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ABSTRACT 15 
Feed efficiency is a trait of interest in pigs as it contributes to lowering the ecological and economical 16 
costs of pig production. A divergent genetic selection experiment from a Large White pig population was 17 
performed for 10 generations, leading to pig lines with relative low- (LRFI) and high- (HRFI) residual feed 18 
intake (RFI). Feeding behavior and metabolic differences have been previously reported between the 19 
two lines. We hypothesized that part of these differences could be related to differential sensing and 20 
absorption of nutrients in the proximal intestine. We investigated the duodenum transcriptome and 21 
DNA methylation profiles comparing overnight fasting with ad libitum feeding in LRFI and HRFI pigs 22 
(n=24). We identified 1,106 differentially expressed genes between the two lines, notably affecting 23 
pathways of the transmembrane transport activity and related to mitosis or chromosome separation. 24 
The LRFI line showed a greater transcriptomic response to feed intake than the HRFI line. Feed intake 25 
affected genes from both anabolic and catabolic pathways in the pig duodenum, such as rRNA 26 
production and autophagy. Several nutrient transporter and tight junction genes were differentially 27 
expressed between lines and/or by short term feed intake. We also identified 409 differentially 28 
methylated regions in the duodenum mucosa between the two lines, while this epigenetic mark was less 29 
affected by feeding. Our findings highlighted that the genetic selection for feed efficiency in pigs 30 
changed the transcriptome profiles of the duodenum, and notably its response to feed intake, 31 
suggesting key roles for this proximal gut segment in mechanisms underlying feed efficiency. 32 

 33 

NEW & NOTEWORTHY 34 
The duodenum is a key organ for the hunger /satiety loop and nutrient sensing. We investigated how 35 
the duodenum transcriptome and DNA methylation profiles are affected by feed intakes in pigs. We 36 



observed thousands changes in gene expression levels between overnight-fasted and fed pigs in an high 37 
feed efficiency pig lines, but almost none in the related low feed efficiency pig line. 38 

Keywords: DNA methylation; duodenum; feed efficiency; postprandial transcriptome; transcriptomic 39 
profiling. 40 

 41 

 42 

INTRODUCTION 43 
Provide a brief overview of the scope and relevance of the study, especially regarding previous 44 
advancements in related fields. 45 

In monogastric livestock, feed efficiency is the ability to convert the greater part of ingested feed into 46 
body weight. It is a complex trait with many known influencing factors such as nutrition, metabolism, 47 
genetics, microbiome, meteorological conditions, sanitary status, and gut microbiota. Feed efficiency is 48 
a trait of great interest for livestock since farming feed cost is a large part of the production costs. Feed 49 
also constitutes a large part of the environmental impacts of monogastric farming (1). In addition to 50 
research into non-human-edible feed, improvement in the animal feed efficiency will reduce the 51 
amount of feed needed to raise livestock, thus contributing to the reduction of its environmental 52 
footprint (2–4). 53 

Feed efficiency can be measured as Residual Feed Intake (RFI): the difference between the amount of 54 
feed one animal is consuming and the amount predicted for its maintenance and production 55 
requirements via multiple regression on several traits (average metabolic body weight, average daily 56 
gain, and indicators of body composition). A negative RFI means that the animal is eating less (relatively 57 
high efficiency), and a positive RFI means that the animal is eating more (relatively low efficiency) than 58 
the population average for their specific growth rate and body composition. RFI is a heritable trait in 59 
pigs (5). Differences in blood metabolome and brain, duodenum, liver, and muscle transcriptomes have 60 
previously been observed in pigs with contrasted feed efficiency (6–10).  61 

Gilbert et al. created a genetic divergent selection experiment from a Large White pig breed nucleus, 62 
resulting in two pig lines of relative low (LRFI) and high (HRFI) residual feed intakes (5). After 10 63 
generations of selection, pigs of the LRFI line eat around 100 grams per day less than pigs from the HRFI 64 
to gain a similar amount of body weight, and are thus of greater feed efficiency. The response to 65 
selection has led to multiple genetic and genomic changes between the lines (11). A previous 66 
transcriptomic study has compared muscle, adipose tissues and liver transcriptome from generation 8 of 67 
selection (12), with pathways involved in immune response, response to oxidative stress and protein 68 
metabolism differentiating the two lines. These two lines also differ on their blood and muscle 69 
metabolism (13, 14)—with a lower insulin level in the blood of LRFI pigs—and in their fecal microbiota 70 
(15). The selection has led to distinct feeding behaviors between the lines: pigs from the LRFI line have a 71 
lower daily feed intake, wait longer between two visits to the feeder, but eat more per visit, stay longer 72 
in the feeder, and eat faster than pigs from the HRFI line (16). 73 



The intestine is known to quickly adapt to various feeding challenges (17). The duodenum is one of the 74 
key organs involved in nutrient sensing and satiety regulation, in relation with its proximal position in 75 
the gut (18, 19). We hypothesized that divergent selection for feed efficiency might have altered the 76 
duodenum physiological response to feed intake. The effect of feeding challenges on intestinal 77 
transcriptomes has been investigated by several groups. Zhang et al. reported that pigs submitted to 78 
different feeding frequencies, 1, 3 or 5 meals per day, have a different ileal and colonic mucosal 79 
transcriptome (20), although they only investigated transcriptomes from overnight fasted pigs. Mazurais 80 
et al. studied the impact of a 2-day fasting in the jejunum expression levels of targeted genes in piglets, 81 
and noted 146 affected over the 954 studied genes (21). In mice, Yoshioka et al. have investigated the 82 
effect of a high-fat and low-fat diet on the duodenal mucosa compared to fasted mice (22). They noted 83 
only a modest effect on the transcriptome, but highlighted the downregulation of Slc5a1 after feed 84 
intake. Slc5a1 is the gene encoding for the sodium/glucose cotransporter 1 (SGLT1). It is also 85 
documented that the gene Slc15a1 encoding for the peptide transporter 1 (PEPT1) is downregulated by 86 
feed intake in mice (23). More generally, the Solute Carrier (SLC) gene family encodes transmembrane 87 
nutrient transporter, and is of great interest to better understand the digestive physiology (24–26). 88 

DNA methylation is an epigenetic mark playing important roles in cellular differentiation and in the 89 
regulation of gene expression (27, 28), including in the intestine (29). In mature mammalian tissues, 90 
DNA methylation mostly occurs at CpG dinucleotides. Most CpG sites are methylated, except for CpG 91 
sites in promoters and enhancers of expressed genes. These unmethylated regions are often relatively 92 
enriched in CpG sites compared to the rest of the genome, constituting CpG island in an otherwise CpG 93 
depleted genome (30). Promoter DNA methylation is generally negatively correlated with gene 94 
expression, while gene body DNA methylation is rather positively correlated with gene expression. 95 
Causality links between gene repression and promoter DNA methylation is debated; experimental 96 
perturbation of DNA methylation (by knock out, drug, or epigenome editing) often induce 97 
transcriptomic changes, but in development and diseases context (such as cancer), gene expression 98 
changes mostly occurs before promoter DNA methylation changes (28).  DNA methylation is essential 99 
for proper intestinal epithelial cell differentiation (31), and DNA methylation profiles change through the 100 
intestine’s cellular (32) and developmental (33) maturations. In cattle, genomic predictions for feed 101 
efficiency are correlated with DNA methylation differences at some imprinted loci (34). A 36h fasting 102 
also resulted in changes in DNA methylation in adipose tissues in human (35). 103 

We hypothesized that differences between LRFI and HRFI pigs in the intestinal responses to feed intake 104 
might partially explain several of the physiological differences previously reported. We therefore 105 
investigated the transcriptomic and DNA methylation profiles of the duodenum mucosa before or after 106 
a meal in pigs from the 10th generation of LRFI and HRFI lines, in a total of 24 animals. 107 

MATERIALS AND METHODS 108 

Animal production and sampling 109 
This experimentation was authorised by the French Minister of Higher Education, Research and 110 
Innovation under the number APAFIS#21107-2018120415595562 v10, after examinations by the animal 111 
experimentation ethic committee number 084. 112 



Animals were raised using standard care in the INRAE pig experimental facility GENESI (36) up until the 113 
day before the procedure. Animals were from two French Large White lines of pigs that have been 114 
divergently selected on residual feed intakes for 10 generations (5). Pigs were from three litters in each 115 
line, and of balanced sexes within litter when possible (one litter was represented by 3 males and one 116 
female). At weaning (28 days old on average), animals were split into 2 pens of 12 animals, full-sibs and 117 
sexes being equally distributed in the two pens (figure 1A). Pigs were slaughtered on the same day, at 118 
the age of 61 days old (min 60 days, max 62 days). The day before sampling, feed access was removed at 119 
5 p.m. in both pens. Animals had free access to water. At 8 a.m. the next day, feed access was 120 
introduced back in one pen, but not in the other. Animals were slaughtered by electro-narcosis between 121 
8.50 a.m. and 11.46 a.m., starting with animals left without feed access until 10.10 am where animals 122 
with unlimited feed access were also sampled (figure 1B, supplementary table 1). The gastro-intestinal 123 
tract was removed, and a 5 cm long section of the duodenum was sampled, opened longitudinally, and 124 
the mucosa was collected by scratching the internal duodenal section with a glass microscope slide. 125 
Samples were rinsed in PBS, and flash frozen in liquid nitrogen. Samples were preserved at -80°C until 126 
extraction. 127 

Sample extraction, library preparation, and sequencing 128 
Frozen duodenum samples were reduced to a fine powder with the mixer-mill MM400 by rapid agitation 129 
for 1 minute at 30Hz in a liquid-nitrogen cooled container with stainless steel beads. Fine powder 130 
samples were conserved at -80°C until extraction. DNA and RNA were extracted from the powder using 131 
NucleoSpin TriPrep mini kit columns (Macherey-Nagel), according to the manufacturer's main 132 
instructions but with a few modifications. About 30-50 mg of powder were resuspended in 750 µL of 133 
RP1 buffer with 7.5µL of  ß-mercaptoethanol then homogenised with the mixer-mill MM400 by rapid 134 
agitation for 2x2 minutes at 30Hz with stainless steel beads and incubated 10 minutes at room 135 
temperatures. Lysates were loaded into columns in two steps. DNA elution was performed using 65 µL 136 
of DNA elute solution. On-column digestion of residual DNA was performed for 30 minutes at room 137 
temperature. RNA was eluted using 100 µL of RNase-free water. 138 

RNA-seq libraries were prepared according to Illumina’s protocols using the Illumina TruSeq Stranded 139 
mRNA sample prep kit to analyse mRNA. Briefly, mRNA were selected using poly-T beads. RNA were 140 
reverse transcribed to generate double stranded cDNA, then fragmented, and adaptors were ligated for 141 
sequencing. Eleven cycles of PCR were applied to amplify libraries. Library quality was assessed using a 142 
Fragment Analyser and libraries were quantified by qPCR using the Kapa Library Quantification Kit. RNA 143 
sequencing was performed on an Illumina HiSeq3000 using a paired-end read length of 2 x 150 pb with 144 
the Illumina HiSeq3000 Reagent Kits, at the GeT-PlaGe core facility, INRAE Toulouse (37). 145 

Four DNA samples (one female and one male LRFI, one female and one male HRFI) were artificially 146 
methylated using the M.Sss1 Enzyme (New England BioLabs) following the manufacturer instruction. 147 
DNA libraries (4 fully methylated control, 4 input controls, and 24 samples) were prepared following 148 
Bioo scientific’s protocol using the Bioo scientific NEXTflex Methyl-seq Library Prep Kit for Illumina 149 
Sequencing (part number NOVA-5118-02). Briefly, DNA was fragmented by sonication on a covaris M220 150 
(400-500 bp), size selection was performed using AMPure XP beads and adaptors were ligated to be 151 
sequenced. Library preparation failed for one sample (an LRFI fed sample). The 4 fully methylated 152 
libraries and the 23 other samples were mixed at equimolarity when possible (62 ng of DNA per sample, 153 
otherwise taking a maximal volume of 20 µL resulting in 5-21 ng of DNA for four samples), and a single 154 



methyl-DNA precipitation (MeDP) was performed on 1 µg of the pool using Invitrogen’s Methylminer kit 155 
following the manufacturer instructions. After additions of the 4 inputs to the pool, 10 cycles of random 156 
PCR were performed on the mixed library. Library quality was assessed using an Agilent Fragment 157 
Analyser and the pool was quantified by qPCR using the Kapa Library Quantification Kit. MeDP 158 
sequencing (MeDP-seq) was performed on two lanes of an Illumina NovaSeq 6000 using a paired-end 159 
read length of 2 x 100 bp with the Illumina NovaSeq Reagent Kits S2, at the GeT-PlaGe core facility (37), 160 
INRAE Toulouse.  161 

RNA-seq and MeDP-seq libraries were demultiplexed, and the resulting fastq files are available at the 162 
ENA database under the id PRJEB46060 / ERP130249. 163 

RNA-seq bioinformatic processing 164 
RNA-seq reads were processed using the nf-core/rnaseq pipeline (38) (version 3.0), using Salmon (39) 165 
pseudo-alignment quantifications, Ensembl reference genome Sscrofa11.1, and the corresponding gene 166 
annotation file from version 102 of Ensembl (40). Normalised counts were processed using {tximports} 167 
(41) to generate transcript per million (TPM) values (supplementary table 2), and gene-length 168 
normalised counts (supplementary table 3) were used to carry over differential gene expression analysis 169 
with {limma} voom (42), using contrast matrices to test for different factors, and a false discovery rate 170 
(FDR) threshold of 5%. The pig line (LRFI or HRFI), condition (fed or fasted) and sex (castrated male or 171 
female) were used to build a model matrix. Contrast matrices were constructed to compare the two 172 
lines, and to compare the feeding effect within each line. A total of 13,738 genes were analysed, others 173 
having less than a total of 8 counts across our dataset. Gene ontology enrichment analysis was 174 
performed using {clusterProfiler} (43), using Sus scrofa Gene Ontology. It should be noted that not all 175 
genes annotated in the pig genome are associated with a Gene Ontology term, leading to slightly lower 176 
gene numbers in gene lists used for the Gene Ontology Analyses. The set of genes used for differential 177 
gene expression analysis was used as a reference set. Enriched Gene Ontology were simplified for 178 
readability using the simplify() function, and simplified enriched ontologies were clustered using the 179 
pairwise_termsim() function. Heatmaps were generated using {ComplexHeatmap} (44), and upset plots 180 
were generated using the {UpSetR} package (45). The list of substrates for each SLC transporter was 181 
obtained from the SLC tables at slc.bioparadigms.org (24). The list of tight junction genes was 182 
downloaded from the AMIGO gene ontology website (46, 47), using the Gene Ontology term 183 
GO:0070160. 184 

MeDP-seq bioinformatic processing 185 
As MeDP-seq data is conceptually similar to ChIP-seq data, MeDP-seq reads were processed using the 186 
nf-core/chipseq pipeline (38) version 1.2.1 on Ensembl reference genome Sscrofa11.1 (40). CpG 187 
methylation ratios were deduced from MeDP-seq coverages using BayMeth (48) and data from the 188 
artificially methylated control samples. Genomic regions with anomalous coverage in input samples 189 
were identified using the {greylistchip} bioconductor package (49) version 1.28.1 applied on each of the 190 
four input samples separately, and the four greylist regions were merged together. Genomic regions 191 
within our greylist were removed from the rest of the analysis. 192 

To define lowly methylated regions (LMRs) we used the following steps: average DNA methylation ratio 193 
was computed for each sample in 100 bp windows. We then kept the 100 bp windows for which the 194 
DNA methylation ratio was under 40% in at least two samples within LRFI fed, LRFI fasted, HRFI fed, and 195 
HRFI fasted pigs. Consecutive 100bp windows were merged, and only genomic regions of 500 bp or 196 



more were kept. Unmethylated regions separated by 300 bp or less were merged. This resulted in the 197 
definition of 60,509 LMRs covering 0.03% of the genome (mean size: 1089 bp, median: 700 pb, 198 
minimum size: 500 bp, maximum size: 33,500 bp). 199 

MeDP-seq coverage at LMRs was obtained for each sample using {EnrichedHeatmap} normalizeToMatrix 200 
function (50). We used {DESeq2}50 to identify LMRs with differential coverage between the two LRFI 201 
input control samples and the two HRFI input control samples. This resulted in the identification of 202 
9,572 LMRs with differential coverage between inputs from the two lines at an unadjusted p-value 203 
threshold of 5%. These regions were filtered as they might reflect structural genomic differences 204 
between the two lines resulting in misestimations of their DNA methylation state by MeDP-seq. 205 
Differentially methylated regions (DMRs) between the two lines were identified within the resulting 206 
50,919 lowly methylated regions using {DESeq2} (51) with a linear model taking into account the pig line 207 
(LRFI or HRFI) and condition (fed or fasted). Fed/fasted DMRs were called in each pig line independently 208 
using the same approach. In addition to an FDR adjusted p-value below 0.05 and after manual 209 
visualisations of some regions, we selected only regions with an absolute log2 fold change greater than 210 
1 as differentially methylated regions in an attempt to further reduce false positives. DNA methylation 211 
ratio at differentially methylated regions were visualised using {epistack} (52). 212 

Data and script availability 213 
RNA-seq and MeDP-seq reads are available through the ENA database, id PRJEB46060 / ERP130249. 214 
Scripts used to process and analyse RNA-seq and MeDP-seq reads are available through a public gitlab 215 
repository at the address: forgemia.inra.fr/genepi/analyses/rosepigs. Gene expression counts, lists of 216 
differentially expressed genes, sample metadata tables, and DMR positions are available in this 217 
repository (forgemia.inra.fr/genepi/analyses/rosepigs/-/tree/master/processed_files). Supplemental 218 
material is available at URL: 219 
https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/V7FWEH DOI: 220 
https://doi.org/10.57745/V7FWEH.  221 

RESULTS 222 

The duodenum transcriptome is different between the high- and low- feed efficiency pig 223 
lines 224 
To compare pigs from the 10th generation of selection, 12 animals for each line were taken from 3 225 
litters in the same breeding batch trying to balance sex ratios (figure 1A). After overnight fasting with 226 
unrestricted water access, feed was reintroduced to 6 HRFI and 6 LRFI animals in a single pen (balancing 227 
litters and sex, figure 1B). Duodenal mucosa samples were then collected, between 2 to 3 hours after 228 
feed re-introduction, or between 12 to 14 hours of feed restriction. Duodenal transcriptomes were 229 
obtained by RNA-sequencing after poly-A purification, enriching for messenger RNA. We compared 12 230 
LRFI samples (6 fed and 6 fasted) with 12 HRFI samples (6 fed and 6 fasted), and detected 1,106 genes 231 
differentially expressed between the LRFI and HRFI lines, independently of the feeding status of the 232 
animals (figure 2A, supplementary table 4). In detail, 464 genes were identified as upregulated in the 233 
LRFI line, and 642 genes were identified as up-regulated in the HRFI line. 234 

Functional enrichment analysis revealed that genes upregulated in HRFI were notably involved in various 235 
aspects of cell division, including spindle checkpoint signalling, chromosome segregation, DNA-236 
templated DNA replication, and immune response (figure 2B). Fewer processes were functionally 237 



enriched in genes upregulated in the LRFI lines (figure 2C), including glycosphingolipid metabolic process 238 
and transmembrane transporter activity. 239 

The pig duodenum transcriptome response to feed intake is stronger in LRFI pigs than in 240 
HRFI pigs 241 
For each line, we compared duodenal transcriptomes in fasted or fed pigs. We detected 2,222 242 
differentially expressed genes in the LRFI pig line, but only 61 differentially expressed genes in the HRFI 243 
line (figure 3, A&B, supplementary table 4), leading to a total of 2,225 genes affected by feed intake in 244 
one or both pig lines. Visualisation of expression profiles revealed that in the LRFI line, all 6 fasted pigs 245 
were showing stark differences of expression as compared to the 6 fed pigs in the differentially 246 
expressed genes, while 3 fasted HRFI pigs and 2 fed HRFI pigs did not have a transcriptomic signature 247 
matching the feeding status signature of the LRFI line (figure 3A). 248 

In the LRFI line, the 1,050 genes overexpressed in the fasted state were enriched in GO-BP categories 249 
linked to autophagy, cell junction and plasma membrane receptors, Wnt signalling pathway, and protein 250 
catabolic processes (figure 3C). The 1,172 genes overexpressed in the fed state in LRFI pigs were 251 
enriched in GO-BP categories linked to protein folding, ribosome biogenesis and the sterol biosynthetic 252 
process (figure 3D). In the HRFI line, the 41 genes overexpressed in the fasted state were enriched in 253 
GO-BP categories linked to ubiquitin ligase complex, and with mitochondrial envelope to a lesser extent 254 
(figure 3E). No GO-BP category was detected as enriched in the 20 genes overexpressed in the fed states 255 
in HRFI pigs. 256 

Among the genes impacted by the feeding status in one or both lines, 185 genes were also detected as 257 
differentially expressed between the two lines (figure 3B). Visual inspection of these genes revealed that 258 
they mostly respond to feed intake in the LRFI line and not in the HRFI line, resulting in differences in 259 
average expression levels between the lines (figure 3F). 260 

Duodenal expression of nutrient transporter and tight junction genes was altered by the 261 
divergent selection on feed efficiency 262 
The transmembrane transporter activity ontology term is overrepresented in genes with higher 263 
expression in LRFI than in HRFI (figure 2C). The Solute Carrier (SLC) gene family encodes for 264 
transmembrane transporters, including nutrient transporters expressed in the intestinal epithelium (24, 265 
26). We therefore focused our analysis on the expression patterns of the 364 annotated SLC genes in the 266 
pig genome in our experimental setup (figure 4A). In the duodenum mucosa, 28 SLC genes are 267 
differentially expressed between the LRFI and HRFI lines: 17 are more expressed in the LRFI line, such as 268 
the folate transporter SLC25A32, 11 are more expressed in the HRFI line such as the glucose and 269 
galactose transporter SLC2A10. Thirty-five SLC genes are differentially expressed in the duodenum 270 
between fasted and fed LRFI pigs between: 18 are more expressed in fasted pigs, such as 271 
monosaccharides transporters SLC5A1 and SLC2A2 and the aspartate and glutamate transporter 272 
SLC25A13, 17 are more expressed in fed pigs, such as the glutamate transporter SLC17A8. No SLC gene 273 
was detected as differentially expressed by feed intake in the duodenum of HRFI pig.  274 

The cell-cell junction organisation ontology term was enriched in genes with higher expression in fasted 275 
LRFI pigs than in fed LRFI pigs (figure 3C). We therefore focused our analysis on the expression patterns 276 
of the 77 annotated tight junction genes in our experimental setup (figure 4B). In the duodenum 277 
mucosa, 5 tight junction genes are differentially expressed between the LRFI and HRFI lines, and all are 278 



more expressed in the LRFI line: Claudin-2 (CLDN2), CLDN4, CLDN15, Partitioning defective 6 homolog 279 
beta (PARD6B) and Protein Associated to Tight Junctions / InaD-like protein (PATJ). Fifteen tight junction 280 
genes are differentially expressed by short term feed intake in the duodenum of LRFI pigs: 12 are more 281 
expressed during short term fasting, such as Occludin (OCLN), Junctional adhesion molecule A (F11R) or 282 
PATJ, and 3 are more expressed after feed intake: CLDN5, CLDN11 and MICAL-Like 2 (MICALL2). No tight 283 
junction gene was detected as differentially expressed by feed intake in the duodenum of HRFI pig. 284 

Differences in DNA methylation profiles in the duodenum of LRFI and HRFI pigs 285 
DNA methylation profiles were obtained by MeDP-seq on the same duodenum samples. Although 286 
MeDP-seq primarily measures DNA methylation density, we converted it into DNA methylation ratio 287 
using fully methylated control samples (see method) (48). For all samples, DNA methylation was lower 288 
near the transcription start site (TSS) of expressed genes than at the TSS of un-expressed genes 289 
(supplemental figure 1). We detected low DNA methylation regions (LMRs) in each experimental group 290 
as putative regulatory regions. Amongst the 50,872 LMRs, 409 were differentially methylated between 291 
LRFI and HRFI, 26 were detected as differentially methylated between fasted and fed LRFI pigs, and 3 292 
were detected as differentially methylated between fasted and fed HRFI pigs (figure 5, supplementary 293 
table 5, 6, and 7). We did not find global associations between DMRs and differential gene expression, 294 
but some overlaps were intriguing. Of the 409 HRFI and LRFI DMRs, 20 were within 20kb of a 295 
differentially expressed gene between LRFI and HRFI pigs (supplementary table 8), and the associations 296 
between changes in DNA methylation and changes in gene expression were not always in the same 297 
direction. Amongst those were CLDN10 (hypomethylated on the first intron in HRFI, and more expressed 298 
in HRFI than in LRFI, figure 6 A&B), PHGDH (Phosphoglycerate dehydrogenase, hypomethylated in an 299 
internal exon and intron in HRFI, and more expressed in HRFI than in LRFI, figure 6 C&D), ITLN2 300 
(Intelectin-2, hypomethylated in an internal intron in LRFI, and more expressed in HRFI than in LRFI, 301 
figure 6 E&F), FER (Proto-oncogene tyrosine-protein kinase, hypomethylated in an internal intron in 302 
HRFI, and more expressed in LRFI than in HRFI, figure 6 G&H), and the long non-coding RNA 303 
ENSSSCG00000044004 (hypomethylated at its promoter in HRFI, and more expressed in HRFI than in 304 
LRFI, figure 6 I&J). Of the 29 DMRs between fed and fasted pig in one of the lines, 3 were within 20kb of 305 
a differentially expressed gene between fasted and fed LRFI pigs (supplementary table 9). Amongst 306 
those were KDSR (3-dehydrosphinganine reductase, hypomethylated in fed LRFI pigs compared to fasted 307 
LRFI pigs, and less expressed in fed LRFI pigs compared to fasted LRFI pigs, figure 6 K&L). KDSR3 was also 308 
less expressed in fed HRFI pigs than in fasted HRFI pigs, but to a lower extent than in LRFI pigs.  309 

DISCUSSION 310 
Explain your interpretation of the data, especially compared with previously published material cited in 311 
the References. Significance and limitations may also be present. 312 

Here we demonstrated that the divergent selection on feed efficiency changed the duodenum mucosal 313 
transcriptome in pigs, identifying 1,106 genes differentially expressed between the LRFI and HRFI lines. 314 
Genes overexpressed in LRFI were enriched in gene ontologies relevant to glycosphingolipid metabolic 315 
process, transmembrane transport, and exopeptidase and metallopeptidase activity. These functions do 316 
not directly mirror results from the transcriptome of muscle, liver and adipose tissues (12), or in blood, 317 
muscle and liver metabolism (13). Therefore, it is likely that genetic differences due to selection have led 318 
to differences in gene expression that are distinct between tissues, and are not systemic. Functions 319 
enriched in HRFI pigs were overwhelmingly related to mitosis related processes, such as chromosome 320 



separation, DNA replication, and mitosis checkpoint. It is not known if it is due to issues with cell division 321 
in the HRFI line that could be frequently failing, or if it simply reflects a higher cell division rate in the 322 
duodenum mucosa of HRFI pigs. Histological examination of the duodenum from HRFI and LRFI pigs 323 
might be very informative, especially if coupled with measures of cell divisions.  324 

The LRFI line shows a very strong transcriptomic response to feed intake in its duodenum mucosa, with 325 
2,222 differentially expressed genes. Gene expressed after fasting were enriched in catabolic functions 326 
and autophagy, while genes expressed after feed intake were more anabolic, which was perhaps to be 327 
expected. The large number of differentially expressed genes between fasted and fed LRFI pigs is in 328 
contrast to the weak response observed in HRFI pigs, with only 85 differentially expressed genes. It is 329 
not known if selection has increased the transcriptomic response in the LRFI line, suppressed the 330 
transcriptomic response in the HRFI line, or both at the same time. In mice, only a modest 331 
transcriptomic response to feed intake was observed by Yoshioka et al. (22), but it might be due to a 332 
relatively poor sensitivity of the SAGE method used in the mice study. We observed that several nutrient 333 
transporters had their expression level increased or decreased by feed intake in the LRFI line. We 334 
notably confirmed in pigs the previous observation of the downregulation of Slc5a1 in fasted mice (22). 335 
SLC5A1 encodes for the glucose transporter SGLT1. Different glucose absorption dynamics between LRFI 336 
and HRFI lines might lead to different insulinemia, as it has been observed in the same pig lines in earlier 337 
generations (13, 14). SLC4A2 was more expressed in fed than in fasted LRFI pigs. It encodes an anion 338 
transporter involved in balancing the cellular pH (53). It was also recently identified in a Epigenome 339 
Wide Association Study (EWAS): DNA methylation profiles located at SLC4A2 correlated with food 340 
fussiness in children (54). We did not find any DMR near SLC4A2 in our dataset. More generally, it is 341 
tempting to hypothesise that the lack of transcriptomic response in the duodenum between fasted and 342 
fed HRFI pigs might explain some feeding behaviours observed in the HRFI line, for example due to their 343 
putative reduced nutrient sensing.  344 

Genes from the cell-cell junction organisation ontology were over-represented in genes more expressed 345 
in the fasted condition in the LRFI line. Cell-cell junction, tight junctions in particular, allow the intestine 346 
epithelium to act as a barrier between the intestinal lumen and the rest of the organism (55). It may be 347 
that LRFI pigs increase the sealing of tight junctions between meals, but HRFI pigs do not. Additional 348 
analyses will be required to test this hypothesis, notably histological analyses of the duodenum mucosa 349 
or by measuring duodenal permeability. The pathophysiological consequences of this regulation of tight 350 
junction induced by genetic selection for feed efficiency should also be investigated, notably in relation 351 
with the susceptibility to enteric infections (56, 57). 352 

DNA methylation tends to be absent from active genomic regions (30). Using MeDP-seq, we detected 353 
409 differentially methylated regions between LRFI and HRFI lines using conservative filtering steps. It is 354 
likely that a finer DNA methylation measure such as whole genome bisulfite conversion followed by 355 
sequencing would have allowed the identification of more differentially methylated regions. 356 
Nonetheless, it can be concluded that the selection process for feed efficiency has resulted in distinct 357 
duodenal DNA methylation profiles. We only detected 26 and 3 differentially methylated regions 358 
between fasted and fed pigs of the LRFI and HRFI line, respectively. Thus, while short term feed intake 359 
drastically changes the gene expression profiles of the duodenal mucosa, it barely affects the DNA 360 
methylation profiles. Therefore, most—if not all—duodenum gene expression changes between fasted 361 
and fed samples were not mediated by DNA methylation changes. It is likely that changes in DNA 362 
methylation profiles need more time than changes in gene expression profiles. Nonetheless, it appears 363 



that for DNA methylation profiles as for gene expressions, the LRFI line is more sensitive than the HRFI 364 
line to meal intake.  365 

While we could not correlate all the changes in DNA methylation profiles with overall changes in gene 366 
expressions, we identify several examples of DMRs located near or within differentially expressed genes 367 
(figure 6). This is the case for example for CLDN10, involved in tight junctions, PHDGH, involved in serine 368 
biosynthesis, ITLN2, coding for a carbohydrate binding protein, FER, a tyrosine kinase regulating cell 369 
junctions, MUC13 (data not shown), a mucin gene, or KDSR, involved in the sphingolipid metabolism. 370 
The associations between DNA methylation changes and gene expression changes could be either 371 
positive or negative, which has been previously reported (58). With this dataset alone, we cannot 372 
decipher causalities between the changes in DNA methylations and changes in gene expression levels. 373 
Differences between the lines are likely due to genetic effects: selection for feed efficiency have resulted 374 
in many genetic differences between the LRFI and HRFI pig lines (11, 59). These genetic differences may 375 
alter DNA methylation profiles in cis (i.e. by destroying or creating a transcription factor site) or in trans 376 
(i.e. by changing the expression level of a transcription factor or a signaling pathway resulting in 377 
downstream DNA methylation changes). We observed no statistically significant difference in gene 378 
expression levels between LRFI and HRFI pigs for the DNA methyltransferases DNMT1, DNMT3A, and 379 
DNMT3B, nor for the Ten-eleven translocation methylcytosine dioxygenases (TET) TET1, TET2 or TET3 380 
that are involved in enzymatic DNA demethylation of cytosines (supplemental table 4). We did not 381 
detect enough reads assigned to the DNMT3L genes to accurately assess its expression levels in our 382 
samples. The Ubiquitin-like, containing PHD and RING finger domains, 1 (UHRF1) gene was globally more 383 
expressed in the HRFI line than in the LRFI line. UHRF1 helps DNMT1 in replicating DNA methylation 384 
during DNA replication (60). Further investigations are needed to assess if these changes of UHRF1 385 
expression are of relevance. With our dataset alone, we cannot discriminate if the same genetic 386 
differences are involved in changes in DNA methylation and gene expressions, or if the differences we 387 
observed are simply coincidental. Genome wide association studies for gene expression levels and DNA 388 
methylation levels have the potential to improve our understanding of the difference we describe in the 389 
LRFI/HRFI pig lines, but would likely require an order of magnitude more samples to have enough 390 
statistical power (61). The long non-coding RNA gene ENSSSG00000044004 has a DMR right at a lowly 391 
methylated region on its promoter, and more DNA methylation is associated with a reduction of its 392 
expression. For this case, the correlation between DNA methylation changes and gene expression 393 
changes likely reflects causality links. This uncharacterised long non-coding RNA lies between the 394 
vasopressin and the oxytocin genes, for which the synteny is conserved in most vertebrates (62).  395 

The pig is thought to be a good model of human digestive physiology (63–65). Compared to rodent 396 
models, pigs have a diet, body size, and diurnal rhythm that resemble more the human ones. The 397 
dataset produced here might prove useful to better understand the transcriptomic response to feed 398 
intake of the human duodenum. Therefore, our dataset is publicly available, at the sequencing read 399 
levels, in the form of gene expression tables, and in lists of differentially expressed genes. In addition, 400 
better understanding of the biological mechanisms of feed efficiency may contribute to improvements 401 
of feed efficiency in pig farming, leading to a more sustainable production. 402 

DATA AVAILABILITY 403 
RNA-seq and MeDP-seq reads are available through the ENA database, id PRJEB46060 / ERP130249. 404 
Scripts used to process and analyse RNA-seq and MeDP-seq reads are available through a public gitlab 405 



repository at the address: forgemia.inra.fr/genepi/analyses/rosepigs. Gene expression counts, lists of 406 
differentially expressed genes, sample metadata tables, and DMR positions are available in this 407 
repository (forgemia.inra.fr/genepi/analyses/rosepigs/-/tree/master/processed_files).  408 

SUPPLEMENTAL MATERIAL 409 
Supplemental material is available at URL: 410 
https://entrepot.recherche.data.gouv.fr/dataset.xhtml?persistentId=doi:10.57745/V7FWEH DOI: 411 
https://doi.org/10.57745/V7FWEH.  412 

Supplementary table 1: Sample metadata. 413 

Supplementary table 2: Gene expression in Transcript per million, used for visualisations. 414 

Supplementary table 3: Gene expression in pseudo-counts (length-scaled TPM), used differential 415 
analysis. 416 

Supplementary table 4: Results of the differential gene expression analysis.  417 

Supplementary table 5: Genomic coordinates of the differentially methylated regions between lines. 418 

Supplementary table 6: Genomic coordinates of the differentially methylated regions between fasted 419 
and fed LRFI pigs. 420 

Supplementary table 7: Genomic coordinates of the differentially methylated regions between fasted 421 
and fed HRFI pigs. 422 

Supplementary table 8: Line DMRs within 20kb of  a differentially expressed gene between LRFI and 423 
HRFI pigs. 424 

Supplementary table 9: Fasted vs fed LRFI DMRs within 20kb of  a differentially expressed gene 425 
between fasted and fed LRFI pigs. 426 

Supplementary figure 1: Low DNA methylation at the promoter of expressed genes. In each MeDP-seq 427 
sample, we sorted genes according to expression levels from their corresponding RNA-seq sample, from 428 
top (high expression) to bottom (low expression). Genes were binned in three groups of equal size : light 429 
green (high expression), dark green (low to no expression), and purple (no expression). For each gene, 430 
DNA methylation ratio is represented in the -2.5kb +2.5kb window surrounding their Transcription Start 431 
Site (TSS). Bottom panels display the expression values in each bin of genes, as well as their average DNA 432 
methylation ratio around TSS. A. LRFI samples in the fasted condition. B. LRFI samples in the fed 433 
condition (one sample failed during library preparation). C. HRFI samples in the fasted condition. D. HRFI 434 
samples in the fed condition. 435 

ACKNOWLEDGMENTS 436 
The authors would like to thank Sophie Leroux and all the GenESI staff for their help with the pig 437 
experimentation and sampling (36). We are grateful to the GenoToul bioinformatics platform Toulouse 438 
Occitanie (Bioinfo GenoToul (66)) for providing computing and storage resources. GD thanks Sylvain 439 
Foissac for his insight in lncRNA gene annotations, and the Bioinfo-fr IRC/Discord community for their 440 



support and insight on Gene Ontology analysis. This work was partially funded by the Animal Genetics 441 
department of INRAE. 442 

GRANTS 443 
Agence Nationnale de la Recherche (ANR), grant MicroFeed  ANR-16-CE20-0003 (to HG, JR). 444 

DISCLOSURES 445 
The authors declared no conflict of interests. 446 

DISCLAIMERS 447 
None. 448 

AUTHOR CONTRIBUTIONS 449 
Identify which authors participated in the research: Conceived and designed research, performed 450 
experiments, analyzed data, interpreted results of experiments, prepared figures, drafted manuscript, 451 
edited and revised manuscript, approved final version of manuscript. The information must be the same 452 
as in the online submission site. 453 

REFERENCES 454 
 

1.  Van Zanten HHE, Herrero M, Van Hal O, Röös E, Muller A, Garnett T, Gerber PJ, Schader C, De 
Boer IJM. Defining a land boundary for sustainable livestock consumption. Glob Change Biol 24: 
4185–4194, 2018. doi: 10.1111/gcb.14321. 

2.  Andretta I, Hickmann FMW, Remus A, Franceschi CH, Mariani AB, Orso C, Kipper M, Létourneau-
Montminy M-P, Pomar C. Environmental Impacts of Pig and Poultry Production: Insights From a 
Systematic Review. Front Vet Sci 8: 750733, 2021. doi: 10.3389/fvets.2021.750733. 

3.  Monteiro ANTR, Brossard L, Gilbert H, Dourmad J-Y. Environmental Impacts and Their Association 
With Performance and Excretion Traits in Growing Pigs. Front Vet Sci 8: 677857, 2021. doi: 
10.3389/fvets.2021.677857. 

4.  Soleimani T, Hermesch S, Gilbert H. Economic and environmental assessments of combined 
genetics and nutrition optimization strategies to improve the efficiency of sustainable pork 
production. J Anim Sci 99: skab051, 2021. doi: 10.1093/jas/skab051. 

5.  Gilbert H, Billon Y, Brossard L, Faure J, Gatellier P, Gondret F, Labussière E, Lebret B, Lefaucheur 
L, Le Floch N, Louveau I, Merlot E, Meunier-Salaün M-C, Montagne L, Mormede P, Renaudeau D, 
Riquet J, Rogel-Gaillard C, van Milgen J, Vincent A, Noblet J. Review: divergent selection for 
residual feed intake in the growing pig. animal 11: 1427–1439, 2017. doi: 
10.1017/S175173111600286X. 



6.  Banerjee P, Carmelo VAO, Kadarmideen HN. Integrative Analysis of Metabolomic and 
Transcriptomic Profiles Uncovers Biological Pathways of Feed Efficiency in Pigs. Metabolites 10: 
275, 2020. doi: 10.3390/metabo10070275. 

7.  Ramayo-Caldas Y, Ballester M, Sánchez JP, González-Rodríguez O, Revilla M, Reyer H, Wimmers 
K, Torrallardona D, Quintanilla R. Integrative approach using liver and duodenum RNA-Seq data 
identifies candidate genes and pathways associated with feed efficiency in pigs. Sci Rep 8: 558, 
2018. doi: 10.1038/s41598-017-19072-5. 

8.  Wang X, Kadarmideen HN. Metabolite Genome-Wide Association Study (mGWAS) and Gene-
Metabolite Interaction Network Analysis Reveal Potential Biomarkers for Feed Efficiency in Pigs. 
Metabolites 10: 201, 2020. doi: 10.3390/metabo10050201. 

9.  Xu C, Wang X, Zhuang Z, Wu J, Zhou S, Quan J, Ding R, Ye Y, Peng L, Wu Z, Zheng E, Yang J. A 
Transcriptome Analysis Reveals that Hepatic Glycolysis and Lipid Synthesis Are Negatively 
Associated with Feed Efficiency in DLY Pigs. Sci Rep 10: 9874, 2020. doi: 10.1038/s41598-020-
66988-6. 

10.  Xu C, Wang X, Zhou S, Wu J, Geng Q, Ruan D, Qiu Y, Quan J, Ding R, Cai G, Wu Z, Zheng E, Yang J. 
Brain Transcriptome Analysis Reveals Potential Transcription Factors and Biological Pathways 
Associated with Feed Efficiency in Commercial DLY Pigs. DNA Cell Biol 40: 272–282, 2021. doi: 
10.1089/dna.2020.6071. 

11.  Delpuech E, Aliakbari A, Labrune Y, Fève K, Billon Y, Gilbert H, Riquet J. Identification of genomic 
regions affecting production traits in pigs divergently selected for feed efficiency. Genet Sel Evol 
GSE 53: 49, 2021. doi: 10.1186/s12711-021-00642-1. 

12.  Gondret F, Vincent A, Houée-Bigot M, Siegel A, Lagarrigue S, Causeur D, Gilbert H, Louveau I. A 
transcriptome multi-tissue analysis identifies biological pathways and genes associated with 
variations in feed efficiency of growing pigs. BMC Genomics 18: 244, 2017. doi: 10.1186/s12864-
017-3639-0. 

13.  Le Naou T, Le Floc’h N, Louveau I, Gilbert H, Gondret F. Metabolic changes and tissue responses to 
selection on residual feed intake in growing pigs. J Anim Sci 90: 4771–4780, 2012. doi: 
10.2527/jas.2012-5226. 

14.  Montagne L, Loisel F, Le Naou T, Gondret F, Gilbert H, Le Gall M. Difference in short-term 
responses to a high-fiber diet in pigs divergently selected for residual feed intake1. J Anim Sci 92: 
1512–1523, 2014. doi: 10.2527/jas.2013-6623. 

15.  Aliakbari A, Zemb O, Billon Y, Barilly C, Ahn I, Riquet J, Gilbert H. Genetic relationships between 
feed efficiency and gut microbiome in pig lines selected for residual feed intake. J Anim Breed 
Genet 138: 491–507, 2021. doi: 10.1111/jbg.12539. 

16.  Meunier-Salaün MC, Guérin C, Billon Y, Sellier P, Noblet J, Gilbert H. Divergent selection for 
residual feed intake in group-housed growing pigs: characteristics of physical and behavioural 
activity according to line and sex. Animal 8: 1898–1906, 2014. doi: 10.1017/S1751731114001839. 



17.  Le Gall M, Thenet S, Aguanno D, Jarry A-C, Genser L, Ribeiro-Parenti L, Joly F, Ledoux S, Bado A, 
Le Beyec J. Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutr Rev 77: 
129–143, 2019. doi: 10.1093/nutrit/nuy064. 

18.  Amin T, Mercer JG. Hunger and Satiety Mechanisms and Their Potential Exploitation in the 
Regulation of Food Intake. Curr Obes Rep 5: 106–112, 2016. doi: 10.1007/s13679-015-0184-5. 

19.  Suzuki K, Simpson KA, Minnion JS, Shillito JC, Bloom SR. The role of gut hormones and the 
hypothalamus in appetite regulation. Endocr J 57: 359–372, 2010. doi: 10.1507/endocrj.K10E-077. 

20.  Zhang H, Xia P, Feng L, Jia M, Su Y. Feeding Frequency Modulates the Intestinal Transcriptome 
Without Affecting the Gut Microbiota in Pigs With the Same Daily Feed Intake. Front Nutr 8: 
743343, 2021. doi: 10.3389/fnut.2021.743343. 

21.  Mazurais D, Romé V, Cahu A, Gadie, Le Huërou-Luron I. Fasting and refeeding impacts on piglet 
jejunal transcriptome during weaning period. Livest Sci 108: 13–16, 2007. doi: 
10.1016/j.livsci.2007.01.006. 

22.  Yoshioka M, Bolduc C, Raymond V, St-Amand J. High-fat meal-induced changes in the duodenum 
mucosa transcriptome. Obes Silver Spring Md 16: 2302–2307, 2008. doi: 10.1038/oby.2008.352. 

23.  Ma K, Hu Y, Smith DE. Influence of fed-fasted state on intestinal PEPT1 expression and in vivo 
pharmacokinetics of glycylsarcosine in wild-type and Pept1 knockout mice. Pharm Res 29: 535–
545, 2012. doi: 10.1007/s11095-011-0580-9. 

24.  Hediger MA, Clémençon B, Burrier RE, Bruford EA. The ABCs of membrane transporters in health 
and disease (SLC series): Introduction. Mol Aspects Med 34: 95–107, 2013. doi: 
10.1016/j.mam.2012.12.009. 

25.  Schumann T, König J, Henke C, Willmes DM, Bornstein SR, Jordan J, Fromm MF, Birkenfeld AL. 
Solute Carrier Transporters as Potential Targets for the Treatment of Metabolic Disease. 
Pharmacol Rev 72: 343–379, 2020. doi: 10.1124/pr.118.015735. 

26.  Zhang Y, Zhang Y, Sun K, Meng Z, Chen L. The SLC transporter in nutrient and metabolic sensing, 
regulation, and drug development. J Mol Cell Biol 11: 1–13, 2019. doi: 10.1093/jmcb/mjy052. 

27.  Bogdanović O, Lister R. DNA methylation and the preservation of cell identity. Curr Opin Genet Dev 
46: 9–14, 2017. doi: 10.1016/j.gde.2017.06.007. 

28.  Mattei AL, Bailly N, Meissner A. DNA methylation: a historical perspective. Trends Genet 38: 676–
707, 2022. doi: 10.1016/j.tig.2022.03.010. 

29.  Pinho RM, Maga EA. DNA methylation as a regulator of intestinal gene expression. Br J Nutr 126: 
1611–1625, 2021. doi: 10.1017/S0007114521000556. 

30.  Deaton AM, Bird A. CpG islands and the regulation of transcription. Genes Dev 25: 1010–1022, 
2011. doi: 10.1101/gad.2037511. 



31.  Sheaffer KL, Kim R, Aoki R, Elliott EN, Schug J, Burger L, Schübeler D, Kaestner KH. DNA 
methylation is required for the control of stem cell differentiation in the small intestine. Genes Dev 
28: 652–664, 2014. doi: 10.1101/gad.230318.113. 

32.  Kaaij LTJ, van de Wetering M, Fang F, Decato B, Molaro A, van de Werken HJG, van Es JH, 
Schuijers J, de Wit E, de Laat W, Hannon GJ, Clevers HC, Smith AD, Ketting RF. DNA methylation 
dynamics during intestinal stem cell differentiation reveals enhancers driving gene expression in 
the villus. Genome Biol 14: R50, 2013. doi: 10.1186/gb-2013-14-5-r50. 

33.  Tao S, Zhou T, Saelao P, Wang Y, Zhu Y, Li T, Zhou H, Wang J. Intrauterine Growth Restriction 
Alters the Genome-Wide DNA Methylation Profiles in Small Intestine, Liver and Longissimus Dorsi 
Muscle of Newborn Piglets. Curr Protein Pept Sci 20: 713–726, 2019. doi: 
10.2174/1389203720666190124165243. 

34.  Devos J, Behrouzi A, Paradis F, Straathof C, Li C, Colazo M, Block H, Fitzsimmons C. Genetic 
potential for residual feed intake and diet fed during early- to mid-gestation influences post-natal 
DNA methylation of imprinted genes in muscle and liver tissues in beef cattle. J Anim Sci 99: 
skab140, 2021. doi: 10.1093/jas/skab140. 

35.  Hjort L, Jørgensen SW, Gillberg L, Hall E, Brøns C, Frystyk J, Vaag AA, Ling C. 36 h fasting of young 
men influences adipose tissue DNA methylation of LEP and ADIPOQ in a birth weight-dependent 
manner. Clin Epigenetics 9: 40, 2017. doi: 10.1186/s13148-017-0340-8. 

36.  GenESI. Pig Innovative Breeding Experimental Facility. . 

37.  GET. Genome & Transcriptome Facility. . 

38.  Ewels PA, Peltzer A, Fillinger S, Patel H, Alneberg J, Wilm A, Garcia MU, Di Tommaso P, Nahnsen 
S. The nf-core framework for community-curated bioinformatics pipelines. Nat Biotechnol 38: 276–
278, 2020. doi: 10.1038/s41587-020-0439-x. 

39.  Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C. Salmon provides fast and bias-aware 
quantification of transcript expression. Nat Methods 14: 417–419, 2017. doi: 10.1038/nmeth.4197. 

40.  Cunningham F, Allen JE, Allen J, Alvarez-Jarreta J, Amode MR, Armean IM, Austine-Orimoloye O, 
Azov AG, Barnes I, Bennett R, Berry A, Bhai J, Bignell A, Billis K, Boddu S, Brooks L, Charkhchi M, 
Cummins C, Da Rin Fioretto L, Davidson C, Dodiya K, Donaldson S, El Houdaigui B, El Naboulsi T, 
Fatima R, Giron CG, Genez T, Martinez JG, Guijarro-Clarke C, Gymer A, Hardy M, Hollis Z, Hourlier 
T, Hunt T, Juettemann T, Kaikala V, Kay M, Lavidas I, Le T, Lemos D, Marugán JC, Mohanan S, 
Mushtaq A, Naven M, Ogeh DN, Parker A, Parton A, Perry M, Piližota I, Prosovetskaia I, Sakthivel 
MP, Salam AIA, Schmitt BM, Schuilenburg H, Sheppard D, Pérez-Silva JG, Stark W, Steed E, 
Sutinen K, Sukumaran R, Sumathipala D, Suner M-M, Szpak M, Thormann A, Tricomi FF, Urbina-
Gómez D, Veidenberg A, Walsh TA, Walts B, Willhoft N, Winterbottom A, Wass E, Chakiachvili M, 
Flint B, Frankish A, Giorgetti S, Haggerty L, Hunt SE, IIsley GR, Loveland JE, Martin FJ, Moore B, 
Mudge JM, Muffato M, Perry E, Ruffier M, Tate J, Thybert D, Trevanion SJ, Dyer S, Harrison PW, 
Howe KL, Yates AD, Zerbino DR, Flicek P. Ensembl 2022. Nucleic Acids Res 50: D988–D995, 2022. 
doi: 10.1093/nar/gkab1049. 



41.  Soneson C, Love MI, Robinson MD. Differential analyses for RNA-seq: transcript-level estimates 
improve gene-level inferences. F1000Research 4: 1521, 2015. doi: 10.12688/f1000research.7563.1. 

42.  Law CW, Chen Y, Shi W, Smyth GK. voom: precision weights unlock linear model analysis tools for 
RNA-seq read counts. Genome Biol 15: R29, 2014. doi: 10.1186/gb-2014-15-2-r29. 

43.  Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, Fu X, Liu S, Bo X, Yu G. 
clusterProfiler 4.0: A universal enrichment tool for interpreting omics data. The Innovation 2: 
100141, 2021. doi: 10.1016/j.xinn.2021.100141. 

44.  Gu Z, Eils R, Schlesner M. Complex heatmaps reveal patterns and correlations in multidimensional 
genomic data. Bioinformatics 32: 2847–2849, 2016. doi: 10.1093/bioinformatics/btw313. 

45.  Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets 
and their properties. Bioinformatics 33: 2938–2940, 2017. doi: 10.1093/bioinformatics/btx364. 

46.  Carbon, Seth, Mungall, Chris. Gene Ontology Data Archive. Zenodo: 2023. 

47.  The Gene Ontology Consortium. The Gene Ontology Resource: 20 years and still GOing strong. 
Nucleic Acids Res 47: D330–D338, 2019. doi: 10.1093/nar/gky1055. 

48.  Riebler A, Menigatti M, Song JZ, Statham AL, Stirzaker C, Mahmud N, Mein CA, Clark SJ, Robinson 
MD. BayMeth: improved DNA methylation quantification for affinity capture sequencing data 
using a flexible Bayesian approach. Genome Biol 15: R35, 2014. doi: 10.1186/gb-2014-15-2-r35. 

49.  Gord Brown <Gdbzork@Gmail.Com>. GreyListChIP. Bioconductor: 2017. 

50.  Gu Z, Eils R, Schlesner M, Ishaque N. EnrichedHeatmap: an R/Bioconductor package for 
comprehensive visualization of genomic signal associations. BMC Genomics 19: 234, 2018. doi: 
10.1186/s12864-018-4625-x. 

51.  Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq 
data with DESeq2. Genome Biol 15: 550, 2014. doi: 10.1186/s13059-014-0550-8. 

52.  Saci S, Devailly G. epistack: An R package to visualise stack profiles of epigenomic signals [Online]. 
[date unknown]. https://bioconductor.org/packages/release/bioc/html/epistack.html. 

53.  Stewart AK, Kurschat CE, Vaughan-Jones RD, Alper SL. Putative Re-entrant Loop 1 of AE2 
Transmembrane Domain Has a Major Role in Acute Regulation of Anion Exchange by pH. J Biol 
Chem 284: 6126–6139, 2009. doi: 10.1074/jbc.M802051200. 

54.  Harris HA, Friedman C, Starling AP, Dabelea D, Johnson SL, Fuemmeler BF, Jima D, Murphy SK, 
Hoyo C, Jansen PW, Felix JF, Mulder R. An epigenome-wide association study of child appetitive 
traits and DNA methylation. Genetics. 

55.  Vancamelbeke M, Vermeire S. The intestinal barrier: a fundamental role in health and disease. 
Expert Rev Gastroenterol Hepatol 11: 821–834, 2017. doi: 10.1080/17474124.2017.1343143. 



56.  Gilbert H, Ruesche J, Muller N, Billon Y, Begos V, Montagne L. Responses to weaning in two pig 
lines divergently selected for residual feed intake depending on diet1. J Anim Sci 97: 43–54, 2019. 
doi: 10.1093/jas/sky416. 

57.  Montagne L, Gilbert H, Muller N, Le Floc’h N. Physiological response to the weaning in two pig 
lines divergently selected for residual feed intake. J Anim Physiol Anim Nutr 106: 802–812, 2022. 
doi: 10.1111/jpn.13622. 

58.  de Mendoza A, Nguyen TV, Ford E, Poppe D, Buckberry S, Pflueger J, Grimmer MR, Stolzenburg S, 
Bogdanovic O, Oshlack A, Farnham PJ, Blancafort P, Lister R. Large-scale manipulation of 
promoter DNA methylation reveals context-specific transcriptional responses and stability. 
Genome Biol 23: 163, 2022. doi: 10.1186/s13059-022-02728-5. 

59.  Aliakbari A, Delpuech E, Labrune Y, Riquet J, Gilbert H. The impact of training on data from 
genetically-related lines on the accuracy of genomic predictions for feed efficiency traits in pigs. 
Genet Sel Evol 52: 57, 2020. doi: 10.1186/s12711-020-00576-0. 

60.  Jones PA, Liang G. Rethinking how DNA methylation patterns are maintained. Nat Rev Genet 10: 
805–811, 2009. doi: 10.1038/nrg2651. 

61.  Aguet F, Alasoo K, Li YI, Battle A, Im HK, Montgomery SB, Lappalainen T. Molecular quantitative 
trait loci. Nat Rev Methods Primer 3: 4, 2023. doi: 10.1038/s43586-022-00188-6. 

62.  Nguyen NTT, Vincens P, Dufayard JF, Roest Crollius H, Louis A. Genomicus in 2022: comparative 
tools for thousands of genomes and reconstructed ancestors. Nucleic Acids Res 50: D1025–D1031, 
2022. doi: 10.1093/nar/gkab1091. 

63.  Heinritz SN, Mosenthin R, Weiss E. Use of pigs as a potential model for research into dietary 
modulation of the human gut microbiota. Nutr Res Rev 26: 191–209, 2013. doi: 
10.1017/S0954422413000152. 

64.  Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human 
biomedical model. Sci Transl Med 13: eabd5758, 2021. doi: 10.1126/scitranslmed.abd5758. 

65.  Zhang Q, Widmer G, Tzipori S. A pig model of the human gastrointestinal tract. Gut Microbes 4: 
193–200, 2013. doi: 10.4161/gmic.23867. 

66.  GenoToul Bioinfo. GenoToul Bioinformatics Facility. 

FIGURE LEGENDS 455 
Figure 1: Experimental setup. A. 24 pigs from two pig lines (12 LRFI and 12 HRFI) were used, distributed 456 
in 3 litters of 4 pigs for each line, with two males and two females in each litter (to the exception of litter 457 
E). Half of the pigs were fasted while the other half was fed before sampling. B. Fasting procedure. Pigs 458 
were slotted into two pens with ad libitum feeding. Feed was removed from the two pens overnight, 459 
and reintroduced in the morning into one of the pens 2 hours before sampling started in this pen. 460 

Figure 2: Differential gene expression between the duodenum of LRFI and HRFI lines. A. 1,106 genes 461 
were detected differentially expressed between LRFI and HRFI, including 464 genes upregulated in LRFI 462 



(top) and 642 genes upregulated on the HRFI line (bottom). Samples from fasted and fed pigs were 463 
analyzed together for each line. B & C. Gene Ontology - Biological Process (GO-BP) enrichment analysis. 464 
GO-BP terms statistically enriched in the 642 genes upregulated on the HRFI line (B) and the 464 genes 465 
upregulated in LRFI line (C) are displayed as a tree using Jaccard similarity between each pair of GO-BP. 466 

Figure 3: Duodenum transcriptomic response to feed intake. A. Gene expression heatmap of the 2,225 467 
genes differentially expressed by feed intake in LRFI (2,222 genes), in HRFI (61 genes, including 58 genes 468 
also affected by feed intake in LRFI). B. Upset diagram showing the overlap between differentially 469 
expressed gene lists, between LRFI and HRFI (green), and due to feed intake in LRFI pigs (blue) or HRFI 470 
pigs (red). C, D & E. Gene Ontology - Biological Process (GO-BP) enrichment analysis. GO-BP terms 471 
statistically enriched in the 1,050 genes upregulated upon fasting in the LRFI line (C), the 1,172 genes 472 
upregulated in fed pigs from the LRFI line (D), and the 41 genes upregulated in fed pigs from the HRFI 473 
line (E) are displayed as a tree using Jaccard similarity between each pair of GO-BP. F. Gene expression 474 
heatmap of the 185 genes differentially expressed both by line and by feed intake in LRFI and/or HRFI 475 
pigs. 476 

Figure 4: Gene expression heatmaps of the 59 SLC genes (A) or 18 tight junction genes (B) that are 477 
differentially expressed either between the LRFI and HRFI lines, or by feed intake in each line. 478 
Transporter names and known substrates are noted on the right of the heatmap. Three symbolic 479 
columns indicate if each gene is significantly differentially expressed (marked with “*”) or not (marked 480 
with “·”) between the two lines (Line column), or by feed intake in the LRFI line (LRFI column), or by feed 481 
intake in the HRFI line (HRFI column). Side trees are coloured according to hierarchical clustering, and 482 
are only used as visualisation guides. 483 

Figure 5: Differentially methylated regions in the duodenum between LRFI and HRFI samples. A. Upset 484 
plot of differentially methylated regions. Green: between LRFI and HRFI samples. Blue: between fasted 485 
and fed samples in LRFI pigs. Red: between fasted and fed samples in HRFI pigs B. DNA methylation 486 
stack profiles at differentially methylated regions between LRFI and HRFI samples. Top: log2 Fold Change 487 
(FC) of MeDP-seq normalised coverage at DMR. The 409 LRFI/HRFI DMRs are sorted according to their 488 
fold change. Then: each DMR is categorised into a hypermethylated in LRFI bin (hyperM, red) or 489 
hypomethyated in LRFI bin (hypoM, blue). Then: Average DNA methylation ratio at ± 2.5kb of DMR 490 
centers, in LRFI (blue) or HRFI (red) samples. Bottom: Distribution of fold changes in each bin, then 491 
average DNA methylation ratios in each bin (hyperM in LRFI: red, hypoM in LRFI: blue). 492 

Figure 6: Some differentially methylated regions at proximity differentially expressed genes. A,C, E, G, I, 493 
K: DNA methylation profiles around differentially methylated regions. From top to bottom: gene 494 
structure in black. Thick boxes are exons, thin lines are introns, arrows indicate gene direction. Grey box 495 
indicates DMR location. Then, average DNA methylation ratio profiles ± 95% confidence interval per line 496 
(A, C, E, G, I, blue: LRFI, red: HRFI) or per condition in each line (K, light blue: LRFI fasted, dark blue: LRFI 497 
fed, light red: HRFI fasted, dark red: HRFI fed). Then genome coordinates of the corresponding region. B, 498 
D, F, H, J, L: Gene expression values in LRFI fasted (light blue), LRFI fed (dark blue), HRFI fasted (light 499 
red), HRFI fed (dark red) samples. Unit in transcript per million (TPM). Each dot is a sample, and boxplots 500 
are added to ease visualisation. NS: non significant. *: FDR-adjusted p-values < 0.05. **: FDR-adjusted p-501 
values < 0.01. Adjusted p-values are from the differential expression analysis using limma voom. 502 
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