnement, 92761, Antony, France   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Ammonium salt anions affected micro
bial metabolite dynamics in anaerobic 
digestion. 

• 19 clusters of metabolites sharing 
similar time-course trajectories were 
identified. 

• Differential analyses selected 48 metab
olites typically affected by anions and 
time. 

• 28 metabolites were annotated by MS- 
DIAL software with confident dot prod
uct scores. 

• Phosphates slowed down the consump
tion of 5-aminovaleric acid.  
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A B S T R A C T   

The impact of ammonia on anaerobic digestion performance and microbial dynamics has been extensively 
studied, but the concurrent effect of anions brought by ammonium salt should not be neglected. This paper 
studied this effect using metabolomics and a time-course statistical framework. Metabolomics provides novel 
perspectives to study microbial processes and facilitates a more profound understanding at the metabolic level. 
The advanced statistical framework enables deciphering the complexity of large metabolomics data sets. More 
specifically, a series of lab-scale batch reactors were set up with different ammonia sources added. Samples of 
nine time points over the degradation were analyzed with liquid chromatography-mass spectrometry. A filtering 
procedure was applied to select the promising metabolomic peaks from 1262 peaks, followed by modeling their 
intensities across time. The metabolomic peaks with similar time profiles were clustered, evidencing the cor
relation of different biological processes. Differential analysis was performed to seek the differences in metabolite 
dynamics caused by different anions. Finally, tandem mass spectrometry and metabolite annotation provided 
further information on the molecular structure and possible metabolic pathways. For example, the consumption 
of 5-aminovaleric acid, a short-chain fatty acid obtained from L-lysine degradation, was slowed down by phos
phates. Overall, by investigating the effect of anions on anaerobic digestion, our study demonstrated the 
effectiveness of metabolomics in providing detailed information in a set of samples from different experimental 
conditions. With the statistical framework, the approach enables capturing subtle differences in metabolite dy
namics between samples while accounting for the differences caused by time variations.  
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1. Introduction 

Anaerobic digestion (AD) is a promising strategy for treating 
biodegradable organic wastes in circular waste management (Cazau
dehore et al., 2022). Organic waste such as food waste, manure, and 
sludge from wastewater treatment plants are introduced in the anaer
obic digesters and progressively degraded by the microbes to produce 
methane and digestate. Methane is used to produce renewable energy, 
while the digestate can be implemented in soil fertilization (Samoraj 
et al., 2022). However, the microorganisms that perform the degrada
tion are very sensitive to various inhibitors, which can decrease the 
production yields and lead to instability or even failure in industrial 
systems (Czatzkowska et al., 2020). 

In the process of AD, although nitrogen is an essential nutrient for the 
growth of microbes at a low level, a high concentration of ammonia is 
usually reported to cause inhibition (Yenigün and Demirel, 2013). Free 
ammonia (FAN, NH3) and ammonium ions (NH4

+) compose the total 
ammonia nitrogen (TAN), and both are considered coexisting forms of 
ammonia inhibition (Jiang et al., 2019). However, FAN is regarded as 
the first cause of AD failure due to its free penetration through the cell 
membranes of microbes, especially methanogens. The potential mech
anisms of ammonia toxicity could be the imbalance of protons, changes 
in intracellular pH, and inhibition of specific enzymatic activity (Sun 
et al., 2022). 

Previous studies have utilized nitrogen-rich substrates such as live
stock manure to investigate the impact of ammonia on AD, but struggled 
with controlling the FAN level due to high concentrations of ammonia 
releasing gradually during the degradation (Yellezuome et al., 2022). 
Thus, using ammonium salts remains the simplest way to mimic the 
ammonia inhibition in lab-scale studies. Although ammonium salts may 
not accurately simulate the nitrogen source structure of real wastes, it 
allows to achieve the desired ammonia inhibition level quickly (Tian 
et al., 2018). However, when adding ammonium salts, the introduction 
of anions brought by the salts (chlorides, phosphates, carbonates, etc., 
hereafter referred to as anions) must be considered, as they may directly 
or indirectly influence the microbes and their metabolism, potentially 
leading to biased laboratory results. The effect of anions on AD has been 
documented in several previous studies. For example, Viana et al. (2012) 
reported that the presence of chlorides can cause co-inhibition in AD due 
to the high osmotic pressure they created, which lead to cell plasmolysis 
of microorganisms. Or else, it has been reported that the phosphates 
released from waste-activated sludge can inhibit the methanogenic ac
tivity as they may form phosphate precipitate and clog the internal 
channels of the anaerobic granular sludge (Xu et al., 2021). High 
phosphate concentration can also inhibit the acetoclastic Meth
anosarcina species and reduce methane production (Lackner et al., 
2020). Therefore, the effect of anions is non-negligible for lab studies of 
AD. However, in the case of ammonia inhibition, their effect could be 
relatively minor compared to the inhibitory effects caused by ammonia, 
making it challenging to detect and analyze. Consequently, it is imper
ative to find an effective approach for studying the effect of anions in 
AD. 

Metabolites are the final products of gene expression. Changes in 
microbial metabolite profiles provide chemical fingerprints of microbial 
functional states and variations (Chen et al., 2020). The field of 
metabolomics has emerged as a powerful tool to quantitatively describe 
biological systems by detecting and analyzing metabolites produced by 
microbes under specific environmental conditions at a specific time (Li 
et al., 2020; Ding et al., 2022). In particular, non-targeted metabolomics 
can capture all low molecular weight molecules arising from cellular 
metabolism and organic matter degradation by the microbes (Chapleur 
et al., 2021). Palama et al. (2016) introduced a novel NMR-based 
metabolomics strategy for rapid discrimination of bacterial species 
based on non-targeted metabolic profiling of the metabolites in bacterial 
culture media. Kasuga et al. (2020) employed non-targeted screening 
analysis using high-resolution Orbitrap MS to investigate the changes in 

the molecular-level composition of dissolved organic matter in drinking 
water. Pei et al. (2021) utilized 16S rRNA sequencing and GC-MS to 
explore the correlation between core bacteria and metabolites in aerobic 
composting. Metabolomics has also been applied to characterize the gut 
microbes and their metabolites associated with human diseases (Ye 
et al., 2022). Even though the application of metabolomics in AD is still 
limited due to the narrow prior knowledge regarding the metabolites 
involved in AD (Puig-Castellví et al., 2020), it introduces a fresh 
perspective for investigating the AD process at a metabolomic level, 
which enables the observation that can not be acquired through con
ventional taxonomic or genomic studies, such as the degradation or 
accumulation of microbial metabolites. Metabolomics stands as a 
promising tool to explore the effect of anions by focusing on the me
tabolites affected by different anions. 

Furthermore, the longitudinal study enables to capture more infor
mation from time series data (Chapleur et al., 2021), which is particu
larly beneficial for analyses involving long-term sampling such as in the 
case of AD, facilitating the elucidation of the metabolite evolving pat
terns over time. The combination of metabolomics and longitudinal 
analysis allows to explore the dynamic changes in microbiome metab
olite profiles in response to environmental stimuli over time (Beale et al., 
2016; Klassen et al., 2017). 

In our study, a series of lab-scale batch reactors were set up added 
with different ammonia sources (ammonium chloride, ammonium 
phosphate, and ammonium carbonate). Samples of 9 time points over 
the degradation were collected and analyzed with liquid 
chromatography-mass spectrometry (LC-MS). The purposes of our study 
were (1) to process the metabolomic data obtained by LC-MS and extract 
essential metabolomic information; (2) to apply a longitudinal statistical 
framework on the data and focus on the time-course evolution of the 
metabolites; (3) to capture the subtle differences in metabolites tem
poral dynamics caused by different ammonia sources; (4) to identify key 
metabolites using MS/MS and provide concrete metabolic information. 

2. Material and methods 

2.1. Experimental setup 

The experimental setup is presented in Fig. 1A. Twelve bottles of 1 L 
were designed as lab-scale batch anaerobic digesters with a working 
volume of 700 mL. They were filled with 6.3 g of methanogenic sludge 
(0.139 g COD per g of sludge) as inoculum and 52.2 g of mashed food 
waste (1.173 g COD per g of food waste) as feeding to reach a substrate/ 
inoculum ratio of 8.4 to facilitate the robust development of the 
microbiota. The sludge came from a 60 L laboratory anaerobic biore
actor fed with the same biowaste, and the food waste was provided by an 
industrial food waste collector (Valdis Energie, Issé). A biochemical 
potential buffer (ISO 11734 (1995)) was added in all digesters to reach 
the final working volume. 

Three replicate digesters served as control and were not inhibited. In 
nine others, for every three digesters, 14.9 g of (NH4)2CO3 (Alfa Aeser), 
16.6 g of NH4Cl (Acros Organics), and 20.5 g of (NH4)2HPO4 (Acros 
Organics) were added, respectively, to reach a TAN (total ammonia ni
trogen) concentration of 8 g/L. This concentration was determined 
based on previous tests assessing ammonia inhibition. All digesters were 
sealed with a rubber septum and incubated at 35 ◦C without agitation. 

2.2. Sampling and sample preparation 

The experiment lasted for nine weeks. Liquid samples were taken 
once a week from each digester at day 0, 6, 13, 20, 27, 34, 41, 48, and 
55. The samples were then centrifuged at 10,000 g for 10 min to separate 
the supernatant and pellet and stored at − 80 ◦C. 

For analysis, the samples were removed from − 80 ◦C storage and 
thawed in ice at room temperature. For each sample, 1 mL of superna
tant was filtered by a 0.45 μm Nylon filter, followed by freeze-drying for 
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one night. The freeze-dried powder was then dissolved in 580 μL MilliQ 
water and centrifuged at 15500 rcf for 3 min at 4 ◦C. After centrifuga
tion, 530 μL of supernatant was transferred to HPLC vials. 30 μL of su
pernatant from each vial was collected to prepare a pool of samples for 
quality control (QC). Finally, 500 μL of acetonitrile (Optima LC/MS 
grade, Fisher Chemical) was added in each vial. Additionally, a blank 
was prepared with equal volumes of MilliQ water and acetonitrile. 

2.3. Metabolomic analysis 

The analytical method is LC-MS. The instrument comprised an 
Accela 1250 pump system connected to an LTQ Orbitrap XL mass 
spectrometer (Thermo Fisher Scientific, MA, US). The analytical column 
is HPLC Column EC 100/2 NUCLEODUR HILIC (Macherey Nagel, length 
100 mm, inner diameter 2 mm, particle size 1.8 μm). The two mobile 
phases were 50 mM ammonium acetate (pH 5.0, solvent A) and aceto
nitrile (solvent B). The chromatographic gradient program used a linear 
gradient of solvents A and B at a flow rate of 200 μL/min, changing from 
a ratio of 20:80 to 10:90, with each ratio maintained for at least 10 min. 

This was followed by a flow rate of 400 μL/min for an additional 10 min 
at a ratio of 10:90. Finally, the ratio was changed to 5:95, and samples 
were injected and analyzed under this condition. 

10 μL was injected into the analytical system for each sample at a 
400 μL/min flow rate. Samples were injected in random order to remove 
possible batch effects. A blank and a QC sample were injected every nine 
experimental samples. The samples were analyzed by Orbitrap in posi
tive electrospray ionization mode (ESI+). The detection was performed 
in full scan over an m/z range from 50 to 800 at a resolution of 60,000 
during an acquisition time of 25 min. 

2.4. LC-MS data preprocessing 

The metabolomics data have been deposited to the EMBL-EBI 
MetaboLights database with the identifier MTBLS7859 (https://www. 
ebi.ac.uk/metabolights/MTBLS7859) (Haug et al., 2020). Raw LC-MS 
data were converted into mzXML format files by MSConvert (Proteo
Wizard 3.0.21193) using the Peak Picking filter and Vendor algorithm. 
Then, the files were treated with XCMS Online to detect and extract the 

Fig. 1. (A) Experimental setup. (B) Overview of the biostatistical analysis framework.  
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chromatographic peaks. The parameters setting used in XCMS Online is 
shown in Supplementary Material (Smith et al., 2006; Tautenhahn et al., 
2012). A table containing the peak intensities in each sample was then 
created and imported into the statTarget tool to evaluate the data quality 
and remove unwanted variations at the feature level (Luan et al., 2018). 
Drifts in signal intensities were corrected with QC-RLSC (LOESS) 
method and KNN (K-nearest neighbors) method was used to imputation 
missing values (Puig-Castellví et al., 2020). 

2.5. Biostatistical analysis 

The biostatistical analysis framework is briefly illustrated in Fig. 1B. 
The data matrix containing the peak intensities in each sample was first 
log-transformed and investigated by PCA computed with mixOmics R 
package to get an overview of the obtained data (Rohart et al., 2017). 
Then peaks that exhibited significant variations across time were 
selected using three stepwise filtering methods to investigate the 
time-course evolution of potential metabolites (details are provided in 
Supplementary Material). 

Time-course profiles of kept peak intensities were modeled using 
spline-smoothing with linear mixed models (lmmSpline function in 
lmms R package), as described in Straube et al. (2015) and Bodein et al. 
(2019). The lmms.filter.lines function in timeOmics R package was used 
to filter linear models that contained less biological information (Bodein 
et al., 2019). Then, hierarchical clustering with ward.D agglomeration 
method was executed on the derivatives of the modeled profiles to 
identify clusters of profiles exhibiting similar patterns in their 
time-course trajectories, which could correspond to correlated biolog
ical processes across time. 

Considering the large number of peaks and their varying presence 
across conditions, studying their relationships was challenging. There
fore, only the “common” peaks retained in all four conditions were 
targeted to compare their profiles using sparse Partial Least Squares 
Discriminant Analysis (sPLS-DA) (Lê Cao et al., 2011) in conjunction 
with lmmsDE function. Detailed description can be found in Supple
mentary Material. 

2.6. Metabolite annotation 

The molecular structure of the metabolite was first explored using a 
script in R based on Kendrick mass defect calculation (see the Supple
mentary Material for details). Tentative molecular formulae were pro
posed by searching the exact m/z values in METLIN and HMDB libraries 
(Wishart et al., 2018), using a mass tolerance of 30 ppm and a limited 
number of elements. The molecular formula associated with the lowest 
mass tolerance was proposed (Puig-Castellví et al., 2020). 

To obtain the exact m/z of the potential metabolites, a pooled sample 
was prepared for each experimental condition to perform tandem mass 
spectrometry (MS/MS) analysis using LTQ-Orbitrap. The LC method was 
the same as described in Section 2.3. For the MS/MS method, data- 
dependent analysis (DDA) was performed over the m/z range from 50 
to 800 at a resolution of 30,000 using higher energy collisional disso
ciation (HCD) activation type. The default charge state was 1, and the 
isolation width was 2.0 m/z during an activation time of 30 ms. The DDA 
was performed twice on each pool at normalized collision energy (NCE) 
of 50.0 and 70.0, respectively, to increase the number of fragmented 
peaks as much as possible. 

The MS/MS raw data were converted to binary abf format using ABF 
Converter (Reifycs Inc., Tokyo, Japan) and imported to MS-DIAL 
(version 4.90, http://prime.psc.riken.jp/compms/msdial/main.html) 
for non-targeted data processing. The metabolite annotation was real
ized by matching the deconvolved experimental spectra against the 
reference spectra from the GNPS spectra library (All Public Spectra at 
GNPS) for precursor and fragment ions (Wang et al., 2016). The anno
tation was manually assessed and confirmed by evaluating the accurate 
mass score, (reverse) dot product score, and total identification score 

calculated by the software (Wasito et al., 2022). The parameters of each 
step used in MS-DIAL and the criteria for assessment are described in 
Supplementary Material. 

3. Results and discussion 

To assess the state of ammonia inhibition and the performance of the 
digesters, gas production and the accumulation of VFAs were closely 
monitored during the experiment. To avoid excessive length, detailed 
monitoring results are shown in the Supplementary Material. The results 
and discussion presented below will focus on the metabolomic data, 
which enabled to reveal the subtle differences induced by different an
ions at a new metabolomic level. 

3.1. Unsupervised analysis of the metabolomics data 

A total of 1262 features were acquired after the data preprocessing in 
Section 2.4. The data containing peak intensities and sample names were 
first analyzed with PCA to investigate the variance of the metabolomics 
data among samples. 

The curves of PCA scores across time on each component are illus
trated in Fig. 2. For each condition and sampling date, the mean score of 
the triplicates was applied with the error bars. The conventional PCA 
score plots are available in Supplementary Material. For PC1, all curves 
dropped across time, showing a significant time effect on the samples 
irrespective of the ammonia sources. However, a delay in the decline of 
the curve was observed at the initial stage, specifically for the chloride 
condition, resulting in its separation on PC1. Additionally, PC2 sepa
rated chloride and phosphate conditions from the other conditions. 
Likewise, PC3 and PC4 distinguished control and carbonate conditions, 
respectively, from the other conditions. PC2 to PC4 indicate the varia
tions between conditions independent of time, proving that the anions 
influenced the degradation process during AD. The metabolite types or 
concentrations of certain metabolites may vary over time due to the 
alteration of dominated metabolic pathways affected by the anions, 
which is particularly relevant in our study. However, the information 
provided by PCA was limited due to the large number of peaks. Their 
distribution in the correlation circle plots (Supplementary Material) 
shows complicated correlations, and no clear patterns could be dis
cerned. It was thus requisite to select the peaks of interest, i.e., peaks 
with intensities varying significantly across time or in different condi
tions, which could be the degradation or production of certain 
metabolites. 

3.2. Clusters of selected peaks 

The peaks of interest were selected using the data filter steps in 
Section 2.5. After filtering, 414, 350, 358, and 367 peaks were retained 
in the control, carbonate, chloride, and phosphate conditions, respec
tively. The intensities of these peaks were then modeled across time 
using smoothing splines (Déjean et al., 2007), a popular modeling 
approach for time-course data, which handles various sampling dates 
and interpolates missing values (Chapleur et al., 2021). The modeling 
process is illustrated in Supplementary Material. The last two time 
points were excluded from our final models because of the low variation 
in peak intensity at the last three time points, which could affect the 
accuracy of the modeling. The modeled profiles were filtered (Section 
2.5) to remove straight-line profiles resulting from poor repeatability of 
the triplicates or limitations of the modeling method (Bodein et al., 
2019). After profile filtering, 359, 314, 310, and 329 peaks were finally 
retained in the control, carbonate, chloride, and phosphate conditions, 
respectively. 

Derivatives of the predicted profiles at each time point were 
computed to obtain the rate of change of the relative peak intensity over 
time. Hierarchical clustering was then performed based on the de
rivatives, which grouped similar trajectories in the rate of change 
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(Chapleur et al., 2021), as different biological processes could be 
correlated across time. To investigate whether the peaks were differ
entially expressed in different conditions, a global clustering was carried 
out by merging the four conditions as illustrated in Fig. 3. Nineteen 
clusters of peaks with correlated time-course trajectories were identi
fied. Each line corresponds to one peak under a specific condition (1312 
peaks in total, with some peaks occurring multiple times if they were 
kept in more than one condition). The shapes of the trajectories were 
broadly grouped into four categories across time: decrease, increase, 
decrease followed by an increase, and increase followed by a decrease. 
Each category was further divided into several clusters with different 
kinetics. The different patterns of trajectories consisted in different 
degradation or production bioprocesses influenced by the inhibitory 
effect of ammonia or different anions. For example, the metabolites in 
cluster 1 were consumed much more rapidly at the beginning stage than 
in cluster 3. Additionally, each cluster contained trajectories from 
almost all conditions, although the number of trajectories for each 
condition varied slightly. In cluster 5, for example, the trajectories were 
mainly from phosphate condition, while more trajectories from car
bonate condition were found in cluster 14, implying the effect of anions. 
So far, our statistical framework identified groups of metabolites that 
exhibited similar temporal dynamics, providing a novel time-course 
perspective on the effect of anions on AD. Importantly, the framework 
highlighted the time variability between conditions, which is often 
overlooked in classical analysis that treats time-series data as indepen
dent samples (Chapleur et al., 2021). 

Out of the total 1262 m/z, a tentative molecular formula was 
assigned to 765 of them using KMD calculation and a database search to 
confirm the formulae. To extract information from the vast number of 
assigned formulae, they were categorized into individual regions based 
on their O/C and H/C ratios in the van Krevelen diagram depicted in 
Fig. 4A (Rivas-Ubach et al., 2018; Maccelli et al., 2019). Overall, the 
major classes of identified metabolites belonged to lipids, condensed 
hydrocarbons, protein, and lignin. Carbohydrates were not broadly 
denoted, probably due to the composition of the food waste-derived 
substrate. 

Among the 765 compounds, 386 were retained after applying the 
filter procedure in the statistical analysis. For these retained compounds, 
Fig. 4B re-demonstrates the van Krevelen diagram showcasing the 

clustering results. Each facet of the figure represents a van Krevelen 
diagram that plots the compounds belonging to a particular cluster. The 
compounds from different categories are marked with their corre
sponding colors. The size of dots increases with the frequency of oc
currences to minimize the impact of overlapping dots in a specific 
region. Note that, unlike the general van Krevelen diagram, our plot may 
feature a single compound several times if it was present in more than 
one condition, similar to the principle used in Fig. 3. In general, there 
were no significant differences in the distribution of compound cate
gories across each cluster, but the number of compounds belonging to 
each category varied. For example, compared to clusters 1 and 2, clus
ters 3 and 4 contained a higher proportion of condensed hydrocarbons, 
which could account for the slower decline in the trajectories observed 
in these clusters. 

3.3. Profiles of metabolites influenced by anions 

3.3.1. Differential analyses on common metabolites 
Considering the large number of peaks and their diverse trajectories, 

the focus was shifted to the 96 common peaks (as shown in the Venn 
diagram in Supplementary Material) present in all conditions to better 
understand their behavior in different conditions. 

The supervised sPLS-DA was first performed on the relative abun
dance data after spline-smoothing of the 96 metabolites. The sparse 
variant of the method enabled the selection of the peaks that discrimi
nated each condition and best described the difference between them 
across time compared to the unsupervised PCA (Poirier et al., 2020). The 
number of components and variables to select was specified based on the 
classification performance of sPLS-DA by Mfold cross-validation. Four 
components and 21 peaks were thus selected. The score plots for comp 1 
to comp 4 and time-course profiles of the selected peaks on each 
component were plotted in Supplementary Material. Comp 1 to 4 
discriminated the phosphate, chloride, carbonate, and control condi
tion, respectively. To complement the results from sPLS-DA, the lmmsDE 
function was applied again but assigned with p-values (Group_Time) 
≤0.05, which selected peaks with intensities varying over time and 
affected by different conditions. Time-course profiles of 35 peaks 
selected by this method were plotted in the same way in Supplementary 
Material. Combining the two methods, 48 distinct peaks were selected (8 

Fig. 2. Scores in PCA across time on each component. For each condition and sampling date, the mean score of the triplicates was calculated with the error bars.  
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Fig. 3. 19 clusters of time-course trajectories of the peak intensities performed among four conditions. Each line corresponds to one peak under a specific condition. One peak could occur several times if kept in more 
than one condition. 
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peaks in common) that typically demonstrated the effect of anions on 
the variation of metabolites over time. The distinction of these peaks 
was exhibited intuitively through the heat map plotted with their 
spline-smoothing abundance in Fig. 5. The 0, cl, c, and p in the row 

names represent control, chloride, carbonate, and phosphate conditions, 
respectively, followed by numbers indicating the days. The color 
changes from day 0 to day 41 within a condition indicates the accu
mulation (from blue to red) or consumption (from red to blue) of the 

Fig. 4. (A) Van Krevelen diagram of all m/z values with a tentative formula. The populated metabolite classes are lipids, condensed hydrocarbons, protein, and 
lignin. (B) Van Krevelen diagram plotted by cluster. Each facet represents a van Krevelen diagram involving the compounds in this cluster. The compounds from 
different categories are marked with their corresponding colors (gray color represents the undetermined). The size of dots increases with the frequency of occur
rences. A single compound could occur several times if included in more than one condition. (For interpretation of the references to color in this figure legend, the 
reader is referred to the Web version of this article.) 
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metabolites. Different patterns of color change between conditions 
imply the effect of anions. For example, the abundance of m340 did not 
change much except in control condition, which was consumed a lot in 
the late stage and showed medium blue in the heat map. m96 was 
produced during the process, but less in control condition, which was 
still yellow while others were orange. m599 was accumulated in phos
phate condition but degraded in the other conditions. On the contrary, 
m1091 was consumed only in phosphate condition while accumulated 
in the others. In addition, m601 was produced during the process and 
was least produced in phosphate condition. Similarly, the abundance of 
m203 increased over time and carbonate condition had the fastest 
production rate. 

It can be concluded that the differential analyses unearthed the 
critical information from the large data set by focusing on the peaks with 
time or group (condition) effect. The intensities of the selected peaks 
varied significantly over time or were differently expressed under 
different conditions, indicating the effect of anions on the metabolites 
involved in this AD process. 

3.3.2. Annotation of potential metabolites by MS-DIAL 
For many users, metabolite identification remains the most time- 

consuming work in metabolomics analysis. Identification of LC-MS 
features is particularly difficult since mass spectrometry only provides 
limited structural information, making identifying unknown features 
challenging (Weber et al., 2017). According to the five criteria of con
fidence levels for identifying small molecules proposed by Schymanski 

et al. (2014), the identification attained using software could only reach 
Level 2, which gives a probable structure with a matched library spec
trum or with diagnostic evidence when no literature information is 
available but no other structure fits the experimental information. The 
same is true for our annotation by MS-DIAL, as no authentic chemical 
standard was analyzed to confirm the structure. 

The acquisition of MS/MS data was carried out as described in Sec
tion 2.6. The data were then processed with MS-DIAL using the settings 
listed in Supplementary Material. By comparing the deconvolved mea
surement spectra with the reference spectra from All Public Spectra at 
GNPS, and manual assessment and evaluation of the scores of the pro
posed candidates, 51 annotations were finally determined, including 
one compound with two different adducts (L-Tryptophan). Details of the 
annotation (m/z tolerance, adduct, formula, scores, peak height, etc.) 
can be found in Supplementary Material. According to the thresholds of 
the scores studied in the literature (Section 2.6), 28 annotations are 
deemed confident with a dot product score >800, among which three 
annotations are considered highly confident with a total identification 
score >700 (full score is 1000). The deconvolved MS/MS spectra of 
these confident annotations are displayed in Supplementary Material. 
The molecular formulae of the annotated compounds were in accor
dance with the tentative Kendrick formulae except the m/z =

152.05602, which was annotated as C5H5N5O (guanine) by MS-DIAL but 
C4H9NO5 in the Kendrick table. Although our Kendrick method still 
needs improvement to retain as many m/z as possible, the consistency 
rate of the annotation by MS-DIAL with the Kendrick formulae proved 

Fig. 5. Heat map of the peaks selected by sPLS-DA and lmmsDE, plotted with their spline-smoothing abundance. The row names are written in the form of con
dition_number of days. The 0, cl, c, and p represent control, chloride, carbonate, and phosphate conditions, respectively. 
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Fig. 6. Time-course profiles of the metabolites retained in at least two conditions after the filter procedure and annotated in the MS/MS analysis.  
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the feasibility and correctness of our method. 
Relating the annotation results to the statistical analysis results, we 

found that among the 51 annotated metabolites, 20 were retained by our 
previous filter procedure, and 12 were further kept in at least two 
conditions. Time-course profiles of these 12 metabolites are shown in 
Fig. 6. Particularly, 4-hydroxybenzoylcholine was selected by sPLS-DA 
on comp 4, the component discriminant for the control condition. In 
this case, 4-hydroxybenzoylcholine was produced a lot at the beginning 
and remained at a much higher concentration in control condition 
during the first four weeks, as ammonia did not inhibit the process. 
Besides, urocanic acid and 4-pyridoxic acid were selected by lmmsDE 
analysis. The evolution of 4-pyridoxic acid mainly reflected the time 
effect, with a sharp decrease in all conditions, while the trajectories of 
urocanic acid showed time and group effects simultaneously since the 
degradation was most significant in control condition and less so in 
phosphate condition. Looking for a more obvious group effect, the 
consumption of 5-aminovaleric acid was slowed down by phosphates. 
Triethanolamine was consumed more rapidly with the presence of car
bonates. In addition to indicating the effect of anions, the annotated 
metabolites with various trajectories under different conditions could 
serve as biomarkers to indicate the instability of AD. For example, 
glycerophosphocholine may signify instability as its concentration was 
considerably higher in phosphate and carbonate conditions than in the 
control after day 30 and did not decrease due to the inhibition by 
ammonium salts. Similarly, if phenethylamine was present at a very low 
concentration in the middle stage of the process, it may imply that in
hibition is occurring. 

3.3.3. Metabolite set enrichment and pathway analysis 
The MetaboAnalyst 5.0 platform (https://www.metaboanalyst.ca/) 

was utilized for metabolite set enrichment analysis (MSEA) to identify 
metabolic pathways and gain mechanistic insights into differential 
regulation of biological processes (Blaber et al., 2017). In our analysis, 
the pathway-associated metabolite sets based on normal metabolic 
pathways were used to reveal the enriched metabolic pathways in the 
AD process. 

The analysis was conducted for all annotated metabolites or a limited 
subset of the 12 selected metabolites in Fig. 6. A hypergeometric test was 
used to assess the enriched significance (p-value). Out of 51 queried 
compounds, 36 were successfully matched with the databases, and 40 
metabolite sets were identified. Only three metabolite sets (histidine 
metabolism, phenylalanine and tyrosine metabolism, and tryptophan 
metabolism) had a p-value <0.05. Moreover, the identified metabolite 
sets from the 12 metabolites were in the top eleven for all annotated 
metabolites (Supplementary Material), except for retinol metabolism, 
indicating the distinctiveness of the selected metabolites. 

The hit metabolites matched for each metabolite set were listed in 
Supplementary Material. 5-aminovaleric acid, a short-chain fatty acid, 
failed to match the database but has been reported to be obtained from L- 
lysine degradation (Cardona et al., 2020). The amino acid, L-isoleucine 
was also found to metabolize into acetyl-CoA directly during the AD 
process without converting to other amino acids (Wang et al., 2022). 
Consistent with the enrichment analysis results, urocanic acid was 
produced by the deamination of histidine catalyzed by specific enzymes 
(Bogachev et al., 2012). 4-Trimethylammoniobutanoic acid, also known 
as gamabutyrobetaine, is an end-product of the 
gamabutyrobetaine-crotonobetaine-carnitine cycle, found in some 
anaerobic bacteria (Meadows and Wargo, 2015). Associated with the 
time-course evolution in Fig. 6, ammonium chloride may inhibit this 
metabolic cycle. It’s worth noting that glycerophosphocholine varia
tions reflect non-steady-state changes in membrane turnover (i.e., 
enhanced membrane synthesis or breakdown) or changes in cell density 
(Rae, 2014). Therefore, for phosphate and carbonate conditions, the 
higher concentration of glycerophosphocholine in the late stage implied 
that these two anions might affect the synthesis of the bacterial 
membrane. 

To conclude, the pathway analysis faces the challenge of insufficient 
information since the metabolite annotation is still a bottleneck. How
ever, despite the lack of databases (spectra and pathways) specific to AD 
and the limited literature (Longnecker et al., 2015; Cardona et al., 
2020), the advancement in metabolomics and high resolution mass 
spectrometry will enable our research to be carried out further in the 
future. 

4. Conclusion 

Our study employed metabolomics and a time-course statistical 
framework to investigate the effect of anions brought by ammonium 
salts on AD at the metabolic level. The critical metabolites influenced by 
anions over time were revealed, and further information on the molec
ular structure was provided by MS/MS analysis and metabolite anno
tation. Phosphates were found to slow down the consumption of 5- 
aminovaleric acid, while carbonates accelerated the consumption of 
triethanolamine. The identified metabolites have the potential to serve 
as biomarkers for indicating instability in the AD process. Overall, by 
investigating the effect of anions on AD, our study proved that metab
olomics is a powerful tool to provide detailed information in a set of 
samples from different experimental conditions. In combination with 
the statistical framework, the approach enables capturing subtle dif
ferences in metabolite dynamics between samples while taking account 
of the time variability of samples. 
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Rohart, F., Gautier, B., Singh, A., Lê Cao, K., 2017. mixOmics: an R package for ‘omics 
feature selection and multiple data integration. PLoS Comput. Biol. 13, e1005752. 

Samoraj, M., Mironiuk, M., Izydorczyk, G., Witek-Krowiak, A., Szopa, D., Moustakas, K., 
Chojnacka, K., 2022. The challenges and perspectives for anaerobic digestion of 
animal waste and fertilizer application of the digestate. Chemosphere 295, 133799. 

Schymanski, E.L., Jeon, J., Gulde, R., Fenner, K., Ruff, M., Singer, H.P., Hollender, J., 
2014. Identifying small molecules via high resolution mass spectrometry: 
communicating confidence. Environ. Sci. Technol. 48, 2097–2098. 

Smith, C.A., Want, E.J., O’Maille, G., Abagyan, R., Siuzdak, G., 2006. XCMS: processing 
mass spectrometry data for metabolite profiling using nonlinear peak alignment, 
matching, and identification. Anal. Chem. 78, 779–787. 

Straube, J., Gorse, A., Team, P.C.O.E., Huang, B.E., Lê Cao, K., 2015. A linear mixed 
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