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Abstract
Predicting the plant cell response in complex environmental conditions is a challenge in plant
biology. Here we developed a resource allocation model of cellular and molecular scale for the leaf
photosynthetic cell of Arabidopsis thaliana, based on the Resource Balance Analysis (RBA)
constraint-based modeling framework. The RBA model contains the metabolic network and the
major macromolecular processes involved in the plant cell growth and survival and localized in
cellular compartments. We simulated the model for varying environmental conditions of
temperature, irradiance, partial pressure of CO2 and O2, and compared RBA predictions to known
resource distributions and quantitative phenotypic traits such as the relative growth rate, the C:N
ratio, and finally to the empirical characteristics of CO2 fixation given by the well-established
Farquhar model. In comparison to other standard constraint-based modeling methods like Flux
Balance Analysis, the RBA model makes accurate quantitative predictions without the need for
empirical constraints. Altogether, we show that RBA significantly improves the autonomous
prediction of plant cell phenotypes in complex environmental conditions, and provides mechanistic
links between the genotype and the phenotype of the plant cell.

Keywords
Resource Balance Analysis; Constraint-based modeling; Genome-scale model; Farquhar model;
Plant Systems Biology; Arabidopsis thaliana;

1. Introduction
Climate change, the scarcity of certain natural resources, the need to reduce crop inputs, increase
biological diversity in agroecosystems, or change cropping practices have resulted in a greater
variety and complexity of situations to be managed by agronomists. To assist them, agronomists
need plant modeling with extended predictive ability to manage complex environmental
conditions of farming systems. Usually, agronomists use individual plant models typically based on
a systemic description of plant functioning such as ecophysiological models (Tuzet et al., 2003) or
functional-structural plant models (FSPMs) that manage the production and distribution of mass
(carbon or nitrogen) among plant organs (Chew et al., 2014; de Reffye et al., 2021). These models
result in accurate predictions in controlled environments, especially for the exchanges of biological
material (i.e. water, biomass, carbon or nitrogen depending on models) between organs. However,
they usually fail to cope with complex -though realistic- environmental conditions (Yin et al. 2021),
including other nutrient limiting conditions (such as phosphate or sulfur limitations) or combined
environmental constraints (stresses). Indeed, the plants adopt complex strategies based on the
integration of cell decisions to cope with the effect of multiple stresses (Zandalinas et al. 2021). In
fact, individual plant models result from a trade-off between predictive capability and simplicity,
which hides the intrinsic complexity of cellular functioning and makes it harder to predict a plant’s
responses to new challenging environmental conditions. Improving the modeling of cellular scales
could thus significantly increase the predictive capabilities of individual plant models, which is
made possible today by using the vast amount of existing knowledge about plant physiology
(Bouchabke, et al. 2008, Tisné et al. 2013, Ikram, S., et al. 2012) as well as about the molecular
mechanisms involved in the plant response to a wide range of environmental factors (Schulz, E., et
al. 2021, Henriet, C., et al. 2021 , Zandalinas et al. 2021).

Plant cell modeling has been partly achieved through the use of constraint-based models.
Constraint-based modeling -CBM- describes the cell by a set of biophysical, biochemical and
structural constraints. From an engineering perspective, these functional constraints are
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mathematically formalized as a set of linear equalities and inequalities that define a feasibility
domain for cellular states, which describe all possible cell phenotypes. Satisfying these constraints
is necessary but not enough to accurately predict a cellular state. To select a single state within this
set of feasible states, modelers typically apply general optimality principles, such as the
maximization of biomass production (Feist et al. 2010). This optimality principle is formalized as a
linear objective function, which, along with the linear equalities and inequalities, leads to linear
optimization methods (Nesterov et al. 1994; Nesterov 2012). The most famous and widely used
CBM method is called Flux Balance Analysis (FBA) (Varma et al. 1994). FBA describes the cell
functioning through (i) the metabolic network, and (ii) a chemical reaction describing the biomass
formation with a fixed average biomass composition. The metabolic network is described by
equalities on metabolic fluxes, each one representing the mass conservation in steady-state for
each metabolite, i.e. the sum of the fluxes that produces a metabolite is equal to the sum of the
fluxes that consumes this metabolite. FBA is thus based on the stoichiometry of chemical reactions
only. FBA models have already been developed to predict plant cell phenotypes for different plant
species, that is, in the context of FBA, the metabolic flux distribution (see Poolman, M.G., et al.
2009; and de Oliveira Dal'Molin et al. 2010; for the first FBA models of Arabidopsis thaliana). For
Arabidopsis, existing FBA plant cell models differ from each other by the number of metabolites,
metabolic reactions, or compartments and by their application: autotrophic or heterotrophic
regimen for leaf (Poolman et al. 2009; de Oliveira Dal'Molin et al. 2010; Arnold et al. 2014),
day/night alternation for guard cells (Tan et al. 2020), or for multi-organs by considering one FBA
model per organ (Grafahrend-Belau, E., et al. 2013; de Oliveira Dal'Molin et al. 2015; Shaw, R., and
Cheung, C. M. 2018). These models undoubtedly helped to understand the metabolic flux
distribution of plant cells in various conditions (see for instance Cheung, et al. 2013, Cheung, et al.
2014; Töpfer et al. 2020).

To predict flux distributions within each organ and between plant organs by using FBA, one needs
to define (i) an appropriate objective function (e.g. minimization of photon influx for a fixed
relative growth rate or maximization of the relative growth rate) and (ii) a set of constraints on the
fluxes exchanged between the organs, their local environment, and other organs (de Oliveira et al.
2015, Gerlin et al. 2022). This means that the whole-plant configuration (or the plant cell
configuration) is imposed, instead of being autonomously predicted by the model. Beyond the
choice of an adequate objective function, the quality of FBA predictions is very sensitive to the
constraints applied on exchange fluxes. This dependency – and hence the impossibility to obtain
precise predictions without knowing the exchange fluxes – holds across organisms, and is well
known in the CBM community. Even for bacterial cells, the organisms on which CBM was originally
developed, a correct quantitative prediction of the growth rate depends crucially on imposed
exchange fluxes. This has led to numerous CBM approaches (reviewed in Goelzer et al. 2017) for
improving FBA, and, among them, CBM methods integrating structural constraints other than mass
conservation for describing the cell functioning are particularly relevant.

To overcome FBA limitations, we developed a new CBM method called Resource Balance Analysis
(RBA; Goelzer et al. 2009, Goelzer et al. 2011). RBA considers the cell as an autonomous system
that has to determine whether the resources available in the environment are sufficient to ensure
growth, or survival. At the cellular level, an enzyme needs to be sufficiently abundant to produce
its metabolic flux; the metabolic network needs to provide sufficient fluxes of building blocks and
energy to ensure the production of all enzymes, ribosomes and other cellular constituents; there
need to be enough ribosomes to build all cellular proteins; and all these components need to fit
into a limited cellular space. All this results in a global trade-off with respect to the use of
resources by cellular processes in the entire cell. For instance, let us consider a cell environment in
which no amino acids but only nitrate is available. In this case, the cell needs to synthetize the
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amino acids de novo. This synthesis consumes or binds resources in terms of building blocks and
energy, of ribosomes and chaperones for enzyme synthesis involved in de novo amino acid
synthesis pathways, and of cellular space occupied by enzymes. In contrast, if all amino acids are
already present in the medium, these resources are saved and can be invested in other cellular
functions, especially in the translation apparatus and in metabolic pathways to increase growth
rate. At a given growth rate, three main sets of cellular constraints governing resource allocation
between cellular processes can be distinguished (Goelzer et al. 2009, Goelzer et al. 2011, Scott et
al. 2010) and are included in RBA:

(C1) the mass balance is conserved;
(C2) the capacity of molecular machines (such as ribosomes or enzymes) is sufficient to
fulfill their functions;
(C3) the molecular machines occupy the limited space available in all cellular
compartments and their membranes.

Satisfying these constraints at a given growth rate leads to a linear convex optimization problem.
This problem is tractable and solvable rapidly even at genome-scale in a matter of seconds (Bulovic
et al. 2019). RBA was originally developed and experimentally validated on bacterial cells (Goelzer
et al. 2015) and predicts the set of possible cellular configurations (growth rate, metabolic fluxes,
abundances of molecular machines, including ribosomes, enzymes, transporters…) compatible
with the available external resources (i.e. the extracellular concentration of nutrients), for a given
environmental condition. Importantly, RBA takes the extracellular nutrient concentrations as
model inputs, and does not need constraints on exchange fluxes to obtain quantitative predictions.
The cellular configuration is not imposed by constraints on exchange fluxes, but instead results
from a parsimonious allocation of resources to different cellular processes. This makes RBA more
autonomous than FBA in terms of predictive capability especially in complex environmental
conditions (Tournier et al. 2017).

In this paper, we present a RBA model for the rosette leaves of Arabidopsis thaliana (accession
Col-0, the reference genotype of the Arabidopsis community), based on the RBA framework for
eukaryotic cells (Goelzer et al. 2019). The mathematical framework of RBA for eukaryotic cells
resembles the one for prokaryotic cells, except for how it treats the maximal available space of
each cellular compartment (which is predefined in the case of prokaryotic cells, and treated as a
free model variable, and therefore predicted, in eukaryotic cells; see Methods). The RBA model
proposed in this paper describes the functioning of a leaf cell fixing CO2 during vegetative growth,
which contains a complete photosynthetic apparatus (including the RuBisCO, the most abundant
protein on earth) in the chloroplast and thus concentrates a large part of the rosette resources of
Arabidopsis thaliana. We specifically investigated if the cellular configuration might be
parsimonious in terms of resource use for complex environmental conditions. For this purpose, we
predicted the rosette cellular configuration that maximizes the relative growth rate for varying
temperature, irradiance, partial pressure of CO2 and O2. We compared RBA predictions to a known
resource distribution (Pyl et al. 2012), to a known flux distribution (Ma et al. 2014), to known
quantitative phenotypic traits such as the C:N ratio (Chietera et al. 2018), and to the empirical
characteristics of CO2 fixation given by the well-established Farquhar model (Farquhar et al. 1980).
We find that the RBA model provides accurate quantitative predictions when compared to existing
experimental data. Finally, the sensitivity of this model to parameter variations is explored.
Altogether, our results show that RBA is a significant step forward in terms of autonomous
predictions of plant cell phenotypes in complex environmental conditions.

2. Materials and Methods
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2.1 RBA framework for eukaryotic cells
In our model, an eukaryotic cell is composed of subcellular compartments, each of them𝑁

𝑐

occupying a relative subcellular volume (and noting the vector of ) and of the𝑓
𝑖

𝑓 (𝑓
1
,..., 𝑓

𝑁
𝑐

)𝑇

following molecular species:
● molecular machines, which can be subdivided in enzymes and transporters involved𝑁

𝑦
𝑁

𝑚
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denotes the corresponding set of protein concentrations;𝑃
𝐺
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1

,..., 𝑃
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● metabolites at the concentrations . Moreover, we distinguished a𝑁
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1
,..., 𝑆
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𝑠
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subset of target metabolites with fixed concentrations and a subset of𝑁
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𝐵‾ = (𝐵‾
1
,..., 𝐵‾

𝑁
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𝑏
^

per unit of surface.𝐵
^

= (𝐵
^

1
,..., 𝐵

^

𝑁
𝑏
^
)𝑇

For this set of molecule species, the problem of resource allocation between cell functions -i.e. the
RBA optimization problem - is formally stated as a set of linear inequalities and equalities to be
satisfied, which together form a convex feasibility problem at fixed relative growth rate - i.e.µ≥0
the amount of produced dry biomass per cell per day. More precisely, the constraints that
molecular species must fulfill are:

(C1). the metabolic network has to produce all metabolic precursors necessary for biomass
production and mass balance must be satisfied for all molecule species;

(C2). the capacity of all molecular machines must be sufficient to ensure their function, i.e.
to catalyze chemical conversions at a sufficient rate;

(C3). the intracellular space of compartments and the occupancy of membranes are
limited.

The problem of parsimonious resource allocation between cellular functions in eukaryotic cells is
formalized mathematically as follows (Goelzer and Fromion, 2019). For a fixed vector of
concentrations 𝑃

𝐺
≥0 
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where the decision variables are the vector f, the flux vector , the vector of concentration ofν
molecular machines .𝑌 =  (𝐸𝑇,  𝑀𝑇)𝑇

Moreover:

● Ω is the stoichiometry matrix of the metabolic network of size , where𝑁
𝑠

× 𝑁
𝑚

Ω
𝑖𝑗

corresponds to the stoichiometry of metabolite in the j-th enzymatic reaction;𝑆
𝑖

● (resp. ) is a (resp. ) matrix where each coefficient (resp. )𝐶
𝑌
𝑆 𝐶

𝐺
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𝐶
𝑌
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𝑆 𝑆
𝑖

produced, consumed or not involved in the synthesis of one machine (resp. ). ;𝑌
𝑗

𝑃
𝐺

𝑗

● (resp. ) is a matrix (resp. ) where each coefficient (resp. )𝐶
𝐵
𝑆 𝐶

𝐹
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𝑠
× 𝑁
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𝑏
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𝐵
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𝑖

one (resp. one );𝐵
𝑗

‾ 𝐵
^
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● ( and , respectively) of size ( , respectively) is a diagonal matrix𝐾
𝑇

𝐾
𝐸

𝐾
𝐸
' 𝑁

𝑝
× 𝑁

𝑦
𝑁

𝑚
× 𝑁

𝑦

where each coefficient ( and , respectively) is positive and corresponds to the𝐾
𝑇

𝑖

𝐾
𝐸

𝑖

𝐾
𝐸

𝑖

'

efficiency of the molecular machine , i.e. the rate of the process per amount of the𝑌
𝑖

catalyzing molecular machine, (resp. the efficiency of the enzyme in forward and𝐸
𝑖

backward sense, respectively);

● (resp. ) is a (resp. ) matrix where each coefficient typically𝐶
𝑌
𝑀 𝐶

𝐺
𝑀 𝑁

𝑝
× 𝑁

𝑦
𝑁

𝑝
× 𝑁

𝑔
𝐶

𝑌
𝑖𝑗

𝑀

corresponds to the length in amino acids of the machine (resp. ). In some cases (for𝑌
𝑗

𝑃
𝐺

𝑗

instance for the constraints on protein chaperoning), the length in amino acids can be
multiplied by a coefficient, such as the fraction of the whole proteome that necessitates
chaperoning;

● is a diagonal matrix such as where is the identity matrix of size𝐶
𝐹
𝐷 𝑁

𝑐
× 𝑁

𝑐
𝐶

𝐹
𝐷 =  𝑑

𝑇
𝐼

𝑁
𝑐

𝐼
𝑁

𝑐

, and is the total density of the cell, expressed in equivalent amino acid residues per𝑁
𝑐

𝑑
𝑇

gram of cell dry weight as in the RBA framework for prokaryotic cells;
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● (resp. ) is a (resp. ) matrix where each coefficient (resp. )𝐶
𝑌
𝐷 𝐶

𝐺
𝐷 𝑁

𝑐
× 𝑁

𝑦
𝑁

𝑐
× 𝑁

𝑔
𝐶

𝑌
𝑖𝑗

𝐷 𝐶
𝐺

𝑖𝑗

𝐷

corresponds to the density of one machine (resp. ) in the i-th compartment. By𝑌
𝑗

𝑃
𝐺

𝑗

construction, we have one unique localization per machine. Since densities are expressed

as a number of amino-acid residues per gram of cell dry weight, and correspond in𝐶
𝑌

𝑖𝑗

𝐷 𝐶
𝐺

𝑖𝑗

𝐷

most of the cases to the number of amino acids residues per protein, except for ribosomes,
where the density of nucleotides residues of rRNAs are converted to an equivalent density
of amino acids as proposed in Marr 1991.

● The last equality constraint can contain additional constraints between volumes or surfaces
for complex structures of compartments. In this paper, we only consider the equality
constraint where all relative cellular compartment volumes or surfaces must sum to one.

Compared to the RBA framework for prokaryotic cells (Goelzer et al. 2009; Goelzer et al. 2011), the
eukaryotic RBA framework introduces the volume fractions f as new decision variables. This means
that the volume fraction of the cell occupied by organelles could theoretically be predicted.

However, this would require coefficients and that convert each molecular machine𝐶
𝑌
𝐷 𝐶

𝐺
𝐷

concentration into its volume. Since these coefficients are currently unknown, we chose instead to
use the limitation of the cellular density (expressed in equivalent millimoles of amino acid residues
per gram of cell dry weight) as a proxy of the limitation of the cellular volume, like for prokaryotic

cells. Coefficients and thus correspond to the densities of molecular machines (see above 𝐶
𝑌
𝐷 𝐶

𝐺
𝐷

and Goelzer et al. 2011; Goelzer et al. 2015). Therefore, in a first approximation, the variables 𝑓
𝑖

can be interpreted as the fractions of total protein allocated to each cellular compartment (see
Fig.2A).

Including environmental conditions into the model. Environmental conditions are included
through the concentration of nutrients at the cell boundary - i.e. in xylem vessels-, partial pressure
of CO2, O2 and temperature. Concentrations of nutrients are accounted for in RBA through
Michaelis-Menten type efficiencies for transporters located in the plasma membrane. For

extracellular nutrient , the efficiency of the i-th transporter is equal to .𝑆
𝑒𝑥𝑡

𝐾
𝐸

𝑖

=
𝑘

𝑚𝑎𝑥
𝑖

𝑆
𝑒𝑥𝑡

𝐾
𝑚

𝑖

+𝑆
𝑒𝑥𝑡

Temperature and the partial pressures of CO2 and O2 are included in RBA through the carboxylase
and oxygenase activities of RuBisCO as in the Farquhar model (Caemmerer, S., et al. (2009), see
below). Enzyme and transporter efficiencies that depend on extracellular conditions are evaluated
once during the initialization of the numerical resolution, and used in constraints (C2).

Modeling RuBisCO and PS2 efficiencies. RuBisCO efficiency is decomposed into oxygenase (

) and carboxylase ( ) nonlinear activities for𝐾
𝑅𝑢𝐵𝑖𝑠𝐶𝑂,𝑜

=
 𝑘

𝑜 𝑚𝑎𝑥
 𝑂

𝑂 + 𝐾
𝑜 

(1+𝐶/𝐾
𝑐
) 𝐾

𝑅𝑢𝐵𝑖𝑠𝐶𝑂,𝑐
=

 𝑘
𝑐 𝑚𝑎𝑥

 𝐶

𝐶 + 𝐾
𝑐 

(1+𝑂/𝐾
𝑜
)

given extracellular partial pressure of CO2 (-C-) and O2 (-O-), where , , and are𝑘
𝑐 𝑚𝑎𝑥

 𝑘
𝑜 𝑚𝑎𝑥

 𝐾
𝑐 

𝐾
𝑜 

the kinetics parameters of RuBisCO and are temperature-dependent as in the Farquhar model (see
below). Moreover, the thermostability of the RuBisCO activase, - the chaperone responsible for
RuBisCO folding-, is known to be a limiting factor in plant productivity under heat stress (Kurek et
al. 2007). We modeled this effect like in the Farquhar model (Caemmerer, S., et al. (2009) ) by a

multiplicative term to and . The term describes𝑎
𝑅

=  1/(1 + 𝑒
0.3(𝑇−𝑇

𝑠𝑎𝑡
)
) 𝐾

𝑅𝑢𝐵𝑖𝑠𝐶𝑂,𝑜
𝐾

𝑅𝑢𝐵𝑖𝑠𝐶𝑂,𝑐
𝑎

𝑅
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the fraction of RuBisCO that is active, T is the temperature, and is the temperature at which𝑇
𝑠𝑎𝑡

half of the RuBisCO is inactive. The RuBisCO oxygenase and carboxylase efficiencies are computed
for given temperature and partial pressures of CO2 and O2. Maximal PS2 efficiency is set to be 2.44
times greater than the maximal efficiency of RuBisCO carboxylase (as in Walker, B., et al.𝑘

𝑐 𝑚𝑎𝑥
(2013)) and modulated by temperature (see Jmax(T) formula below). At the beginning of each
simulation, the RuBisCO and PS2 efficiencies are computed using these nonlinear relationships and
using the C, O and T values of the simulated environment, and used in constraints (C2). Then the
RBA optimization problem is built and solved.

Numerical resolution. At a fixed growth rate, the RBA problem for eukaryotic cells is a Linear
Programming (LP) optimization problem that can be solved efficiently at the whole-cell scale
(Nesterov, Y., et al. (1994)). It has the same numerical complexity as the RBA problem of
prokaryotic cells (Goelzer et al. 2009, Goelzer et al. 2011). Thus, the specificities of the RBA
problem for eukaryotic cells (i.e. the f variables) did not increase the numerical complexity of the
optimization problem. The maximal growth rate compatible with the available external resource
can be computed by solving a series of LP optimization problems for different growth rate values.
During model construction in the RBApy tool, when several enzymatic complexes catalyze the
same chemical reaction, reactions are duplicated in order to obtain one reaction per enzymatic
complex and having its own efficiency. However, the presence of (numerous) alternative
isoenzymes can cause numerical problems when the LP problem is solved (i.e. the gradient is
degenerating). Therefore, we chose to consider (during the resolution) a single average enzyme for
which its amino acid and cofactor composition is equal to the average composition of isoenzymes.
Algorithms of simulations have been implemented in Matlab R2018b using Cplex 12.8
(http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/) as the LP solver.
The source code is distributed in an open source research software, named PlantCellRBA, under
the EUPL v1.2 license, and available at https://forgemia.inra.fr/anne.goelzer/rba-plant-cell-model.

Uniqueness of the optimal solution. We implemented the numerical test of Appa 2002 to test the
optimal solution at maximal growth rate for uniqueness. Briefly, the numerical test is performed in
two steps and necessitates the resolution of two LP optimization problems (see Appa 2002 for
proofs). First, the RBA LP problem at maximal growth rate has to be rewritten and solved in a

standard form , which leads to a feasible solution . Let T represent𝑚𝑎𝑥
𝑧
 𝑂 𝑠. 𝑡.  𝐴𝑧 =  𝑏,  𝑧≥0 𝑧*

the set of all variables in which have value zero. Then a second LP optimization problem is𝑧*

solved: , where if and 0 otherwise, which leads to a𝑚𝑎𝑥
𝑧
 𝑑𝑧 𝑠. 𝑡.  𝐴𝑧 =  𝑏,  𝑧≥0 𝑑

𝑗
= 1 𝑗 ∈ 𝑇

second feasible solution . The original RBA problem at maximal growth rate has an unique𝑧**

solution if and only if = .𝑧* 𝑧**

2.2 FBA model
We used the metabolic model provided in Supplementary file 2 to perform FBA simulations. It
corresponds to the AraCore model of Arnold et al. 2014 that was updated with a few additional
metabolic pathways - the synthesis of pigments (chlorophyll a and b), some cofactors (pyridoxal-5P,
riboflavin, NAD(P)), and the transport of ions within the cell and between cellular compartments. A

FBA optimization problem is formalized as , where is the𝑚𝑎𝑥
ν
 𝑐𝑇ν  𝑠. 𝑡. Ων =  0,   α≤ν≤β Ω

stoichiometry matrix, the vectors and are the lower and upper bounds on individual fluxesα β
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respectively, and is the criterion to be maximized (Varma et al. 1994). In our FBA simulations,𝑐𝑇ν
either we maximized the biomass production (i.e. the flux called R_Bio_opt), or we minimized the
use of photons (i.e. the flux called R_Im_hnu). We also set the flux of maintenance ATP to 7.3
millimoles/gDW/day as in the RBA model (i.e. the flux called R_NGAM_c) in all simulations. The
other constraints described in this paper are added as equalities or inequalities in the FBA
problem.

2.3 Farquhar model
We implemented the equations of the Farquhar model of (von Caemmer et al. 2009). Briefly, for
given partial pressure of CO2 (denoted C), O2 (denoted O), irradiance (denoted I), temperature
(denoted T), day respiration - mitochondrial CO2 release (denoted )-, the rate of triose𝑅

𝑑
phosphate utilization in the chloroplast (denoted ), and amount of RuBisCO, the Farquhar model𝑇

𝑝
computes the net assimilation rate of CO2 (denoted A) as:

where𝐴 = (1 − Γ*

𝐶 ) 𝑚𝑖𝑛(𝑊
𝑐
, 𝑊

𝑗
, 𝑊

𝑝
) − 𝑅

𝑑

● is the RuBisCO limited CO2 assimilation rate. , and are𝑊
𝑐

=
𝐶 𝑉

𝑐 𝑚𝑎𝑥

𝐶 + 𝐾
𝑐 

(1+𝑂/𝐾
𝑜
) 𝐾

𝑐 
𝐾

𝑜 
𝑉

𝑐 𝑚𝑎𝑥 

kinetic constants.

● is the electron transport limited CO2 assimilation rate. J is the potential𝑊
𝑗

= 𝐽

4 + 8 Γ*/𝐶 
electron transport rate which depends directly on irradiance I as

, and . Parameters are , f and theθ𝐽2 − 𝐽(𝐼
2

+ 𝐽
𝑚𝑎𝑥

) + 𝐼
2
𝐽

𝑚𝑎𝑥
= 0 𝐼

2
= 𝐼 𝑎𝑏𝑠(1 − 𝑓)/2 θ

kinetic constant .𝐽
𝑚𝑎𝑥

● is the export limited CO2 assimilation rate𝑊
𝑝

=
3 𝑇

𝑝

1− Γ*/𝐶

● is the carbon dioxide compensation point and is theΓ* = 0.5 𝑂
𝑆

𝑐/𝑜
 𝑆

𝑐/𝑜
= (

𝑉
𝑜 𝑚𝑎𝑥

𝐾
𝑜

 
𝐾

𝑐

𝑉
𝑐 𝑚𝑎𝑥

) 𝑂
𝐶

relative specificity of RuBisCO.
The amount of active RuBisCO directly scales the maximal velocities and , as𝑉

𝑐 𝑚𝑎𝑥 
𝑉

𝑜 𝑚𝑎𝑥
 

. is the amount of RuBisCO and is𝑉
𝑐 𝑚𝑎𝑥 

=  𝑘
𝑐 𝑚𝑎𝑥

𝑌
𝑅𝑢𝐵𝑖𝑠𝐶𝑂

𝑎
𝑅

𝑌
𝑅𝑢𝐵𝑖𝑠𝐶𝑂

𝑎
𝑅

=  1/(1 + 𝑒
0.3(𝑇−𝑇

𝑠𝑎𝑡
)
)

the fraction of RuBisCO that is active and is the temperature at which half of the RuBisCO is𝑇
𝑠𝑎𝑡

inactive.
The temperature dependence of the kinetic constants , and is described by an𝐾

𝑐 
𝐾

𝑜 
𝑉

𝑐 𝑚𝑎𝑥 

Arrhenius function of the form Parameter(T) = Parameter(25°C) exp( ) where R is the
(𝑇−25)𝐸

𝑝

298 𝑅 (273+𝑇)
universal gas constant and is the activation energy of the parameter.𝐸

𝑝
Finally, the temperature dependence of parameter is given by𝐽

𝑚𝑎𝑥

, where the parameters S and H are the entropy𝐽
𝑚𝑎𝑥

(𝑇) = 𝐽
𝑚𝑎𝑥

(25)𝑒𝑥𝑝(
(𝑇−298)𝐸

𝐽

298 𝑅 𝑇 )
1+𝑒𝑥𝑝( 298 𝑆 − 𝐻

298 𝑅 )

1+𝑒𝑥𝑝( 𝑆𝑇−𝐻
𝑅𝑇 )

and
enthalpy of a hypothetical equilibrium between an active and inactive form of the limiting
component of electron transport, is the apparent activation energy for low temperature limited𝐸

𝐽
electron transport (see (von Caemmer et al. 2009) for details). All parameter values were
extracted from (von Caemmer et al. 2009) and (Walker, B., et al. 2013). To perform simulations, the
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amount of RuBisCO, , and are fixed respectively to the predicted abundance of RuBisCO and𝑅
𝑑

𝑇
𝑝

to the predicted flux of CO2 released by mitochondria (reaction R_Tr_CO2m) and to the rate of
inorganic phosphate supply to the chloroplast (sum of the flux of reactions R_Tr_X5P, R_Tr_GPT1,
R_Tr_PPT, R_Tr_TPT3, R_Tr_TPT2, R_Tr_TPT1,R_Tr_NTT) by RBA. Equations have been
implemented and simulated using Matlab 2018b.

3. Results
3.1 A Resource Balance Analysis model for the leaf cell of Arabidopsis thaliana

Fig1. Principle of RBA model generation and simulation. (1) Knowledge and information necessary for model building
are extracted from various sources (e.g. public repositories, literature, etc.; see Supplementary Table 1). (2) The RBA
model is generated using the software RBApy (Bulovic et al. 2019) and (3-4) simulated using the RBA modeling
framework for eukaryotic cells (see Goelzer et al. 2019 and Methods). GSMM: Genome-scale metabolic model.

Our aim was to conduct a first in silico investigation of the resource allocation at the cellular and
molecular scales in Arabidopsis thaliana. Focusing on a single cell type, we had to choose (i) a
developmental stage and (ii) a cell type that is representative of plant functioning during this
developmental stage and that can be handled by the RBA framework. We decided to focus on the
vegetative growth phase, which corresponds in A. thaliana to half of its life cycle, beginning after
the transition from the heterotrophic to autotrophic stage and ending before the flowering
initiation; on short period of times and in optimal conditions the relative growth rate can be
considered as constant and, hence, the growth as exponential. During this phase, the shoot part
represents between 77% and 90% of the dry weight of the plant (Schulze, W., et al. 1991, Menz et
al. 2018). Within the shoot part, the leaf cells are the main location of photosynthesis and
concentrate most of the plant resources.
The RBA model for the leaf cell of A. thaliana integrates the cellular organelles (e.g.
mitochondrion, chloroplast, etc.) and a set of cellular processes associated with each organelle. It
includes the main cellular processes of gene expression, the protein chaperoning and transport
(between organelles), the rRNA and tRNA production and transport, and the primary metabolism,
to mention the ones requiring the larger part of resources. For gene expression, we included in
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particular three translational processes, located in the cytosol, in the mitochondrial matrix and in
the chloroplast respectively, in order to be biologically realistic and to illustrate the level of cellular
details that can be managed by RBA. This implies that the RBA model also includes the TIC/TOC
and TIM/TOM molecular machines (Thomson, S. M., el al. (2020); Ghifari, A. S., et al. (2018)) that
import proteins from the cytosol into the chloroplast or into the mitochondrion respectively.
Organelles are further detailed into sub-compartments such as chloroplast envelope, stroma,
thylakoid membrane, and thylakoid lumen. This allows us to describe localized proteins and
metabolites, and thus to have a detailed description of photosynthesis (including the chlorophyll
needs for the functioning of photosynthetic complexes) and of carbon fixation reactions.
Consequently, the model also includes the metabolite transporters necessary for metabolic
exchanges between the different sub-compartments.

Generating an RBA model requires information for formalizing cellular constraints, in particular: (i)
the localization and the composition of the molecular machines, (ii) the molecules that are
consumed and released by the functioning of molecular machines; (iii) the efficiencies of
molecular machines, i.e. the rates of the process per amount of the catalyzing molecular machine;
(iv) other parameters such as the fraction of housekeeping proteins for each compartment. To
build the model we used the software RBApy, conceived to assist modelers in the creation of RBA
models by helping in information extraction and semi-automatic model generation (Bulovic et al
2019). RBApy necessitates as input a genome-scale metabolic model that accounts for a
description of enzymatic complexes as Boolean (and/or) rules in SBML (Systems Biology Markup
Language) format (Hucka et al. 2003), and a description of macromolecular machines - i.e
ribosomes, chaperones, etc- in FASTA files. Although several genome-scale metabolic models exist
for A. thaliana (Poolman et al. 2009; de Oliveira Dal'Molin et al. 2010; Seaver et al. 2014), only one
- the AraCore model (Arnold et al. 2014) - contains a precise description of enzymatic complexes.
The AraCore model specifically describes a leaf cell, that is, (i) it contains the protein subunits of
enzymatic complexes that are localized in the leaf; (ii) the biomass composition corresponds to the
leaf cell. Moreover, it has been manually curated, which makes it more trustworthy than
non-curated models. We thus selected the AraCore model as a starting point and completed it
manually with a few additional metabolic pathways - the synthesis of pigments (chlorophyll a and
b) and some cofactors (pyridoxal-5P, riboflavin, NAD(P)), and the transport of ions within the cell
and between cellular compartments - to describe in more detail the enzymatic complexes
containing ions, cofactors or photosynthetic pigments. Finally, we added transporters of molecules
in the membrane of organelles that are necessary to build the different molecular machines and to
ensure their functioning. For modelling the macromolecular processes, we reconstructed manually
the composition of molecular machines using information on UniProt (UniProt consortium 2017),
KEGG (Kanehisa et al. 2000), ChloroKB (Gloaguen et al. 2017), literature and biological expertise.

Using all this information, we generated the RBA model of the leaf cell using the prerba module of
RBApy (Bulovic et al 2019). The model contains 21 compartments (including different membranes
of cellular organelles), 1599 metabolic reactions, 728 metabolites, 27 macromolecular processes
(e.g. cytoplasmic translation), 1622 distinct molecular machines (including enzymes and
transporters) composed of 1332 proteins, and 108 parameters. The RBA model is encoded in XML
files using the RBAxml format (Bulovic et al 2019) (Supplementary file 1 and supplementary Table
1). The updated AraCore metabolic model is available in Supplementary file 2.

3.2 Model parameters
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Model parameters include (i) the molecular machine efficiencies including, for instance, the
ribosome efficiency (translation elongation rate) or the RuBisCO efficiency; (ii) the total amount of
amino acids contained in proteins and the amount of housekeeping proteins allocated to each
cellular compartment (called Pg parameters); (iii) the amount of macromolecular components such
as DNA, mRNA, lipids or cellulose, as well as metabolic reserves such as starch, sucrose or free
amino acids (called parameters). For parameter estimation, we had to select one (ideally) or𝐵
several datasets -especially quantitative proteomics data for the estimation of housekeeping
protein abundance- acquired in comparable plant growth conditions (but being aware that
variance in plant samples is high). We chose the datasets from Pyl et al. 2012 and Sulpice et al.
2014 acquired in short day experiments (8 hours of photoperiod) since they have been produced
by the same group in comparable environmental conditions.
Following the parametrization procedure for prokaryotic RBA models, amounts of macromolecular
components and metabolic reserves were extracted from the biomass composition used in the
AraCore FBA model and were set as metabolic targets to be produced in the RBA model. The total
amino acid content incorporated in proteins was computed using the total protein content of
18.97 mg per gram fresh weight (mg/gFW) and the dry over fresh matter ratio of 8.35% reported in
Sulpice et al. 2014 for A. thaliana grown in short days and the amino acid composition of the
Aracore model (Arnold et al. 2014).
In RBA models, housekeeping proteins correspond to proteins for which the function is not made
explicit. The parameter Pg - the fraction of such “non-modeled” proteins in the whole proteome-
can be roughly estimated from data by summing the measured protein mass of non-modeled
proteins and dividing by the total measured protein mass. Using the quantitative proteomics
datasets of Pyl et al. 2012, we obtained a value of 23% for the Pg parameter. However, this number
probably underestimates the real value due to a limited coverage in the proteomics dataset (only a
total of 273 proteins was quantified with a good confidence level). For bacterial cells, Pg represents
approximately 50% of the total mass proteome (Scott et al. 2012, Goelzer et al. 2015). We thus
decided to choose the intermediate value of 35% as a more realistic value, knowing that RuBisCO
may represent between 23% (Li et al. 2017), and up to 50% of the leaf mass proteome (Arrivault et
al. 2019).
The efficiency of RuBisCO was decomposed into nonlinear oxygenase and carboxylase activities as
in the empirical Farquhar model of carbon fixation (Farquhar G, et al. 1980), using in vivo kinetic
values reported in (Walker et al. 2013) and extracellular CO2 and O2 as variables (see Methods).
PS2 maximal catalytic rate was assumed to be 2.44 higher than the maximal carboxylase activity of
RuBisCO (Walker et al. 2013). The in vivo efficiencies of other metabolic processes were assigned
to a default value of 7s-1, which was reported as the mean value of in vivo estimates in glucose
minimal medium (Goelzer et al. 2015) for bacteria, and lower than the median maximal catalytic
rates of 13.7 s-1 reported in (Bar-even et al 2011) for all organisms (including plants). Maintenance
ATP flux was set to 7.3 millimoles/gDW/day in agreement with values reported in Cheung et al.
2013 in heterotrophic growth of cell cultures. Ribosome efficiency was set to an elongation rate of
3 amino acids per second as in (Piques et al. 2009).

3.3 Predicted cell configuration in standard non-limiting growth condition
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Fig2. RBA predictions for a standard non-limiting environmental growth condition at 21°C (irradiance: 1000µE/m2/s;
partial pressures of CO2: 200ubar and O2: 210 mbar). Numbers shown in the different graphs and tables are a subset of
RBA predictions obtained at the maximal relative growth rate. The measured chlorophyll content and protein weight
were extracted from Sulpice et al. 2014 and Li et al. 2017 respectively. (A) Assimilation and excretion rates of nutrients
in millimoles/gDW/day. (B) Ratio between oxygenase (Vo) and carboxylase (Vc) activity of RuBisCO. (C) Chlorophyll
content (in mg/gFW). (D) Ribosome content. (E) Quantitative traits, i.e. the relative growth rate (RGR), the C over N
ratio. (F) Comparison of predicted and measured weight of RuBisCO, soluble proteins in total proteins (in %). (G)
Protein distribution among cellular compartments (in %). gDW, gFW stand for gram dry weight and gram fresh weight
respectively and we considered that gDW is 8.35% of gFW as in Sulpice and al. 2014.

Fig3. Comparison of the RBA predicted flux distribution with the fluxomics dataset of (Ma et al. 2014). Predictions
were performed for a standard non-limiting environmental growth condition at 21°C (irradiance: 1000µE/m2/s;
partial pressures of CO2: 200µbar and O2: 210 mbar) with (red diamonds) and without (blue cross) limiting the
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sedoheptulose 1,7 biphosphate (SBP) aldolase. For comparison, the predicted fluxes were normalized by the
predicted net assimilation rate of CO2 as it was done in Ma et al. 2014.

Fig4. Protein cost of cellular processes divided by the total amino acid content. The protein cost of a cellular process
(shown on x-axis on log10 scale) is computed as the sum of the predicted abundance (in millimoles.gDW-1) of the
proteins belonging to the cellular process multiplied by the number of amino acid residues in the protein. The
correspondence between the proteins and the cellular processes is given in Supplementary table 1.
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Fig5. Metabolic flux predictions, compared between RBA and three different variants of Flux Balance Analysis (FBA)
with the following respective assumptions: case (A): Biomass production (i.e. relative growth rate) is maximized and
the maximal uptake rate of CO2 is set to the RBA predicted value (green circles); case (B): Same as case (A), the flux
ratio between oxygenase and carboxylase activities of RuBisCO is set to 0.33; then a second FBA problem is solved in
which the same constraints are applied, the biomass production is set to the optimal value obtained in case (A), and
the sum of fluxes is minimized (blue squares); case (C): First, photon influx is minimized at a predefined biomass
production and a predefined flux ratio between oxygenase and carboxylase activities of RuBisCO; then a second FBA
problem is solved in which the same constraints are applied, the photon influx is set to its previous optimal value, and
the sum of fluxes is minimized and the photon influx is set to the optimal value (yellow triangles).

Our primary objective is to investigate if an assumption of parsimonious resource allocation
between the plant cellular processes leads to realistic predictions of cell configurations. To this
purpose, we first focused on standard non-limiting growth conditions (see Methods), setting the
concentrations of nutrients at the interface of the leaf cell (i.e. metabolites in xylem, partial
pressure of CO2 and oxygen, photons) and the temperature (21°C). We then computed the cell
configuration that maximized the relative growth rate of the leaf cell and compared the predicted
configuration - protein abundances and metabolic fluxes including cell exchange fluxes - to
measured quantitative traits in similar environmental conditions (see Fig.2), that is, the relative
growth rate, the C:N ratio, the ratio of oxygenase/carboxylase activities of RuBisCO, the chlorophyll
content, the weight of RuBisCO or soluble proteins with respect to the total protein content, and
the ribosome concentration.

Metabolic fluxes and Quantitative traits (Fig.2A,B,E, Fig.3). Predicted cell exchange fluxes (i.e.
import and export cell fluxes) are shown in Fig.2A, with (i) a predicted influx of photosynthetically
active photons that is actually absorbed and used in photosynthesis of 80 millimoles.gDW-1.day-1,
and (ii) a CO2 assimilation rate of 4.7 millimoles.gDW-1.day-1. By using a specific leaf area of 31.6
m2.kgDW-1 for a plant grown in short days (8 hours of day light) reported in Pyl et al. 2012, the
predicted influx of photosynthetically active photons corresponds to 87.9 µmol.m-2.s-1 and the
predicted CO2 assimilation rate during the day corresponds to 5.2 µmol.m-2.s-1. These values are in
reasonable agreement with the values reported for a whole-plant chamber, i.e. a CO2assimilation

15



rate between 2.9 and 7.1 µmol.m-2.s-1 for an illumination between 60 and 160 µmol.m-2.s-1 (Kölling
et al. 2015). Recall that compared to FBA, we did not impose any bounds on cell exchange fluxes.
The flux distribution results from a compromise with respect to the use of resources. The predicted
flux distribution is realistic and consistent with the literature. The predicted relative growth rate
(0.2 day-1) falls in the range of the measured one (0.17 to 0.20 ± 0.02 day-1, Fig.2E see Sulpice et al.
2014); this also holds for the predicted C:N ratio of 5.6 (expected to be between 5 and 15)
(Chietera et al. 2018). The ratio between the oxygenase and carboxylase flux catalyzed RuBisCO is
predicted to be 0.38 (Fig.2B), in agreement with the Farquhar and FBA models (Farquhar et al.
1981; Shameer et al. 2018).

We compared the predicted metabolic flux distribution with the measured fluxomics data of Ma et
al. 2014 (using their light intensity of 200 µmol.m-2.s-1). For that, we normalized, as it was done by
the authors, the flux values by the net assimilation rate of CO2. Predictions and measurements are
in reasonable agreement (see Supplementary Table 1, Fig.3), with for instance a predicted flux
through the carboxylase and oxygenase of Rubisco of 119 and 45 compared to the measured
values of 135 and 39 respectively. Discrepancies first concern the production of starch and sucrose.
This is expected since the sucrose and starch content are different in the data of Ma et al. 2014 and
in our primary source of information (Arnold et al. 2014). A second discrepancy concerns the
second half of the Calvin cycle. The predicted synthesis of chloroplastic F6P is produced by the
pentose phosphate pathway (transketolase and transaldolase) and not by the FBP aldolase and FBP
biphosphatase. However, the network used to compute the flux distribution in Ma et al. 2014 does
not contain all the metabolic intermediates in the pentose phosphate pathway, which could have
an impact on the final computation of the flux. To test further, we limited the flux through the
sedoheptulose 1,7 biphosphate aldolase (see Supplementary table 1, Fig.3). The impact on the
predicted growth rate is negligible with a decrease of only 0.1% and no reshaping in the flux
distribution. It means that the two pathways have similar cellular costs and can be used equally.

Chlorophyll content (Fig.2C). To determine the predicted chlorophyll content, we summed the
amounts of chlorophyll a and b associated with the predicted abundances of photosystem 1 (PS1),
photosystem 2 (PS2) complexes and compared them to the measurements of chlorophyll a and b
acquired at the end of the day in Sulpice et al. 2014. The predicted chlorophyll a content is already
in a realistic range, while chlorophyll b is moderately overestimated. Actually, we assumed that 165
and 170 copies of chlorophyll a (and respectively 95 and 20 copies of chlorophyll b) were contained
in PS1 and PS2 respectively. This was based on the values reported for plants in Nobel 1999. For A.
thaliana, the number of chlorophyll b per photosynthetic complex in the model may be too high.

Ribosome content (Fig.2D). Piques et al. 2009 reported a measured concentration of ribosomes at
0.1 nmol/gFW (summed cytosolic, plastid and mitochondrial ribosomes) while we obtained a
predicted total concentration of ribosomes of 0.14 nmol/gFW. Moreover, predicted cytosolic
ribosomes were 2.4-fold more abundant than predicted plastid ribosomes, and 26-fold more
abundant than predicted mitochondrial ribosomes. These numbers agree well with known
experimental data (Piques et al. reported values of three-fold and 30-fold respectively).

Protein weight (Fig.2F,G). In Li et al. 2017, the authors reported the weight of RuBisCO with
respect to leaf or soluble proteins, and the weight of soluble proteins with respect to the total
proteome. Fig.2G shows that our predictions are well within the range of expected values. Fig.2F
shows the predicted distribution of proteins (i.e. expressed in amino acid residues per gram of cell
dry weight) among the cellular compartments. The prediction states that 68% of the protein mass
are located in the chloroplast, 12% in the cytosol and 12% in the mitochondrion, which is globally
in the range of the values reported in Heinemann et al. 2021 (i.e. 66%, 8.6% 2.1% for the same
compartments respectively). 45% of proteins are located in the stroma of the chloroplast, in
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agreement with the fact that at least 23% of the leaf protein is RuBisCO (Li et al. 2017; Heinemann
et al. 2021), and thus located in this compartment.

Protein cost of cellular processes (Fig.4). We defined a set of cellular processes, composed of
metabolic pathways and the macromolecular processes of the model, and assigned each metabolic
reaction (and thus its associated enzymatic complex) to a single metabolic pathway (see
supplementary table 1). We then computed the predicted protein cost of each cellular process by
summing the predicted abundances (in millimoles.gDW-1) of all molecular machines associated
with the process and multiplied by the number of amino acid residues (Fig.4). Expectedly, the most
costly cellular processes are the Calvin-Benson-Bassham cycle and the light reactions that together
totalize around 52% of the cell mass (recall that RuBisCO by itself represents 23% of the leaf
proteome (Li et al. 2017)). Mitochondrial metabolism (i.e. oxidative phosphorylation, TCA cycle,
metabolite transport) represents 6.3% of cell mass. One will note the high weight of metabolite
transport into organelles (chloroplast and mitochondrion) compared to other processes. Obviously,
the predicted protein cost depends on the efficiency coefficients of molecular machines. For a
given flux, the higher is the efficiency, the lower is the abundance of the molecular machine
necessary to maintain the flux. By using a default unique value for all enzymes and transporters
(except for RuBisCO and PS2) efficiencies, we averaged the variability of in vivo apparent catalytic
rates within a cellular process, which led to compute an averaged (but representative) protein cost
of cellular process.

Cellular ATP balance. The model predicts that cellular ATP is produced mainly in the chloroplast by
the chloroplastic ATP synthase (67%), and to a lesser extent by the mitochondrial ATP synthase
(21%) and by the cytosolic phosphoglycerate kinase (12%). ATP is also exchanged between
organelles. Around 86% of chloroplastic ATP originates from the chloroplastic ATP synthase, while
13% is translocated from the cytosol by the chloroplastic nucleoside triphosphate transporter
(NTT). Predicted mitochondrial ATP is produced exclusively by the mitochondrial ATP synthase and
furnishes 63% of cytosolic ATP by mitochondrial adenylate nucleotide translocase. Glycolysis
produces the remaining 37% of cytosolic ATP. Chloroplastic ATP is mainly consumed by the
Calvin-Benson-Bassham cycle while cytosolic ATP is mainly consumed by maintenance processes
and by translocation into the chloroplast (see Supplementary table 1).

In mature illuminated chloroplasts, the main source of chloroplastic ATP is the chloroplastic ATP
synthase (Voon and Lim 2019), which is in agreement with RBA predictions. However, the fact that
the NTT transporter is active in illuminated chloroplasts still remains a matter of debate (see Lim,
S. L., et al (2022); Flügge, U. I., et al. (2011) and references therein). We thus prevented the use of
the NTT transporter and runned a new simulation for the same standard non-limiting growth
conditions. The cell is viable, but the predicted growth rate decreased by 20% and the flux
distribution changed (see Supplementary table 1): nitrate and sulfate are now the only sources of
nitrogen and sulfur and imported by proton-symporters in contrast to the original simulation,
where NH4 and H2S were also imported (Fig.2A). Glycine is now excreted which causes loss of
carbon and nitrogen. The other major changes involve exchanges of glycolytic intermediates
(3-phosphoglycerate, phosphoenolpyruvate, Glyceraldehyde 3-phosphate), carboxylic acids
(Malate, 2-Oxoglutarate) and glutamate between the chloroplast and the cytosol, and between the
cytosol and the mitochondrion (isocitrate, succinate, proline, glutamate) to a lesser extent. Thus,
according to the model, the NTT transporter is not necessary, but significantly improves the growth
when turned on (i.e. when chloroplast is supplemented with cytosolic ATP). This simulation also
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indicates that an alternative pathway for chloroplastic ATP supplementation does not seem to
exist.

Uniqueness of the solution. In standard CBM methods, such as FBA, multiple flux distributions are
compatible with the optimal growth rate. To analyze the existence of alternative flux distributions
at the optimum, we implemented the numerical test of Appa, 2002 (see Material and methods),
which consists in building (if possible) an alternative solution at the optimal growth rate. If an
alternative solution does not exist, the solution is unique. Our RBA solution is very close to being
unique (see supplementary table 1). Alternative solutions would involve a combination of different
mitochondrial carriers of carboxylic acids and a combination of different chloroplastic translocators
of phosphate/triose phosphates. These combinations actually have similar protein costs in the
model. This has a simple reason. Since the genes coding for these carriers were either the same, or
unknown in A. thaliana, we had assigned to them a default protein of mean amino acid
composition when constructing the model, resulting in different combinations of metabolic
reactions that have the same function and the same cost in terms of resources (cofactors, proteins,
etc.). However, the metabolic fluxes through these alternative reactions are weak compared to the
flux of carbon fixation or energy generation.

Comparison with FBA simulations (Fig.5). We finally compared the flux distribution predicted by
RBA to fluxes obtained by FBA. We used our updated metabolic model Aracore (given in
Supplementary file 2) that contains the same metabolic reactions as the RBA model. We
considered different FBA optimization problems including different constraints and objectives used
in plant modeling. Possible FBA constraints are setting (i) the relative growth rate to the one
predicted by RBA, (ii) the CO2 assimilation rate to the one predicted by RBA, and (iii) the ratio
between oxygenase and carboxylase activities of RuBisCO to 0.33 as in Shameer et al. 2018.
Possible objectives are the maximization of the relative growth rate or the minimization of the
photon influx for fixed relative growth rate, and followed by the minimization of the sum of the
fluxes (see supplementary table 1 and case A in Fig.5). The flux distribution predicted by FBA is
close to the RBA prediction when (i) the ratio between oxygenase and carboxylase activities of
RuBisCO is set, (ii) the sum of the flux is minimized, and either the CO2 assimilation rate or the
relative growth rate is set to the value predicted by RBA (see cases B and C in Fig.5). Measures of
CO2 assimilation rates are rarely available, in contrast to measured relative growth rates.
Consequently, in practice, FBA modelers may set (i) the flux of produced biomass to the measured
relative growth rate, (ii) the ratio of RuBisCO activities to a known value (as 0.33) while minimizing
the flux of photons (de Oliveira et al. 2010). Then, they may solve a second optimization problem
where the sum of the flux is minimized while imposing the photon influx to the optimal value of
the first FBA problem (Gerlin et al. 2022). This scenario corresponds to the yellow triangles of Fig.5
(case C), which is a good approximation of the RBA solution in standard non-limiting conditions.

Altogether, these results show that the predicted cell configuration fits quantitatively with a
realistic configuration of a photosynthetic cell in the rosette. In particular, the RBA model
accurately predicts the relative growth rate and the exchange cell fluxes in an autonomous way
(i.e. without a need for predefined values or bounds on exchange fluxes) for a given environmental
condition. This constitutes a major breakthrough in the prediction of plant cellular phenotypes
compared to the state of the art in plant constraint-based modeling.
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3.4 Impact of parameter variations on RBA predictions

Model parameters are compiled from different sources and are consequently subject to
uncertainties. We thus investigated the sensitivity of our predictions to parameter variation by
performing a so-called One-At-a-Time (OAT) local sensitivity method. We multiplied each
parameter by 0.5 and 2 (two-fold increase or decrease). We then computed again the resource
allocation at maximal growth and quantified the impact of parameter variations on several
phenotypic traits - relative growth rate, CO2 assimilation rate and C over N ratio- by the relative
variation of the predicted phenotypic trait with respect to the nominal prediction. Variations of
thirty-five of the parameters (given in Supplementary Table 1) led to changes in growth rate
greater than 1% (Fig.6). The greatest impacts were observed with parameters related to total
protein content (total amino acid concentration to be allocated), kinetic parameters of RuBisCO
(affinity parameters for CO2 and O2, maximal turnover rates for oxygenase and carboxylase
activities), and RuBisCO activation (temperature for which half of the RuBisCO is active), the
maximal turnover rate of PS2 photosynthetic systems, mean efficiencies of enzymes and
transporters, parameters involved in the definition of housekeeping protein abundances (fraction
of total proteins and of Pg proteins allocated to the different cellular compartments), efficiencies
of ribosomes and chaperones, value of maintenance ATP, and metabolic requirements for
membrane (Malonyl-ACP, ACP) and cell wall (cellulose) synthesis and for metabolic reserves
(sucrose, starch). Moreover, thirty-three of these thirty-four parameters also correspond to the top
parameters impacting the predicted CO2 assimilation rate (Supplementary figure 1). In contrast,
only nine parameters led to variations on the C:N ratio greater than 1%: the total protein content,
the default transporter efficiency, metabolic reserves (sucrose, fumarate, starch, nitrate), cell wall
(cellulose) and lipid requirements (Malonyl-ACP, ACP), see Supplementary figure 2. Moreover, the
direction of the effect of parameter variations is in agreement with the theoretical results of
Goelzer et al. 2011. Any parameter leading to an increase in the abundance of housekeeping
proteins (the fraction of Pg and of proteins in cellular compartments) and in the abundance of
cellular macro-components, i.e. lipid requirements (concentration of Malonyl-ACP, the major
building block of fatty acid synthesis), cell wall requirements (cellulose) or metabolic reserves
(concentrations of starch, sucrose and fumarate), decreases the growth rate. Increasing the
efficiency of molecular machines (default efficiency, default transporter efficiency, ribosome and
chaperone efficiencies) increases the growth rate.

In addition to variations related to RuBisCO and PS2 complex (above), we extended the OAT
sensitivity test to individual enzyme and metabolic transporter efficiencies to identify those that
have the greatest impact on predictions. We increased or decreased each individual enzyme
efficiency by a factor of two, while the other efficiencies remained fixed to their default value
(7s-1). Then we computed the resource allocation that maximizes growth rate and quantified the
impact of parameter variation on the phenotypic traits as described above. The impact of
variations of individual enzyme or transporter efficiencies is generally weaker than with the other
parameters. Variation in efficiency of only 18 of the enzymes led to growth rate variations greater
than 0.4% and correspond to efficiencies of enzyme or transporter catalyzing high fluxes
(supplementary table 1). Enzymes are involved in energy generation (oxidative phosphorylation
chain, chloroplastic and mitochondrial ATP synthase), and carbon fixation (Photosynthetic
complexes, Calvin-Benson-Bassham cycle and glycolytic enzymes) (Fig.7; supplementary figures
3-4). In supplementary figures 5-6, we show the variability of individual flux values caused by
variations of each individual enzyme or transporter efficiency. Variations of some of the
efficiencies induce changes in the cell configuration. They are mainly associated with enzymes that
catalyze high fluxes or metabolic carriers into organelles and belonging to cellular processes having
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a high protein cost (i.e. the categories named photosynthesis, oxidative phosphorylation, central
carbon metabolism and metabolite transport on Fig.4).

We finally explored the sensitivity of predictions to joint variations of molecular machine
efficiencies having high uncertainties, i.e. those of enzymes (except for RuBisCO and PS2 that have
been assigned experimentally-measured values for Arabidopsis), transporters, ribosomes,
chaperones, protein translocation machineries into organelles, RNA and DNA polymerases. To
ensure biological realism, we did not assume a predetermined interval of variation for each
efficiency, but rather assumed that the empirical distribution of efficiencies follows a log-normal
distribution, with the original value identified in the literature as the mean (given in
Supplementary Table 1) and a conservative standard deviation of 0.7, as it was shown in Goelzer et
al. 2015. We then randomly sampled 1000 values in the distribution of each molecular machine,
leading to 1000 distinct combinations of molecular machine efficiencies. For each combination, we
computed the resource allocation that maximizes growth rate and quantified the impact of
parameter variation on the phenotypic traits as described above. Supplementary figures 7-9 show
the empirical distribution of predicted growth rate and CO2 assimilation rate and the variability in
individual flux predictions. The range of predicted growth rate and CO2 assimilation rate increased
by ~30% expectedly with the high standard deviation that we chose, but still display a nice
unimodal distribution. It indicates that two (or more) alternative cellular configurations with very
different protein costs that could be turned on or off (and thus lead to a multimodal distribution)
should not exist. The model behavior is thus robust to variations of individual efficiency
parameters (as in bacteria; see Goelzer et al. 2015).

Altogether, predictions are unsurprisingly sensitive to the efficiencies of costly molecular machines
(e.g. RuBisCO) and to parameters related to plant cell physiology (e.g. the total protein content,
abundance of housekeeping proteins, etc), which are associated with significant portions of the
cellular proteome (abundance of housekeeping protein at 35% and RubisCO at 25%; Figure 2G).
Any changes affecting the final concentration of these proteins can lead to significant alterations in
resource consumption, thereby strongly influencing the growth rate. Small variations in individual
efficiency parameters are expected to have a lesser impact on the growth rate due to their lower
weight contribution to the total proteome, the local sensitivity test being performed at the same
efficiency value (7s-1). The known dynamics of individual molecular machine efficiencies collected
on many organisms and across metabolic pathways is larger (from 10-1 to 103 s-1 for enzymes; see
Bar-even et al. 2011 and Goelzer et al. 2015). Accordingly, we obtained a higher impact on
predictions when joint variations on efficiencies are tested (Supplementary figures 7-9). To go
further, we need a more precise dynamic of each parameter for Arabidopsis thaliana, i.e.
estimated on dedicated datasets. This could enable us to assess more precisely the contribution of
each individual molecular machine or of alternative metabolic pathways to the growth rate, and to
highlight the plant strategies with respect to cellular economics.
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Fig6. Sensitivity of relative growth rate prediction to individual parameter variation. RBA predictions were obtained by
increasing (right-side of the 0 axis) or decreasing (left-side of the 0 axis) the parameter value by a factor of two. Colors
indicate if the parameter variation leads to an increase (blue) or to a decrease (yellow) on the relative growth rate.
Only parameters that lead to a relative variation higher than 1% are displayed.
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Fig7. Sensitivity of predicted relative growth rate to individual enzyme efficiency. RBA predictions were obtained by
increasing (right-side of the 0 axis) or decreasing (left-side of the 0 axis) the parameter value by a factor of two. Colors
indicate if the parameter variation leads to an increase (blue) or to a decrease (yellow) of the relative growth rate. Only
parameters that lead to a relative variation higher than 0.4% are displayed. Parameters are grouped by the biological
processes to which they belong.

3.5 Prediction of plant phenotypic response under complex environmental conditions
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Fig8. Comparison of predicted CO2 assimilation rates response for different partial pressure of CO2 (in ubar) and
temperature (°C). The plots show results from the Farquhar model (Farquhar et al 1981; Caemmerer, S., et al. (2009)
calibrated for A. thaliana (left) and the RBA model (right). For the RBA model, each point corresponds to a simulation
in steady-state where the growth rate is maximized.

Even if the literature on plant constraint-based modeling is vast, papers usually present in silico
analyses of the distribution of metabolic fluxes, and rarely confront predictions to experimental
data. A main reason for this is the experimental cost (and difficulties) of acquiring fluxome in the
whole-plant. An important difficulty in plant constraint-based modeling is thus to validate
quantitatively the model behavior. While a dedicated dataset for full experimental validation is not
available, we can still evaluate the model behavior by comparing the RBA model predictions with
simple and well-established empirical models that capture the macroscopic behavior of the
organism. For plants, the most well-established empirical model mimicking plant cell behavior is
the model of photosynthesis and carbon fixation developed by Farquhar and colleagues (Farquhar
et al. 1981, von Caemmerer et al. 2009).

For the comparison, we first implemented the temperature dependency in RBA as in the Farquhar
model (i) by the Arrhenius law for the kinetic parameters of RuBisCO using the parameter values
given by Walker, B., et al. 2013 and (ii) by modeling the inactivation of RuBisCO by the inhibition of
the RuBisCO activase at moderate to high heat stress (see Methods and Kurek et al. 2007). Then,
we implemented the equations of the Farquhar model provided by von Caemmerer et al. 2009 and
using the kinetic in vivo parameters of RuBisCO described by Walker et al. 2013. In addition to the
kinetic parameters of RuBisCO and of the photosynthesis system II, the Farquhar model is set up by
the RuBisCO content in g/m2, by the rate of CO2 released by respiration (parameter , usually𝑅

𝑑
given in mol.m-2.s-1), and by the rate of use of triose phosphate in chloroplast (parameter ,𝑇

𝑝
usually given in mol.m-2.s-1), i.e. three quantities that are predicted by the RBA model. Parameter
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is the rate of inorganic phosphate supply to the chloroplast (von Caemmerer et al. 2009), which𝑇
𝑝

corresponds to the sum of the flux of phosphate-dependent carriers in the RBA model. We first ran
the RBA model for varying partial pressure of CO2 (55 to 330 ubar), O2 (10 to 330 mbar),
temperature (5 to 60°C) and irradiance (0 to 2000 µmol.m-2.s-1) as defined by Farquhar et al 1981
and von Caemmer et al. 2009. For each simulation, we extracted the predicted amount of RuBisCO
(in millimole.gDW-1) and the predicted CO2 excretion rate by respiration and chloroplastic
phosphate import (both in millimole.gDW-1.day-1), converted them to the relevant units (g.m-2,
µmol.m-2.s-1) using a specific leaf area of 31.6 m2.kgDW-1 reported in Pyl et al. 2012, and finally
used them as input variables for the Farquhar model. The comparison of the CO2 assimilation rates
for varying CO2 partial pressure and temperature between both models is given in Fig.8 (R2=0.93,
p-value=1.5e-48 of the F-statistics). Supplementary figures 10-11 show results for other scenarios
such as varying O2-temperature, varying CO2-irradiance.

Both the curve shapes and the order of magnitude of the CO2 assimilation rate are similar between
the two models (Fig.8). This indicates that the RBA model captures the macroscopic behavior of
the plant cell as given by the Farquhar model and that it can already quantitatively predict the
assimilation rate of CO2 for varying CO2 and O2 partial pressures, irradiance and temperature.
However, and in contrast to the Farquhar model, the RBA model is more autonomous: the RuBisCO
content, the CO2 excretion rate by respiration, the electron transport rate are not fixed a priori or
determined through empirical curves but result from a parsimonious trade-off between cellular
processes with respect to resources.

4. Discussion
Using the RBA framework (Goelzer et al. 2009, Goelzer et al. 2011, Goelzer et al. 2019), we built
the first model of a plant cell on a cellular scale that accounts for resource allocation between the
major cellular processes. The RBA model defines a set of possible phenotypes compatible with a
given specific growth rate. Among the possible phenotypes, we investigated if an assumption of
parsimonious resource allocation - i.e. growth rate maximization - leads to realistic predictions of
plant cell configurations as in bacterial cells. Using realistic biological parameters, simulating the
RBA model leads to accurate and realistic predictions not only in a standard non-limiting growth
condition, but also when different abiotic limitations vary in combination. Hence, the RBA model
captures the behavior of the well-established model for carbon fixation and photosynthesis from
Farquhar and colleagues (Farquhar et al. 1982) under combinations of carbon, irradiance and
temperature condition variations. Further validation of the extent of the model genericity remains
to be performed under other abiotic conditions such as for instance combinations of ions, sulfur,
phosphorus, nitrogen or carbon limitations and/or across diverse genotypes to test specific
pathways’ limiting effect.

A more autonomous CBM model. Compared to other constraint-based models based on the Flux
Balance Analysis framework (Varma and Palsson 1994), the cell configuration in RBA is not fixed a
priori, but results from a global compromise with respect to the parsimonious use of resources.
RBA overcomes the need to predefine several biological objectives or constraints in order to obtain
accurate quantitative predictions, such as the bounds on nutrient uptake rates, minimization of
photon influx, minimization of the sum of the fluxes (see supplementary Table 1) which are
commonly used in other plant constraint-based modeling. In parallel, our results also demonstrate
that some combinations of criteria or constraints imposed in FBA allow the recovery of the RBA
flux distribution on standard non-limiting growth conditions. This highlights the fact that FBA is a
useful tool for guided quantitative cellular exploration, when adequate targets such as the relative
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growth rate, or the uptake rate of the limiting nutrient can be set to measured (or relevant)
quantitative values. Moreover, the detailed biomass composition of RBA models is not fixed and
given as input information as in FBA, but is predicted by the model itself. The model predicts the
optimal macromolecule composition of the cell, and this prediction is very detailed: it follows from
the predicted proteome and may comprise details like trace elements (e.g. iron, which appears in
some of the proteins) or cofactors (e.g. chlorophyll a and b requirements in photosynthetic
complexes) and whose contribution to the overall biomass will vary with the expression level of
those proteins. RBA could thus assist FBA model parametrization, by providing (i) a biomass
composition adjusted to the environmental condition (Bodeit et al. 2023), and (ii) realistic bounds
for nutrient uptake rates. Our RBA model is thus more autonomous and represents a significant
step forward in predictive plant biology in view of the coverage of cellular functions, the accuracy
of predictions, and numerical tractability (the capability of simulating the model in reasonable
time).

Range of model validity, calibration and further model validation. The increased prediction
capability of RBA, or more generally of other resource allocation CBMs such as FBAwMC (Beg et al.
2007), ME-model (O’Brien et al. 2015) or Gecko-model (Sánchez, B. J., et al. 2017), compared to
other CBM methods, necessitates a model of greater complexity, i.e. with a higher number of
parameters, and in particular the in vivo efficiencies of metabolic enzymes and transporters. This
raises the question of the range of validity of these parameters for different environmental
conditions. Actually, metabolic enzyme or transporter efficiencies are usually either approximated
by the maximal turnover rates of enzymes as done in Beg et al. 2007 or Sánchez, B. J., et al. 2017,
and can be extracted (to some extent) from public repositories like the Brenda database
(Schomburg et al. 2002), or estimated from omics data (especially quantitative proteomics and
fluxomics) for different environmental conditions as was done for bacterial cells (Goelzer et al.
2015, Bulovic et al. 2019). Other parameters, such as the total protein content, the fraction of
proteins dedicated to maintenance (parameter Pg) and the main metabolic stocks (parameter ),𝐵
are usually estimated from quantitative proteomics, quantitative metabolomics and from the
biomass composition (Goelzer et al. 2015). For bacteria, most of the estimated parameters were
found to vary linearly with growth rate, which allowed the prediction of the parameter value as a
function of the growth rate (Goelzer et al. 2015). Currently, the RBA model of the plant cell
contains constant parameters compiled from the literature which, in spite of that, allows
consistent and realistic predictions in standard non-limiting growth conditions. The calibration for
the vegetative growth stage would necessitate dedicated datasets (composed of quantitative
proteomics, quantitative metabolomics to determine the metabolic reserves, and the
measurements of some fluxes such as the CO2 or nitrate assimilation rates) that will be designed to
explore the space of parameter values. It would help to determine the dynamics of parameters,
especially the ones of molecular machine efficiencies, and if some parameters display a
growth-rate dependent behavior or vary with the environment. Altogether, the model calibration
will help to explore the range of model validity and robustness quantitatively.

A resource for detecting gaps in biological knowledge, checking the integrity of information and
testing biological hypotheses. Adaptation in plant cells is a highly dynamic process that unfolds on
multiple scales of time, space, and complexity. Predictive cell models remain imperfect, which is a
sign that eukaryotic cell functioning is still not fully understood. The modeling of complex
biological systems such as plant cells could help us see more clearly certain limits of biological
knowledge and could point us to the molecular targets to be studied in priority. To do so, it is
essential to have a fine molecular-scale description of how the plant cell system operates in
different environments, as we propose in the RBA modeling framework. Our model is flexible and
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is intended to be extended and improved as plant cellular biology progresses. Any new cellular
function or cellular compartments can be added as long as their behavior can be described as
linear constraints. In this way, metabolic costs or capacity of molecular machines associated with a
new cellular function can be assessed and evaluated in the context of an entire cell, in order to
check whether the newly added cellular function is compatible with cell growth and survival.
Moreover, since the RBA model explicitly integrates costs associated with the import, use, and
recycling of resources within the plant cell, several biological questions about cellular economics
(e.g. the costs linked to protein or metabolite production and turnover) can be addressed with the
model in non-limiting or limiting growth conditions and for different cell types. Finally, since RBA is
a CBM method, biological assumptions on the plant cell behavior can be tested in silico as soon as
they can be formalized as linear constraints. Their impact can be quantified, as we’ve done in this
work for the inactivation of the NTT transporter, or for the use of the calvin benson cycle. We thus
expect that the RBA model can be a useful resource for the plant scientific community.

Towards the prediction of the organelle volumes. Our RBA modeling framework for eukaryotic
cells has been conceived to (i) predict cellular organelle volumes, based on coefficients that
convert molecular machine abundances to volumes, and (ii) to ensure that the volume of
organelles does not exceed the total cell volume (see Methods and Goelzer et al. 2019). The
volume/density conversion coefficients are currently unknown parameters and call for further
biological investigations on the biophysical properties of organelles. Thus, to account for a limited
total cell volume, we assumed that the organelle volume is driven by the protein density of
organelle, and that the sum of protein density of organelles does not exceed the total density of
the cell. The current plant cell RBA model thus predicts the density of proteins allocated to the
different organelles (see Fig.2FG), and predictions are consistent with experimental data (Li et al.
2017, Heinemann et al. 2021). Knowing coefficients converting the molecular machine abundance
to volume, we expect that RBA could predict in the future the adaptation of organelles in complex
environmental conditions in an autonomous way. However, this remains a challenging and open
question, since the volume variation of some organelles like the vacuole can be large and may be
driven by other biophysical constraints (such as ecophysiological constraints) and not by density
variations only.

Towards the prediction of dynamical behavior such as day/night cycles. The model contains the
known metabolic functions involved in the management of day/night cycle, such as starch or
sucrose remobilization. In theory, the model could already simulate the leaf cell configurations
during day/night cycles as it is done in the dynamical FBA (dFBA) literature. dFBA is an iterative
process based on the division of time into small intervals into which the metabolism is assumed to
be in steady-state, and consists of solving successive FBA problems, representing the metabolic
state at different times (see Moulin et al. 2021 for a review). The current RBA model could already
be simulated under dynamical conditions using the same type of algorithm. However, these
simulations would neglect the inertia of macromolecule concentrations and of organelle volumes
over time (also called memory effect in dynamical systems), since the configuration of the cell
would be replayed entirely between time points. To include the memory effects, the RBA model
would need to be extended for dynamical conditions as it was done in Jeanne et al 2018, or in
Waldherr et al. 2015 for prokaryotic cells.

Model specialization to different cell types - the use of omics data. Beyond model calibration, the
use of omics (quantitative proteomics, quantitative metabolomics and transcriptomics) technology
contributes to the model specialization to different types of cells of organic tissues (Mintz-Oron et
al. 2012, Aurich et al. 2016). RBA model specialization covers mainly three aspects: (i) the
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metabolic coverage, and more broadly the coverage of cell processes; (ii) the major metabolic
reserves; (iii) the specialization of the molecular machines (such as several isoenzymes catalyzing
the same enzymatic reaction). The use of proteomics and transcriptomics data could help both to
identify the cell processes accounting for a large part of resources in a specific cell type, and to
determine the composition of the molecular machines, while metabolomics can be used
straightforwardly to set metabolic reserves. RBA model specialization will first be an important
step towards whole-plant modeling. Our RBA model currently describes a generic green leaf cell,
representative of the rosette behavior with respect to its environment, i.e. the rosette is described
as an homogenous population of our generic leaf cell type. Using cell-specialized RBA models,
more complex organ or tissue composition could be described, by considering heterogeneous cell
populations interacting and sharing resources. Cell-specialized models could further be interfaced
with individual models to refine the description of organ functioning, such as (i) ecophysiological
models to account for water and solute transport in the whole-plant and following the pioneer
works for tomato (Chen et al. 2021) or CAM species (Töpfer et al. 2020) or (ii) functional-structural
plant models such as Greenlab (Christophe et al. 2008) to account for the plant architecture and
organogenesis. Additionally, cell-specialized models could be extremely helpful for studying plant
organs of high agronomic interest, such as the seed, in order to define and forecast quality
determinants under diverse environmental conditions. These insights will also be valuable in
fine-tuning plant breeding programs.

Data availability
The RBA leaf model (encoded in XML files) and the PlantCellRBA software for running simulations
are available at https://forgemia.inra.fr/anne.goelzer/rba-plant-cell-model.
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Supplementary Table 1. (A) Assignment of functional categories for each metabolic
reaction/enzymatic complex. (B) Predicted flux distribution for a leaf cell grown in standard
environmental conditions at 21°C. (C) Uniqueness of the predicted flux distribution following the
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Description of model parameters (type, unit, references). (F) Comparison of the predicted flux
distribution (B) with the fluxomics dataset of (Ma, et al. (2014)).

Supplementary figures. The Supplementary figures and their legends are compiled in a
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