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Abstract—We consider optimal control problems which consist
in minimizing the L∞ norm of an output function under an
isoperimetric or L1 inequality. These problems typically arise in
control applications when one looks to minimizing the maximum
trajectory deviation or ”peak” under a budget constraint. We
show a duality with more classical problems which amount to
minimizing the L1 cost under the state constraint given by an
upper bound on the L∞ norm of the output. More precisely, we
provide a result linking the value functions of these two problems,
as functions of the levels of the two kind of constraints. This is
obtained for initial conditions at which lower semi-continuity of
the value functions can be guaranteed, and is completed with
optimality considerations. When the duality holds, we show that
the two problems have the same optimal controls. Furthermore,
we provide structural assumptions on the dynamics under which
the semi-continuity of the value functions can be established.
We illustrate theses results on non-pharmaceutically controlled
epidemics models under peak or budget restrictions.

Index Terms—Optimal control, L∞ cost, iso-perimetric in-
equality, state constraint, value function, duality.

I. INTRODUCTION

Optimal control theory traditionally deals with integral or
terminal costs, or both. For such criteria, necessary optimal
conditions such as Maximum Principle of Pontryagin, or suf-
ficient conditions based on dynamic programming and value
functions are available under certain regularity hypotheses
(see for instance [7]). However, these criteria do not reflect
transient behaviors and, in particular, risky situations. For
some applications, maximum trajectory deviations [16], [15],
[19] or epidemic peaks [20] need to be minimized, leading to
L∞-type criterion [3], [10], [21] or ”minimax” [23] control
problems. However, minimizing excursions in the state space
can be penalizing in terms of budget, usually represented by
an integral or L1 criterion. In this work, we consider that
problem of minimizing a supremum cost under an isoperi-
metric inequality-type budget constraint. Although L∞-type
problems have been addressed in the literature, there are few
theoretical tools, essentially based on the Bellman equation
[4]. A practical way of dealing with these problems is to
impose a constraint on the cost value, which amounts to
imposing a state constraint, and then to search for the smallest
value for which this state constraint can be satisfied under
the budget constraint; or to minimize the budget necessary to
satisfy the state constraint. Handling a running-cost problem,
even under state constraints, is, perhaps, more accessible,

albeit the need for structural conditions of the domain de-
scribing the constraints (see, for instance, [22], [11], [13],
[12], [6]). Furthermore, such problems fall under the realm
of Pontryagin’s Maximum Principle and are, therefore, more
likely to provide a candidate for optimality. There is thus
a dual way of tackling the minimization of L∞ cost under
L1 constraint (problem 1): minimizing the L1 criterion under
L∞ constraint (problem 2). From this point of view, a result
linking the value functions of the these two problems finds its
importance, especially if this is accompanied by links between
the optimal controls. The aim of the present paper is precisely
to to investigate this L∞/L1 duality, which has not been yet
addressed in the literature, to our best knowledge.

In the following, R and R+ stand for the sets of real and
non-negative real numbers, respectively. For any function φ :
X 7→ R ∪ {±∞} defined on a non empty topological set X ,
its domain denoted Domϕ refer to the the subset of points of
X for which the image by φ is finite.

Let us illustrate this duality on a simple example in R2,
which consists in controlling the double integrator{

ẋ1 = x2,
ẋ2 = u ∈ [−1, 1]

for which one seeks to minimize the supremum of the coor-
dinate x1 under a L1 budget on the control∫ +∞

0

|u(t)|dt ≤ ḡ

(problem 1). One can straightforwardly check that the optimal
solution consists in taking the control u = −1 until x1 reaches
its maximum when x2(0) > 0, which gives the following value
function

Vg(x; ḡ) =


x1 if x2 ≤ 0,

x1 +
x2
2

2 if 0 < x2 ≤ ḡ,

+∞ otherwise.

For the dual problem, which consists in minimizing the L1

norm of the control to keep x1 below a threshold

sup
t≥0

x1(t) ≤ h̄

(problem 2), one gets also straightforwardly that the optimal
control is u = −1 when x2(0) > 0 until x1 reaches its
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maximum at the time equal to x2(0), which gives the following
expression of the value function

Vh(x; h̄) =


0 if x1 ≤ h̄ and x2 ≤ 0,

x2 if x1 +
x2
2

2 ≤ h̄ and x2 > 0,

+∞ otherwise.

We note that for any x, Vg(x, ·), Vh(x; ·) are lower semi-
continuous and a duality holds in the sense that one has

Vh(x, h) = inf{g; Vg(x, g) ≤ h}, h ∈ DomVh(x, ·),

Vg(x, g) = inf{h; Vh(x, h) ≤ g}, g ∈ DomVg(x, ·).
Regularity and characterization of value functions for opti-

mal control problems with L∞ cost have already been investi-
gated in the literature (see for instance [2], [17]). However, let
us underline that the consideration of L1 constraints and the
dependency of the value functions with respect to the level of
the constraint have not been yet studied in the literature.

The paper is organized as follows. In Section II, we give
precise formulations of our control problems, and their as-
sumptions. A particular emphasis is put on viability kernels
as support domains of the value functions. Our main contri-
butions are given in Section III, where we provide a duality
result under lower semi-continuity of the value functions (sub-
section III-A). Then, we give sufficient conditions for lower
semi-continuity in sub-section III-B. Section IV is devoted to
the illustration of our result on an epidemiological model with
non-pharmaceutical control.

II. PRELIMINARIES

A. Dynamics and Assumptions

In this work, we shall deal with a controlled dynamics{
ẋ(t) = f(x(t), u(t)), a.e. t ≥ 0;

x(0) = x0 ∈ Ω
(1)

where Ω is a subset of Rn (where n is a positive integer) with
non-empty interior, and u(t) belongs to a subset U of a metric
space. We require the following standard assumptions.

Assumptions 1.
1. U is compact and the map f : Ω×U → Rn is continuous

and [f ]1-Lipschitz in x uniformly in u i.e.

[f ]1 := sup
u∈U

sup
x,y∈Ω, x ̸=y

|f(x, u)− f(y, u)|
|x− y|

< +∞.

Ω is forward invariant, i.e. any solution x(·) of (1) with
x0 ∈ Ω, u ∈ U verifies x(t) ∈ Ω for any t ≥ 0, where
U := L0(R+;U), the set of Borel-measurable functions
u : R+ → U , will be referred to as admissible controls.

2. The functions h : Ω → R, g : Ω×U → R+ are bounded,
continuous and Lipschitz in x uniformly in u, i.e.

sup
u∈U

sup
x,y∈Ω, x ̸=y

|g(x, u)− g(y, u)|+ |h(x)− h(y)|
|x− y|

< +∞.

We will denote by g∞ := sup
(x,u)∈Ω×U

g(x, u).

Under Assumption 1.1, system (1) admits a unique abso-
lutely continuous solution denoted xx0,u(·) for x0 ∈ Ω, u ∈ U .

B. The Control Problems

Let us consider the extended dynamics with an additional
scalar component z that integrates the running cost g, that is

ẋ(t) = f(x(t), u(t)),

ż(t) = g(x(t), u(t)),

x(0) = x0 ∈ Ω, z(0) = z0 ∈ R+

(2)

whose solution is denoted (xx0,u(·), zx0,z0,u(·)). As z is the
integral of a bounded output function, existence and unique-
ness of solutions of (2) are preserved under Assumption 1.1.

We recall our aim to address problems in which the running
maximum is minimized while obeying an area upper bound
or, vice-versa, minimize the area while imposing a running
constraint on the trajectories. Given x0 ∈ Ω, h0 ∈ R, g0 ∈ R+,
we define the sets of viable controls related to system (2)

Uh(x0, h0) :=
{
u ∈ U ; h(xx0,u(t)) ≤ h0, ∀t ≥ 0

}
,

Ug(x0, g0) :=
{
u ∈ U ; zx0,0,u(t) ≤ g0, ∀t ≥ 0

}
,

and the parameterized viability kernels as follows.

Viabh(h0) :=
{
x0 ∈ Ω : Uh(x0, h0) ̸= ∅

}
,

Viabg(g0) :=
{
x0 ∈ Ω : Ug(x0, g0) ̸= ∅

}
,

Viabhg(h0, g0) :=
{
x0 ∈ Ω : Uh(x0, h0) ∩ Ug(x0, g0) ̸= ∅

}
.

Remark 1. Viabh,Viabg considered as set-valued maps enjoy
monotonicity properties (with the partial order given by the
inclusion of sets). Similar assertions can be given for the
set-valued map Viabhg if one considers the order relation
(h0, g0) ⪯ (h′0, g

′
0) defined by h0 ≤ h′0 and g0 ≤ g′0.

We first consider the optimal problem with state constraint.

Problem 1. Given x0 ∈ Ω and h0 ∈ R,

Ph(x0;h0) : minimize G(x0, u) over u ∈ Uh(x0, h0)

where G(x0, u) :=
∫ +∞

0

g(xx0,u(t), u(t))dt.

The value function is denoted by Vh(x0;h0), which is set to
+∞ when x0 /∈ Viabh(h0).

We consider the dual problem with integral constraint.

Problem 2. Given x0 ∈ Ω and g0 ∈ R+,

Pg(x0; g0) : minimize H(x0, u) over u ∈ Ug(x0, g0)

where H(x0, u) := sup
t≥0

h(xx0,u(t))

The value function is denoted by Vg(x0; g0), which is set to
+∞ when x0 /∈ Viabg(g0).

We shall denote in the following partial inverses of the
viability kernel map Vhg as follows

Viab−g
hg (x0;h0) := {g0 ∈ R+ ; x0 ∈ Viabhg(h0, g0)},

Viab−h
hg (x0; g0) := {h0 ∈ R ; x0 ∈ Viabhg(h0, g0)}

Then, one can formulate the following observations.
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Remark 2. Note that our problems amount to finding

Vh(x0;h0) = inf Viab−g
hg (x0;h0),

Vg(x0; g0) = inf Viab−h
hg (x0; g0).

(3)

This is consistent with setting +∞ whenever the sets to which
the inf operator is to be applied are empty. The viability kernel
Viabhg offers thus a complete description of the domains

DomVh(x0; ·) =
⋃

h0∈R
Dom

(
Viab−g

hg (x0;h0)
)
,

DomVg(x0; ·) =
⋃

g0∈R+

Dom
(

Viab−h
hg (x0; g0)

) (4)

where the domain Dom(F ) of a set-valued map F : R⇝ Rn

is the set of points θ ∈ R for which F (θ) ̸= ∅.
The functions Vh(x0; ·), Vg(x0; ·) are bounded on their

domains, as g and h are bounded functions, by Assumption
1.2.

We begin with some elementary properties.

Proposition 1. Let x0 ∈ Ω.
1) Vg(x0; ·) and Vh(x0; ·) are non-increasing.
2) If Vh(x0; ·), resp. Vg(x0; ·), is lower-semi-continuous,

then it is right-continuous on its domain.

Proof.
1) Let us consider g0 ≤ g0′ and u(·) a measurable control

such that
∫ +∞
0

g(xx0,u(t), u(t)) ≤ g0, then one nec-
essarily has

∫∞
0
g(xx0,u(t), u(t)) ≤ g0′ , which implies

Vg(x0; g0′) ≤ Vg(x0; g0). A similar argument implies that
Vh(x0; ·) is non-increasing.

2) By monotonicity, if h0 ∈ DomVh(x0; ·),
then [h0,∞) ⊂ DomVh(x0; ·), and one has
lim infh→h0+ Vh(x0;h) ≤ Vh(x0;h0). Under the further
assumption that Vh(x0; ·) is lower semi-continuous at
h0, one gets lim infh→h0+ Vh(x0;h) = Vh(x0;h0), that
is the right continuity of Vh(x0; ·) at h0. The property
for Vg(x0; ·) follows in the same way.

Remark 3. Here and in the following section, the semi-
continuity of Vh and Vg are required with respect to the
constraint levels h0, g0 and not with respect to the initial x0.
While this latter property is well studied (see, for instance,
[8]), to our best knowledge, little is available for semi-
continuity with respect to the level of constraints.

III. THE MAIN RESULTS

We first show that a duality between problems Pg and P can
be established when the value functions Vh, Vg are lower semi-
continuous. In a second step, we give sufficient conditions for
these value functions to be semi-continuous.

A. The Duality Results

We first show how the value functions Vh, Vg can be linked.

Theorem 1. Let x0 ∈ Ω.

1) If Vg(x0; ·) is right continuous at g0 ∈ R+, then, for any
h0 ∈ R s.t. Vh(x0;h0) ≤ g0, one has Vg(x0; g0) ≤ h0.
If Vh(x0; ·) is right continuous at h0 ∈ R, then, for any
g0 ∈ R+ s.t. Vg(x0; g0) ≤ h0 one has Vh(x0;h0) ≤ g0.

2) If the functions Vh(x0; ·), Vg(x0; ·) are lower semi-
continuous on their domains, then Vh, Vg are generalized
inverse i.e.
Vh(x0;h0) = inf {g0 : Vg(x0; g0) ≤ h0},

h0 ∈ DomVh(x0; ·),
Vg(x0; g0) = inf {h0 : Vh(x0;h0) ≤ g0},

g0 ∈ DomVg(x0; ·).

(5)

Proof. 1) Assume Vh(x0;h0) ≤ g0 < +∞ for h0 < +∞.
For any ε > 0, there exists an admissible control uε such
that

∫∞
0
g
(
xx0,u

ε

(t), uε(t)
)
dt ≤ Vh(x0;h0) + ε ≤ g0 + ε

with h
(
xx0,u

ε

(t)
)
≤ h0, for all t ≥ 0. Then, by definition,

Vg(x0; g0 + ε) ≤ h0. The conclusion follows from the right-
continuity of Vg(x0; ·) at g0. The remaining assertion is shown
in the same way.

2) By point 1. of Proposition 1, g0 = Vh(x0;h0) implies
Vg(x0; g0) ≤ h0. Then, to show

Vh(x0;h0) = inf {g′0 : Vg(x0; g
′
0) ≤ h0}

we only need to prove the inequality ≥. We proceed by
contradiction and assume that Vh(x0;h0) = g0 < g0 :=
inf {g′0 : Vg(x0; g

′
0) ≤ h0}. By definition of the infimum one

has h0 := Vg(x0;
g0+g0

2 ) > h0 and by monotonicity,
Vg(x0; g

′
0) ≥ h0, ∀g′0 ∈

[
g0,

g0+g0

2

]
. This is in contradiction

with Vg(x0; g0) ≤ h0. The assertion concerning Vg is quite
similar and its proof is omitted.

This result shows that a duality holds in the sense of equality
(5) on the condition that the value functions Vh, Vg are lower
semi-continuous with respect to h and g respectively.

Remark 4. The second assertion in Theorem 1 can, alterna-
tively, be written in terms of viability kernels introduced in
Section II-A. Let x0 ∈ Ω be such that Vh(x0, ·), respectively
Vg(x0, ·), is lower semi-continuous on⋃

h̄∈R

Dom
(

Viabhg
(
h̄, ·

)−1
(x0)

)
, respectively⋃

ḡ∈R+

Dom
(

Viabhg(·, ḡ)−1
(x0)

)
Then, one has the equivalence

inf Viab−g
hg (x0, h̄) ≤ ḡ ⇐⇒ inf Viab−h

hg (x0, ḡ) ≤ h̄.

Indeed, if h̄ and ḡ are such that inf Viab−g
hg (x0, h̄) ≤ ḡ, then

one has Vh(x0, h̄) ≤ ḡ from the first equality in (3) and one
gets inf{g : Vg(x0, g) ≤ h̄} ≤ ḡ with the first equality in (5),
which implies inf Viab−h

hg (x0, ḡ) ≤ h̄. The reverse implication
is obtained similarly using (3) and (5).

It is our belief that the duality is more transparent in the
initial formulation, while viability kernel formulations seem to
hint to a hidden game-like behavior. In this direction, we refer
the readers to [5].

We obtain as a consequence of Theorem 1 the following
remarkable properties about functions Vg(x0; ·), Vh(x0; ·).
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Lemma 1. Whenever Vg(x0; ·) and Vh(x0; ·) are lower semi-
continuous, one has

Vg(x0; ·) constant on [Vh(x0;Vg(x0; g0)), g0], ∀g0 ∈ R+;

Vh(x0; ·) constant on [Vg(x0;Vh(x0;h0)), h0], ∀h0 ∈ R.

Proof. From Proposition 1, Vg(x0; ·) and Vh(x0; ·) are every-
where right-continuous, and one gets Vg(x0;Vh(x0;h0)) ≤ h0
and Vh(x0;Vg(x0; g0)) ≤ g0 for any h0 ∈ R, g0 ∈ R+.

Take h̃0 := Vg(x0;Vh(x0, h0)). One has then h0 ≥ h̃0 and
by monotonicity of Vh(x0; ·), one gets

Vh(x0;h0) ≤ Vh(x0; h̃0) = Vh(x0;Vg(x0;Vh(x0;h0))).

On another hand, take g̃0 := Vh(x0;h0). One has then
Vh(x0;Vg(x0; g̃0)) ≤ g̃0 that is

Vh(x0;Vg(x0, Vh(x0;h0))) ≤ Vh(x0;h0).

One then concludes that

Vh(x0;Vg(x0;Vh(x0; ·))) = Vh(x0; ·),

and, in a similar way,

Vg(x0;Vh(x0;Vg(x0; ·))) = Vg(x0; ·).

As a consequence, Vg(x0; ·), respectively Vh(x0; ·)
are constant on [Vh(x0;Vg(x0; g0)), g0], respectively
[Vg(x0;Vh(x0;h0)), h0].

We show now implications in terms of optimal controls,
firstly for the problem Pg .

Theorem 2. Let (x0, h0) ∈ Ω×R be such that Vh(x0;h0) <
+∞ and Vh(x0; ·) is lower semi-continuous. Posit

h0 := inf {h′0 : Vh(x0;h
′
0) = Vh(x0;h0)},

g0 := Vh(x0;h0) = Vh(x0;h0).

If u∗ is optimal for Ph(x0;h0), then u∗ is optimal for
Pg(x0; g0). In particular, if u∗ is unique, then one has

g0 := Vh

(
x0; sup

t≥0
h
(
xx0,u

∗
(t)

))
.

Proof. Let us fix u∗ as in the statement. Clearly, u∗ is admissi-
ble for Problem Ph(x0;h0). Indeed, by optimality of u∗, the
area constraint is saturated i.e.

∫∞
0
g
(
xx0,u

∗
(t), u∗(t)

)
dt =

Vh(x0;h0) = g0 and, as a consequence (point 1. of by
Proposition 1), one gets

Vg(x0; g0) ≤ h0.

Let us assume that there exists a control ũ such that h̃0 :=
Jg(x0, ũ, g0) < h0. Then Vg(x0; g0) ≤ h̃0 and, thus,
Vh(x0; h̃0) ≤ g0 = Vh(x0;h0). This inequality is established
due to the first assertion combined with the right-continuity of
Vh(x0; ·) (cf. Proposition 1). By monotonicity, this can only
happen when Vh(x0; h̃0) = Vh(x0;h0) which contradicts the
choice of h0.

When the optimal control u⋆ is unique, one has
Vh(x0;h0) = Vh(x0; inft≥0 h

(
xx0,u

∗
(t)

)
) = g0 and

h0 = inf
t≥0

h
(
xx0,u

∗
(t)

)
.

Then, u⋆ is optimal for Ph(x0;h0), and therefore also optimal
for Pg(x0; g0) with g0 = Vh(x0;h0).

One obtains analogously the following result for Ph.

Theorem 2bis. Let (x0, g0) ∈ Ω × R+ be such that
Vg(x0; g0) < +∞ and Vg(x0; ·) is lower semi-continuous.
Posit

g
0
= inf {g′0 ≥ 0 : Vg(x0; g

′
0) = Vg(x0; g0)},

h0 := Vg(x0; g0) = Vg(x0; g0).

If u∗ is optimal for Pg(x0; g0), then u∗ is optimal for
Ph(x0;h0). In particular, if u∗ is unique, then one has

h0 := Vg

(
x0;

∫ +∞

0

g
(
xx0,u

⋆

(t), u⋆(t)
)
dt

)
.

These last two theorems show the practical interest of the
duality (when it holds): the optimal solutions of both problems
coincide. In applications, one can then choose the easiest
problem to solve, analytically or numerically.

B. Criteria for lower semicontinuity

As we have seen in Proposition 1 and Theorem 1, the lower
semi-continuity of the value functions is a crucial ingredient to
obtain a duality. It is thus worthwhile to specify assumptions
that ensure this property. For this purpose, we shall consider
the family of optimal control problems with discounted cost.

Problem 1q. Given q > 0, x0 ∈ Ω and h0 ∈ R,

Pq
h(x0;h0) : minimize Gq(x0, u) over u ∈ Uh(x0, h0)

where Gq(x0, u) :=

∫ +∞

0

e−qtg(xx0,u(t), u(t))dt

for which we denote by V q
h (x0;h0) the value function (set to

+∞ when x0 /∈ Viabh(h0)).

We also require the classical hypotheses in optimal control
theory about the extended velocity set for problem Ph.

Assumption 2. For any x ∈ Ω, one has⋃
u∈U,r≥0

[
f(x, u)

g(x, u) + r

]
is closed and convex.

For convenience, we define, for any subset L ⊂ Ω and
(x0, u) ∈ Ω× U the hitting time function

τx0,u
L :=

{
+∞, if xx0,u(t) /∈ L, ∀t ≥ 0,

inf{t; xx0,u(t) ∈ L}, otherwise.

Proposition 2. Let x0 ∈ Viabh(h0) for h0 ∈ R.
1) For any q > 0, the map V q

h (x0, ·) is bounded and lower
semi-continuous on [h0,+∞). Moreover, if Vh(x0; ·) =
sup
q>0

V q
h (x0; ·), then it is also bounded and lower semi-

continuous.
2) If there exists ε > 0 and a compact set L ⊂ Ω such that

i. for any h̄ ∈ [h0, h0 + ε), L ∩ Viabh(h̄) is (forward)
viable with a null-cost control, i.e.

∀y0 ∈ L ∩ Viabh(h̄), ∃u(·) ∈ Uh(x0, h̄) s.t.
xy0,u(t) ∈ L and g(xy0,u(t), u(t)) = 0, ∀t > 0;
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ii. L is finitely reached under viable controls i.e.

T ⋆ := sup
h̄∈[h0,h0+ε)

sup
u∈Uh(x0,h̄)

τx0,u
L < +∞ (6)

then Vh(x0, ·) is bounded and lower semi-continuous on
[h0, h0 + ε).

Similar assertions hold true for Vg(x0; ·).

Proof. Let us fix x0 ∈ Ω and, for the time being, q > 0. For
any h0 such that x0 ∈ Viabh(h0), V

q
h (x0; ·) is well defined and

bounded on [h0,∞). Moreover, V h, q(x0; ·) is non-increasing
on [h0,∞). As such, the lower semi-continuity of V q

h (x0; ·) at
h0 only needs to be shown on decreasing sequences hn → h0
(n ≥ 1). Posit

Vh := lim inf
n→∞

V q
h (x0;hn) < +∞,

and consider, for any n ≥ 1, a control un ∈ Uh(x0, hn) such
that ∫ +∞

0

e−qtg(xx0,un(t), un(t))dt ≤ V q
h (x0;hn) +

1

n
.

We then define the sequence of functions

vn(t) :=

∫ +∞

0

e−qsg(xx0,un(s+ t), un(s+ t))ds, t ≥ 0.

Note that vn(·) is the unique bounded solution of the equation

v̇n(t) = qvn(t)− g(xx0,un(t), un(t)), t ≥ 0.

Let us also define the set-valued map, for (x, v) ∈ Ω× R

F (x, v) :=
⋃

u∈U,α∈[0,1]

[
f(x, u)

qv − αg(x, u)− (1− α)g∞

]
which is Lipschitz continuous with compact convex values
(from Assumptions 1.1 and 2). Clearly, (xx0,un(·), vn(·)) is
solution of the differential inclusion (ẋ, v̇) ∈ F (x, v). Passing
to the limit (along some subsequence), for every compact
time interval [0, T ], (xx0,un , vn) converges uniformly to some
solution (x, v) of (ẋ, v̇) ∈ F (x, v) with x(0) = x0 and v(0) =
Vh (as a consequence of the Theorem of compactness of
solutions of differential inclusions, see e.g. [9]). Furthermore,
v is bounded since vn are uniformly bounded by 1

q∥g∥∞. The
procedure can be repeated to obtain a solution (x, v) defined
for any t ∈ R+. From Filippov selection Lemma, there exist
admissible controls (u(·), α(·)) such that

x(t) = xx0,u(t),
v̇(t) = qv(t)− α(t)g(x(t), u(t))− (1− α(t))g∞, a.e. t ≥ 0.

Note that v is a bounded solution of

v̇(t) = qv(t)− g(xx0,u(t), u(t))− r(t), t ≥ 0, (7)

where r is the bounded non-negative function

r(t) := (1− α(t))(g∞ − g(xx0,u(t), u(t)), t ≥ 0,

and that the unique bounded solution of (7) is given by

v(t) =

∫ +∞

0

e−qsg(xx0,u(s+ t), u(s+ t))ds

+

∫ +∞

0

e−qsr(s+ t)ds.

(8)

Moreover, for any T ∈ (0,+∞) and p ≥ 2, the convergence
of solutions xx0,un and the continuity and boundedness of h
yields

lim inf
n→∞

∫ T

0

hp(xx0,un(t)) dt ≥
∫ T

0

hp(xx0,u(t)) dt,

from which one deduces

sup
t∈[0,T ]

h(xx0,u(t)) = sup
p≥2

∥h(xx0,u)∥Lp([0,T ];R)

≤ sup
p≥2

lim inf
n→∞

∥h(xx0,un)∥Lp([0,T ];R)

= sup
p≥2

sup
n≥1

inf
m≥n

∥h(xx0,um)∥Lp([0,T ];R)

≤ sup
n≥1

inf
m≥n

sup
p≥2

∥h(xx0,um)∥Lp([0,T ];R)

= lim inf
n→∞

∥h(xx0,un)∥L∞([0,T ];R)

≤ lim inf
n→∞

sup
t≥0

h(xx0,un(t)) ≤ h0,

and as this last inequality is valid for any T > 0, one deduces
the inequality

sup
t≥0

h(xx0,u(t)) ≤ h0. (9)

Finally, from (8) and (9) one obtains

Vh = v(0) =

∫ +∞

0

e−qsg(xx0,u(s), u(s))ds

+

∫ +∞

0

e−qsr(s)ds ≥ V q
h (x0;h0),

that is
lim inf
n→∞

V q
h (x0;hn) ≥ V q

h (x0;h0),

which proves the lower semi-continuity and boundedness of
V q
h (x0; ·) at h0. As the upper envelope sup

q>0
V q
h (x0; ·) is lower

semi-continuous, we deduce that when the value function
Vh(x0; ·) verifies Vh(x0; ·) = supq>0 V

q
h (x0; ·), then it is also

lower semi-continuous (and bounded as g is bounded).

Under assumption (6), one has clearly

V q
h (x0; h̄) = inf

u∈Uh(x0,h̄)

∫ T⋆

0

e−qtg(xx0,u(t), u(t))dt,

for h̄ ∈ [h0, h0 + ε) and, thus,

Vh(x0; h̄) = inf
u∈Uh(x0,h̄)

∫ T⋆

0

g(xx0,u(t), u(t))dt

= sup
q>0

V q
h (x0; h̄), h̄ ∈ [h0, h0 + ε).

Point 1. of Proposition 2 is a theoretical result while point 2.
is more ”practical” in the sense that it can be checked on data
of the problem, but requires stronger conditions. Its application
is illustrated in the next section on a concrete example, for
which we show also how the duality results of Theorems 1
and 2 hold.
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IV. ILLUSTRATION ON AN EPIDEMIOLOGICAL MODEL

The present work has been initially motivated by the study
of the classical epidemiological SIR model with a non-
pharmaceutical control

ṡ = −β(1− u)si,

i̇ = β(1− u)si− γi,

ṙ = γi,

(10)

where s, i, r stand for the densities of the susceptible, infected
and recovered populations, respectively. The control variable
u takes values in U = [0, u] with u ≤ 1, and represent
the effort to isolate the susceptible population from contacts
with infected individuals, typically by reducing social distance.
The objective is to investigate how to reduce the peak of the
infected population under a budget constraint on the control
variable, given by the L1 norm of u(·). Two complementary
contributions appear recently in the literature.

I. In [1], the authors consider the problem of minimizing the
budget functional ||u||L1 , while maintaining constrained the
infection peak to an upper ICU (intensive care unit) constraint
i ≤ imax (see also [18]). It is shown in [1, Theorem 5.6]
that the ”greedy” control acting only as the trajectory reaches
the boundary of viability kernel related to imax is the unique
optimal one. Further insights on the geometry and Hamilton-
Jacobi approaches make the object of [14].

II. In [20], the aim is to minimize the peak of the infection
supt>0 i(t) given a budgetary constraint ||u||L1 ≤ Q. Using
Green’s theorem, the main result in [20, Proposition 2] proves
directly the optimality of the same type of greedy policy (under
an assumption on ū to be large enough for maintaining i
constant when s reaches the immunity level γ

β ). The reader
is invited to look at Figure 1 for an illustration of an optimal
solution in coordinates (s, i, z), where the variable z(t) rep-
resents the available budget at time t, with the corresponding
control u(·).

s i

z u

Fig. 1. Example of an optimal solution for β = 0.21, γ = 0.07 with
||u||L1 = 28 and i∗ = 0.0115 (from [20]).

Our goal here is to explain why the same control is optimal
for both problems, and how the duality results of Section III

apply on this model. One can check on (10) that the property
s(t) + i(t) + r(t) = 1 is satisfied for any control u(·) any
t ≥ 0. To keep it simple, we take here n = 2 with state
variable (s, i) ∈ Ω where

Ω :=
{
(s, i) ∈ R2; s > 0, i > 0, s+ i ≤ 1

}
,

and consider

h(s, i) := i, g(s, i, u) = u.

Then the dual Problems 1 and 2 are exactly the ones described
in I and II above. The reader can straightforwardly check that
Assumptions 1 and 2 are satisfied. For convenience, we shall
write i∗ ∈ [0, 1] instead of h0. In [20], it is shown that the
values the optimal control always takes values below 1 − γ

β .
We assume without loss of generality

ū < 1− γ

β
.

Let us recall the expression of the greedy policy given in [1].

u∗i⋆(s, i) :=


u, if s > γ

β(1−u) , i = ı̄(s, i⋆),

1− γ
βs , if s ∈

[
γ
β ,

γ
β(1−u)

]
, i = i∗,

0, otherwise,

(11)

where ı̄(s, i⋆) := i∗ − s+ γ
β(1−u)

[
1 + log

(
β(1−u)s

γ

)]
. When

this control never reaches the value ū, it consists in u = 0
until i reaches i⋆, then to stay at i = i⋆ with a non-null
(singular) control until s reaches the immunity threshold
sh := γ

β , and finally ends with u = 0 (a strategy called
NSN for null-singular-null in [20]). If the expression of the
singular control is above ū, then an anticipation with u = ū,
given by ī(s) < i⋆, is necessary so that i reaches i⋆ with the
singular control equal to ū. In terms of viability, this amounts
to take u = 0 when the state is in the interior of Viabh(i

⋆)
and a non non-null control when it reaches ∂Viabh(i∗).

We first study the domain of the value function Vh, and then
we show its lower semi-continuity.

A. The structure of the domain of the value function Vh
Let i∗ ∈ [0, 1] be fixed. Then, according to [1, Theorem

2.3], and provided that i∗ + γ
β(1−u) ≤ 1 if fulfilled, one has

(s0, i0) ∈ Viabh(i∗) ⇔
{
s0 ≤ γ

β(1−u) , i0 ≤ i∗
}

or{
s0 >

γ
β(1−u) ,

i0 ≤ γ
β(1−u)

(
1 + log

(
β(1−u)s0

γ

))
− s0 + i∗

}
(12)

The sets Viabh(i
∗) ⊂ Viabh(1) are compact. The last condi-

tion yields, in an equivalent form

DomVh(s0, i0; ·) ={
[i0,∞) , if s0 ≤ γ

β(1−u) ,[
i0 + s0 − γ

β(1−u)

[
1 + log

(
β(1−u)s0

γ

)]
,∞

)
, otherwise.

For further developments, we shall also introduce the invari-
ance kernel associated to i∗

Invh(i
⋆) := {(s0, i0) ∈ Ω : Uh((s0, i0), i

⋆) = U}
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Clearly, this set is determined keeping u = 0, and similar to
Viabh(i∗), one has

(s0, i0) ∈ Invh(i
∗) ⇔

{
s0 ≤ γ

β , i0 ≤ i∗
}

or{
s0 >

γ
β , i0 ≤ γ

β

[
1 + log

(
βs0
γ

)]
− s0 + i∗

} (13)

On Figure 2, the boundary of Viabh(i∗) is represented by the
graph of a function ψ depicted in yellow, while the set Invh(i

∗)
has a boundary represented in green as the graph of a function
ϕ. The intermediate domain B which as a magenta boundary
(∂B), in complement of the upper barrier i = i∗ in blue, is the
set of initial conditions for which the greedy control is below
ū almost surely (see [14]).

Fig. 2. Geometric zones for β = 1
3

, 1− u = 0.4, γ = 1
14

, and i∗ = 0.056
(from [14]).

B. Regularity of the value function Vh

In view of applying Proposition 2, we consider the set

L =

[
0,
γ

β

]
× [0, 1],

which has the following properties.

Proposition 3. Let i∗ ∈ DomVh(s0, i0; ·) such that i∗ +
γ

β(1−u) < 1. Then, one has

1) L ∩ Viabh(i∗) =
[
0, γβ

]
× [0, i∗] ⊂ Invh(i∗).

2) [i∗, 1− γ
β(1−u) ] ⊂ DomVh(s0, i0; ·). If u is a 1-optimal1

admissible control for Ph(s0, i0; i
∗
2) with i∗2 ∈ [i∗, 1 −

γ
β(1−u) ], then the time to reach L is bounded with

τ
(s0,i0,u)
L ≤ max

{
0,

log s0β
γ

β(1− u)i0
exp [γ(Vh(s0, i0; i

∗) + 1)]

}
.

Proof. 1) The first assertion follows from the geometry of the
domains given in (12) and (13).

11-optimal controls satisfy Jh(s0, i0;u) ≤ Vh(s0, i0; i
∗
2) + 1.

2) Since Vh(s0, i0; ·) is non-increasing, the inclusion of do-
mains follows. Let i∗2 ≥ i∗ and u be an admissible, 1-optimal
control for problem Ph. Then, one has∫ ∞

0

u(t)dt ≤ Vh(s0, i0; i
∗
2) + 1 ≤ Vh(s0, i0; i

∗) + 1.

As long as s > γ
β (i.e., before reaching L), one gets i̇ ≥ −γui

which implies

i(t) ≥ i0e
−γ

∫ t
0
u(τ)dτ ≥ i0e

−γ
∫ ∞
0

u(τ)dτ .

Then ṡ < −βs(1− u)i0e
−γ

∫ ∞
0

u(τ)dτ leading to

s(t) ≤ s0 exp
(
−β(1− u)i0e

−γ
∫ ∞
0

u(τ)dτ t
)

and the conclusion follows.

As a consequence, assertion 2. of Proposition 2 provides
the lower semi-continuity of Vh(s0, i0; ·) on its domain.

C. Optimality of the greedy policy

Now that we have proved the lower semi-continuity of
Vh(s0, i0; ·), Theorem 2 shows that if the (greedy) feedback
policy given in (11) is the unique optimal control to the
Problem 1, then it is also an optimal policy for Problem 2
for the budget

Q = ||u∗i∗(·)||L1 .

Remark 5. The right-continuity of Jh(s0, i0; ·) can be easily
checked, see [14, Lemma 1] for an idea of explicit compu-
tations of similar J(s0, i0; i∗). Whenever u∗ is shown to be
optimal for Problem 1 (resp. Problem 2), this implies the
right-continuity of Vh(s0, i0; ·) (resp. Vg(s0, i0; ·)). Since these
functions are non-increasing, this is equivalent to their lower
semi-continuity.

Finally, to show the optimality of the feedback control u∗i∗
for Problem 1, given in (11), we apply [14, Theorem 4]. We
need to check the conditions coming from [14, Eq. (15)]. One
writes

l̃1(s, i, u) :=
u

γiu
.

1) The first condition in [14, Eq. (15)] requires, for s0 > γ
β ,

1

γi∗
≤ 1

γi0
, (14)

which is obviously due to the viability requirement i ≤ i∗.
In the case where s0 ≤ γ

β(1−ū) , due to [14, Theorem 4], the
NSN strategy mentioned above is optimal for problem Ph.
Therefore, it is also for problem Ph. This is, of course, a
vivid illustration of our main results in the present paper.
Alternatively, we could have adapted the direct method in
[20, Proposition 2] based on Green’s theorem, to deal directly
with problem Ph.

2) The second condition, written as long as s ≥ γ
β(1−ū) , in

[14, Eq. (15)] is implied if

1

γis0,i0,0
≤ 1

γi0
. (15)
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This is, of course, a simple consequence of the derivative of
i being negative as long as null control is used and s > γ

β . It
worth to note that under the condition (15), owing to the result
on duality in this paper, we are able to extend the optimality
result in [20] to any (s0, i0) ∈ Ω for which the greedy policy
saturates at ū i.e. for s0 > γ

β(1−ū) (when ū < 1− γ
β ).

V. CONCLUSION

In this work, we have shown the role of the viability
kernels associated to the L∞ and L1 constraints, not only for
determining the domains of the associated value functions,
but also related to the viable controls that allow to show the
semi-continuity of the value functions (cf Proposition 2.2).
The duality which is established between problems Ph and Pg

under the lower semi-continuity of the value functions imply
that both problems have the same optimal policies. These
theoretical results are illustrated on an epidemiological model,
for which one look to reduce epidemic peak under a budget
constraints on non-pharmaceutical actions. These properties
should lead to efficient numerical approaches for this type of
problems, which could be the matter of a future work.
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