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ABSTRACT: Delayed cerebral ischemia (DCI) following aneurysmal subarachnoid
hemorrhage (aSAH) is a major cause of complications and death. Here, we set out
to identify high-performance predictive biomarkers of DCI and its underlying
metabolic disruptions using metabolomics and lipidomics approaches. This single-
center prospective observational study enrolled 61 consecutive patients with severe
aSAH; among them, 22 experienced a DCI. Nine patients without aSAH were
included as validation controls. Blood and cerebrospinal fluid (CSF) were sampled
within the first 24 h after admission. We identified a panel of 20 metabolites that,
together, showed high predictive performance for DCI. This panel of metabolites
included lactate, cotinine, salicylate, 6 phosphatidylcholines, and 4 sphingomyelins.
The interplay of the metabolome and the lipidome found between CSF and plasma
in our patients underscores that aSAH and its associated DCI complications can
extend beyond cerebral implications, with a peripheral dimension as well. As an
illustration, early biological disruptions that might explain the subsequent DCI found systemic hypoxia driven mainly by higher
blood lactate, arginine, and proline metabolism likely associated with vascular NO and disrupted ceramide/sphingolipid metabolism.
We conclude that targeting early peripheral hypoxia preceding DCI could provide an interesting strategy for the prevention of
vascular dysfunction.
KEYWORDS: delayed cerebral ischemia, aneurysmal subarachnoid hemorrhage, vasospasm, metabolomics, lipidomics

■ INTRODUCTION
Delayed cerebral ischemia (DCI) occurs in about 30% of
patients with aneurysmal subarachnoid hemorrhage (aSAH)
within the first 2 weeks after hemorrhage.1 DCI is responsible
for increased morbidity and mortality.2 It is crucial to identify
patients at risk of developing DCI after aSAH in order to
develop targeted therapies for treating or preventing this
potentially life-threatening complication. However, there is still
no established biomarker for predicting DCI. Furthermore,
there is a broader need to more clearly establish the early
biological disruptions that ultimately lead to DCI, as only
hypotheses have been put forward. DCI was long thought to be
caused by cerebral vasospasm, but recent studies support the
notion that it is a multifactorial pathophysiology that includes
cerebral vascular dysregulation, microthrombosis, cortical
spreading depolarization, and neuroinflammation.3

Metabolomics and its subfield lipidomics are powerful tools
for identifying putative biomarkers in various different
contexts, from disease diagnostics4 and disease risk analysis5,6

to the prediction of therapeutic response.7 Moreover, changes
in the metabolome provide a molecular snapshot of cellular
activity and thus provide important clues to understanding
functional changes in the metabolic pathways that drive disease
risk.

Modifications of some metabolites and lipid levels have been
reported in the context of DCI or vasospasm associated with
aSAH. Elevated CSF levels of ceramides,8 arachidonic acid,
linoleic acid, and palmitic acid,9 elevated lactate/pyruvate
ratio10 and taurine in cerebral microdialysis samples,11 high
blood lactate levels and glucose levels,12 and elevated plasma
taurine levels13 have all been reported in aSAH patients who
later develop cerebral vasospasm and/or DCI. Nevertheless,
there are no consensual biomarkers accepted for routine use in
clinical practice.14

In a previous paper, we reported an early increase in CSF
MMP-9 concentrations in patients who later developed DCI.15

Here, we carried out both LC−MS/MS-based plasma and CSF
metabolomic profiling and total gas-chromatography fatty acid
analysis in our cohort of patients presenting aSAH with and
without subsequent DCI. Our objectives were to identify
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predictive biomarkers of DCI and to decipher the early
underlying metabolic pathway disruptions leading to DCI.

■ METHODS

Study Population and Prospective Study Setting

The study was designed and conducted following the
Strengthening the Reporting of Observational Studies in
Epidemiology guidelines.16 Ethical approval for this study
(N8 2013-1316) was provided by the institutional review
board of the Assistance Public-Hôpitaux de Marseille, France
(Chairperson: Professor Y. Jammes) on May 16, 2013. After
obtaining written informed consent from the next of kin, we
enrolled 61 consecutive patients with spontaneous aSAH who
met the inclusion criteria. To be eligible for inclusion, patients
had to be over 18 years old and admitted to the NCCU of La
Timone University Hospital (Marseille) within 24 h
postbleeding, and their conditions had to require clinically
indicated external ventricular drainage. Patients were excluded
if pregnant, if they had vasospasm on the first diagnostic
angiogram, or if their condition was so severe that they were
unlikely to survive more than 48 h. Patient details were
collected, including age, gender, and individual scores on the
Simplified Acute Physiology Score II disease severity
classification system, the World Federation of Neurological
Surgeons (WFNS) grading system, and the Hunt and Hess
score, as described in Triglia et al.15 Radiographic character-
istics of the initial hemorrhage were identified, including
localization of the aneurysm, modified Fisher grade, and
volume of the intraventricular hemorrhage (IVH) evaluated
using the IVH score, as explained in Triglia et al.15

Radiographic grading-scale scores were determined by two
authors (L.V. and D.L.) who were blinded to the clinical
outcome of the patients studied. In addition, we collected data
on duration of mechanical ventilation and external ventricular
drainage placement, length of stay in the NCCU, modified
Rankin Scale score, and Glasgow Outcome Scale extended at 1
month.15 All patients were followed with transcranial Doppler
sonography (TCD; Philips CX50 with a S3-1 transducer,
Philips Healthcare, Suresnes, France) and received continuous
intravenous nimodipine. Acceleration of TCD mean blood
flow velocity above 120 cm s−1 in the middle or anterior
cerebral artery or daily change in mean TCD velocities greater
than 50 cm s−1 was suggestive of cerebral vasospasm. DCI was
defined, based on the latest recommendations,17 as follows: a
development of focal neurological signs; a drop of at least 2
points on the Glasgow Coma Scale that lasts for at least 1 h
and is associated with angiographic cerebral vasospasm,
detected either with computed tomography (CT) angiography
or digital subtraction angiography; or a new cerebral infarction
detected by CT, either within 6 weeks after aSAH or before
discharge, after first ruling out a procedure-related infarction.
Patients without aSAH admitted to the NCCU for other
neurological disorders (see Table S1) were included as control
patients (n = 9). Blood and CSF were sampled in the first 24 h
post-aSAH. CSF samples were collected from the external
ventricular drain into anticoagulant-free sterile tubes. Blood
samples were collected in sterile vacutainer citrate tubes.
Samples were centrifuged for 10 min at 2500g at 4 °C and then
immediately transferred to cryotubes and stored at −80 °C
until analysis.

Method for the Metabolomics Analysis
Preparation of Dried Extracts and the LC−MS/MS

Method. For metabolomics analysis, 100 μL of CSF or plasma
samples was protein-precipitated with 400 μL of cold methanol
(−20 °C). All the dried polar extracts of both CSF and plasma
were first reconstituted with 125 μL of acetonitrile/water
(90:10; v/v). The samples were separated using an Ultimate
3000 ultraperformance liquid chromatography (UPLC)
(Thermo Scientific) coupled to a Q-Exactive Plus quadru-
pole-orbitrap hybrid high-resolution mass spectrometer
(HRMS) equipped with a heated-electrospray ionization
source (H-ESI II). Chromatographic separation was performed
on a binary solvent system using a reverse-phase C18 column
(Hypersil Gold, Thermo Scientific, 100 mm × 2.1 mm, 1.9
μm) at 40 °C at a flow rate of 0.4 mL min−1 and a HILIC
column (Merk, SeQuant ZIC-HILIC, 150 mm × 2.1 mm, 5
μm, 200 A) at 25 °C at a flow rate of 0.25 mL min-1. The
injection volume for both columns was 5 μL. The mobile
phase consisted of a combination of solvent A (0.1% formic
acid in water, v/v) and solvent B (0.1% formic acid in
acetonitrile, v/v). The following gradient conditions were
used: 0 to 1 min, isocratic 100% A; 1 to 11 min, linear from 0
to 100% B; 11 to 13 min, isocratic 100% B; 13 to 14 min,
linear from 100% to 0% B; and 14 to 16 min, isocratic 100% A.
The separated molecules were analyzed in both positive and
negative ionization modes in the same run. The mass spectra
were collected using 35,000 full-width at half-maximum
(fwhm) resolving power for the theoretical mass-to-charge
ratio (m/z) of 200. Full-scan mass spectra were acquired in the
80−1000 m/z range. The ionization source parameters for
positive and negative ion modes were as follows: capillary
temperature 320 °C, spray voltage 3.5 kV, sheath gas 30
(arbitrary units), auxiliary gas 8 (arbitrary units), probe heater
temperature 310 °C, and S-lens RF level set at 55 v. MS/MS
experiments were performed using higher-energy collision-
induced dissociation (HCD), and the normalized collision
energy (NCE) applied was ramped from 10% to 40%. To
ensure good repeatability of the analysis, a quality control
sample (QC) was formed by pooling a small aliquot of each
biological sample. The QC sample was analyzed intermittently
(1 out of every 4 samples) for the duration of the analytical
study to assess the variance observed in the data throughout
the sample preparation, data acquisition, and data preprocess-
ing steps.

The mobile phase for HILIC column separation consisted of
a combination of solvent A (100% water, 16 mM ammonium
formate) and solvent B (100% acetonitrile and 0.1% formic
acid). The following gradient conditions were used: 0−2 min,
isocratic 97% B; 2−10 min, linear from 97 to 70% B; 10 to 15
min, linear from 70 to 10% B; 15 to 17 min, isocratic 10% B;
17 to 18 min, linear from 10 to 97% B; and 18 to 22 min,
isocratic 97% B. The separated molecules were analyzed in
both positive and negative ionization modes in the same run.
The mass acquisition parameters were the same as those used
for the C18 column. The repeatability of the analysis was
checked by analyzing the replicates of the QC sample.
Data Processing and Molecule Identification. After

LC/MS acquisition, raw data files of the full scan�MS1 in
both positive and negative modes�were converted into
mzXML files. The data were processed using the R package
XCMS (https://bioconductor.org/packages/release/bioc/
html/xcms.html), as described in a previous paper,18 to
generate a data matrix of deconvoluted ions with m/z,
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retention time, and intensity. For metabolomics analysis, the
XCMS matrix was annotated using an internal database of
more than 1300 reference compounds (based on exact mass
and retention time and MS/MS spectra when detected).18 For
lipidomics analysis, the XCMS matrix was annotated using
MS/MS data imported into LipidSearch 4.1 software (Thermo
Fisher Scientific, San Jose, CA) and XCMS, as described in ref
19. The annotated metabolomics and lipidomics data sets were
further processed by probabilistic quotient normalization to
prevent sample-to-sample variation in the MS intensity
response. All data sets were then combined with total fatty
acid content in both plasma and CSF to obtain a single data
matrix that served for further statistical analysis.
Methods for Lipidomics Analysis

Sample Extractions, LC−MS/MS Method, and Data
Processing. Plasma and CSF samples were extracted, as
described previously18 (apolar extract). The dried extracts were
then taken up in 120 μL of acetonitrile/water solution (1:1)
and vortexed and centrifuged at 11,000g for 10 min at 4 °C.
The samples were separated using an Ultimate 3000 UPLC
(Thermo Scientific) coupled to a Q-Exactive Plus quadrupole-
orbitrap hybrid HRMS equipped with a heated-electrospray
ionization source (H-ESI II). Chromatographic separation was
performed at a flow rate of 0.4 mL min−1 using an Accucore
C18 column (Thermo Scientific, 150 × 2.1 mm, 2.6 μm) at 45
°C. The mobile phase consisted of a combination of solvent A
(water/acetonitrile; 60:40 (v/v); 10 mM ammonium formate)
and solvent B (isopropanol/acetonitrile 90:10 (v/v); 10 mM
ammonium formate). The injection volume was 5 μL. The
following gradient conditions were used: 0 to 4 min, linear
from 35 to 60% B; 4 to 12 min, linear from 60 to 85% B; 12−
21 min, linear from 85 to 100% B; 21 to 24 min, isocratic 100%
B; at 24 min, dropped to 35% B; and from 24 to 28 min,
isocratic 35% B. The separated molecules were analyzed in
both positive and negative ionization modes in the same run.
The mass spectra were collected using 35,000 full-width at
half-maximum (fwhm) resolving power for the theoretical
mass-to-charge ratio (m/z) of 200. Full-scan mass spectra were
acquired in the 250−1200 m/z range. The ionization source
parameters for positive and negative ion modes were as
follows: capillary temperature 285 °C, spray voltage 3.5 kV,
sheath gas 60 (arbitrary units), auxiliary gas 20 (arbitrary
units), probe heater temperature 370 °C, and S-lens RF level
set at 45 v. Except for MS/MS, experiments were performed
using HCD, and the NCE applied was ramped from 10% to
40%. MS/MS acquisitions were performed intermittently
throughout the analysis sequence at intervals of 10 samples.
The purpose of MS/MS fragmentation is to generate
fragments for each metabolite that can serve to determine in
silico the structure of the lipid molecule and its identity using
LipidSearch 4.1 software (Thermo Fisher Scientific, San Jose,
CA). The data were processed using XCMS and LipidSearch,
as described in ref 19.
Total Fatty Acid Quantification

Total plasma and CSF fatty acid compositions were measured
using gas chromatography with a flame ionization detection
system.19 250 μL of plasma and 1.9 mL of a stock methylation
solution (1.8 mL of methanol and 100 μL of freshly prepared
acetyl chloride) were combined in screw-capped glass tubes.
The tubes were then capped, heated at 100 °C for 60 min, and
left to cool to room temperature. Hexane (1 mL) was then
added, and the tubes were vortexed for 30 s. The upper organic

phase was collected with a Pasteur pipet. This extraction
procedure was repeated, as described above, in order to
optimize the extraction of fatty acid methyl esters. The
combined hexane solutions were then evaporated under
nitrogen to dryness, and the dry residue was dissolved in
100 μL of hexane, transferred to GC vials, and capped under
nitrogen. Fast GC analyses were performed with a PerkinElmer
Clarus 680 system on 0.5 μL of sample injected in the split
mode by hydrogen flow at a rate of 10 mL/min. The column
used was a BP × 70 capillary column of 10 m × 0.1 mm ID ×
0.2 μm film thickness (SGE International Pty. Ltd., Australia).
The temperature program was as follows: initial, 60 °C with a
0.5 min hold; ramp: 20 °C/min to 200, 7 °C/min to 225 °C
with a 1 min hold, and then 160 °C/min to 250 °C with a 1
min hold. Instrumental conditions were as follows: carrier gas
was H2 at a flow rate of 61.4 cm/s and a constant head
pressure of 206.8 kPa; a flame ionization detector set at 280
°C; air and nitrogen makeup gas flow rates of 450 and 45 mL/
min, respectively; a split ratio of 200:1; a sampling frequency of
50 Hz; and a 0.5 μL autosampler injection volume. The run-
time for a single sample was 13.23 min, and the sample
turnaround time was 16 min.
Statistical Analyses

Continuous variables were reported as the mean plus standard
deviation. For univariate statistics, the data were transformed
by Pareto scaling to obtain a Gaussian distribution across
patients. Intergroup comparisons of means were performed
using a t-test with adjustments for the false discovery rate.

For metabolomics data, features from both ionization modes
for HILIC and RP data were combined into a single data set,
while both ionization modes were combined for the lipid data.
All data were mean-centered and divided by the standard
deviation of each variable (autoscaling mode). Univariate
statistical analysis, simple PLS-DA, random forest, hierarchical
clustering, heatmapping, power calculation, ROC analysis, and
correlation plotting were all performed using the online tool
MetaboAnalyst 5.0. Partial correlations were calculated with
the R package GeneNet, and network visualization was
performed using Cytoscape. Hierarchical PLS-DA and multi-
plex biomarker score calculations were performed with a
SIMCA 12 (Umetrics, Umea, Sweden). To minimize over-
fitting, models were validated by cross-validation analysis of
variance (CV-ANOVA) (significance threshold ≤ 0.05) and by
permutation tests (200 permutations). The biomarker
identification process only used data from 50 patients, as
CSF plus plasma data were not available for 11 patients. A DCI
+ score equation to predict the clinical status of each patient
was calculated using the partial least-squares (PLS) algorithm
combining all the individual discriminating variables, as
described elsewhere.6,18

Discriminant metabolites in the PLS-DA analysis were
determined from their variable importance in projection (VIP)
values determined by the NIPALS algorithm. The significant
threshold of VIP was calculated using a normal probability
plot, indicating which VIP values of the corresponding
metabolites deviated the most from the normal distribution
due to treatment. A similar method was employed to select the
PLS-DA VIP cutoff threshold for significant lipid species.
Hierarchical-PLS-DA modeling was performed based on the
contribution of separate orthogonal PLS-DAs calculated from
all functional sets of metabolites, enabling us to generate a
composite score value for each functional set. Multiblock PLS,

Journal of Proteome Research pubs.acs.org/jpr Article

https://doi.org/10.1021/acs.jproteome.3c00575
J. Proteome Res. 2024, 23, 316−328

318

pubs.acs.org/jpr?ref=pdf
https://doi.org/10.1021/acs.jproteome.3c00575?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


or hierarchical PLS, enables the aggregation of the data into
biological function blocks to ease data interpretation and a
biological understanding of the implications of DCI on the
system. The functional metabolic blocks were “weighted” to
take into account the number of metabolites per block.20 For
lipid blocking, lipid species were grouped according to clusters
calculated by hierarchical clustering analysis (Ward method).
Lipid block score values were generated by Hierarchical-PLS-
DA, as above. Scores from the Hierarchical-PLS-DA analysis
were analyzed to determine the most significant biological
functions related to clinical outcome using a t-test after
adjustment for FDR (Padj ≤ 0.05), random forest, and PLS-DA
analyses. The blocks selected by at least two statistical methods
were retained (Figure S5) and were also graphed in a partial
correlation network to assess the importance of each block
(function) in the integrated system, as determined by the
betweenness centrality topology coefficient of the network
(calculated using the Cytoscape tool “NetworkAnalyser”).

Pathway enrichment was performed using the enrichment
tool bundled with MetaboAnalyst ((http://www.
metaboanalyst.ca) for polar and semipolar metabolites and
LION for lipids (http://www.lipidontology.com).

■ RESULTS

Clinical Features of the Studied Population
Among all of the patients with aSAH admitted to our NCCU
between 2013 and 2016, 61 patients met the inclusion criteria.
Of these 61 patients, 22 developed DCI (DCI+ group),
whereas 39 did not (DCI− group). Patient-sample character-
istics are reported in Table 1 and Figure S1. The only
significant between-group difference in demographic variables
was for patient age: DCI+ patients were significantly younger
than DCI− patients. The DCI+ group tended to have more
smokers and more cases of migraine. Vasospasm was identified
in 90.1% of DCI+ patients but none in DCI− patients (p <
0.001).

Results are expressed as a number (%) or as the mean ± SD.
DCI, delayed cerebral infarction; BMI, body mass index;
WNFS, World Federation of Neurological Surgeons grading
system scale; and GOSE, Glasgow Outcome Scale-Extended.*
Student t-test p-values for patients with DCI (DCI+) vs those
without DCI (DCI−) were considered significant at <0.05.

Values were transformed by Pareto scaling to obtain a
Gaussian distribution across patients (see Figure S1).
Feature Detection in Metabolomics and Lipidomics
Analysis and Fatty Acid Content

A total of 180 and 153 annotated metabolites and 166 and 290
annotated lipids were identified in CSF and plasma,
respectively. In addition to metabolomics and lipidomics, 27
fatty acids were quantified in CSF and plasma by a targeted
method. The overlap was 31.9% of common metabolites and
18.2% of common lipid species in the 2 biofluids. The fatty
acids were similar in both CSF and plasma (Figure S2). A
unique data matrix featuring 843 variables was built with all of
these compounds and used for further statistical analyses.
Missing values (4 in plasma and 16 in CSF) for fatty acids were
replaced by an estimate based on Bayesian principal
component analysis.
Biomarker Selection and Validation

As both CSF and plasma were not available for 6 and 5
patients, respectively, the biomarker identification process only
used data from 50 patients of our cohort (33 DCI− and 17
DCI+). To select and validate a set of biomarkers, we applied
an iterative workflow with randomly left-out patients in
multiple predictive PLS-DA models.6,18 PLS regression also
allowed one to predict class assignments for unknown patients.
A list of 20 metabolites was selected based on the most
commonly shared variables found in 8 consecutively
constructed PLS-DA training models in which four DCI−
patients and two DCI+ patients were repeatedly and randomly
left out. In each model, the variables were selected based on
the shift in the PLS variable importance in projection score
(VIP) from the normal distribution. The accuracy, goodness-
of-fit R2, and goodness-of-prediction Q2 of the final PLS-DA
model comprising all the individuals and based on these 20
selected metabolites were 0.89, 0.69, and 0.55, respectively
(Figure 1a). All these 20 metabolites were significantly
different between DCI− and DCI+ on a univariate t-test
(FDR adjusted p-values < 0.05): 12 of these metabolites were
relatively higher in abundance and 8 were relatively lower in
abundance in DCI+ patients, and only 3 of them came from
CSF (Figure 1b).

Table 1. Patient-Sample Characteristics

all patients (n = 61 patients) DCI− (n = 39 patients) DCI+ (n = 22 patients) unadjusted p value adjusted P value (FDR)

Demographic variables, risk factors, and comorbidities
men 28 (45.9%) 17 (43.6%) 11 (50%) 0.64 0.83
age, years 55.6 ± 12.4 58.2 ± 11.8 51.0 ± 12.4 0.03* 0.23
diabetes mellitus 6 (9.8%) 5 (12.8%) 1 (4.5%) 0.31 0.65
dyslipidaemia 6 (9.8%) 4 (10.3%) 2 (9.1%) 0.89 0.89
smoking 22 (36.1%) 11 (28.2%) 11 (50%) 0.09 0.39
alcohol 12 (19.7%) 7 (17.9%) 5 (22.7%) 0.66 0.83
BMI 25.5 ± 5.3 26.3 ± 5.9 24.2 ± 4.0 0.79 0.85
hypertension 21 (34.4%) 15 (38.5%) 6 (27.3%) 0.39 0.65
dysthyroidism 7 (11.5%) 5 (12.8%) 2 (9.1%) 0.67 0.83
depression 9 (14.8%) 6 (15.4%) 3 (13.6%) 0.86 0.89
migraine 6 (9.8%) 2 (5.1%) 4 (18.2%) 0.10 0.39

Clinical presentation, complications and outcomes
WNFS scale 3.7 ± 1.3 3.5 ± 1.4 3.9 ± 1.2 0.25 0.65
fischer grade 3.8 ± 0.5 3.7 ± 0.6 3.9 ± 0.4 0.39 0.65
vasospasm 20 (32.8%) 0 (0%) 20 (90.1%) 2.6 × 10−27 3.9 × 10−26

favorable GOSE 39 (63.9%) 27 (69.2%) 12 (54.5%) 0.29 0.65
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The selected metabolites were subsequently combined to
generate a meaningful clinical composite score for each
individual. This predictive score was calculated from the PLS
algorithm using the PLS partial correlation coefficients applied
to each metabolite, with the DCI status used as the predicted
variable (Figure 1c). Working from this equation, we
calculated a predictive DCI score for each individual and
tested each score using a receiver operating characteristic curve
(Figure 1d). The area under the curve was 0.968, the
specificity was 0.88, the sensitivity was 0.94, and the cutoff
threshold score above which DCI+ individuals were distin-
guished from DCI− ones was 0.415 (Figure 1d). When using
the strict cut-off value, 86% (29/33) of aSAH patients without
DCI and 94% (16/17) of aSAH patients with DCI were

correctly assigned. Using a 99% CI and a 95% CI, 28% and
22%, respectively, were not defined, and no false-negative
patients were found (Figure 1e,f). We validated our algorithm
by also predicting the left-out patient samples from the 8
training sets described above. Only 6 out of the 48 excluded
patients were classified in the wrong groups: 5 DCI+ and 1
DCI−. Of these 6 patients, three DCI + patients were not
determined using 95% CI, and 2 DCI+ patients were correctly
classified when considering the DCI score calculated for all
patients. In addition, a retrospective power calculation
indicated that 100% confidence at FDR of 0.05 can be
achieved with a sample size of 17 patients per group, as was
obtained in the DCI− group (seeFigure S3).

Figure 1. DCI predictive score and biomarker analysis. (a) PLS-DA 2D score plot showing the distribution of DCI+ and DCI− patients according
to principal components 1 and 2. (b) VIP scores plot of the 20 metabolites selected in the final PLS-DA model. P and CSF prefixes for metabolite
names indicate that the corresponding metabolites were detected in plasma and cerebrospinal fluid, respectively. (c) Equation of the composite
score for prediction of the DCI status. P and CSF prefixes indicate if the corresponding metabolites are detected in plasma or CSF. (d) Receiver
operating characteristic curve associated with the DCI predictive score. The red point represents the best cutoff according to sensitivity and
specificity. AUC: area under the curve. (e) DCI predictive scores plot. The red line represents the test cutoff (0.415). The shaded area represents
the 95% confidence interval (CI) gray zone. (f): DCI status prediction according to the DCI predictive score when applying no CI, 95% CI, and
99% CI. ND: not determined. The number of patients in each observed DCI status group is given in the corresponding rows. The number of
patients in each predicted DCI status group is given in corresponding columns. Lipids key: DG, diacylclycerol; LPC, lysophosphatidylcholine; PC,
phosphatidylcholine; PE, phosphatidylethanolamine; PI, phosphatidylinositol; and SM, sphingomyelin. The fatty acids esterified into complex lipids
are indicated either individually with their carbon and insaturation numbers or together by the total number of carbon and insaturation in the
corresponding lipid species when no distinction is possible. “d” stands for an amine ester, and “p” stands for an ether-linked lipid.
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Finally, the predictive algorithm was challenged against
control patients who had been admitted to the NCCU but
were diagnosed with other neurological disorders (seeTable
S1). Our model correctly classified all (but one) of these
patients as DCI−, as expected (Figure 2).
Interplay between the Metabolome and Lipidome of
Plasma and CSF

In an endeavor to delve deeper into the intricate relationships
between the plasma and CSF metabolome and lipidome, we
constructed a comprehensive pairwise correlation network
between metabolites and lipids within DCI+ or DCI− patient
groups. To mitigate potential biases stemming from variations
in patient numbers between the groups, we generated networks
with a comparable density (number of edges per node) (see
Table 2). Notably, in both DCI+ and DCI− patients,
approximately one-third of the total network correlations
specifically delineated associations between plasma and CSF
metabolites (refer to Table 2). These correlations encom-
passed approximately 72−75% of all analyzed metabolites/

lipids in both biofluids (see Table 2). In contrast, there were
only a minimal number of common correlations observed
between DCI+ and DCI− patients (Table 2).
Multiblock Analysis

Annotated metabolites detected in CSF and plasma were
clustered into 47 and 81 functional biological blocks,
respectively, as described in Method Section6,18 (see Tables
S2 and S3). Lipids were blocked according to statistical
proximity using hierarchical clustering analysis into 14 and 15
different blocks for CSF and plasma, respectively6,18 (see
Figure S4 and Tables S4 and S5). Notably, whereas the overlap
between CSF and plasma metabolites was 31.9% (Figure S2),
the corresponding overlap was 79.2% when grouping the
metabolites into metabolic functions (Figure S5).

Each functional block was then analyzed using a hierarchical
PLS-based approach (hierarchical PLS) on the entire cohort (n
= 61). We tested the effectiveness of the blocking procedure to
ensure it did not distort the mapping of observations in the
PLS space by comparing the PLS-DA score plots of the

Figure 2. Predictive performance of the multiplex biomarker on control patients with no diagnosed aSAH (a) DCI+ (red dots) and DCI− (black
squares) are used as a PLS-DA training model to visualize control patients with no aSAH and no DCI using the multiplex biomarker. (b) confusion
matrix and class assignment probability calculated by the NIPALS algorithm from the PLS-DA model in panel (a). (c) class assignment of control
patients calculated by the ROC.

Table 2. Pairwise Partial Correlation Network Characteristics Calculated in Either DCI+ (n = 17) or DCI− (n = 33) Patients

network characteristics DCI− patients DCI + patients
common pairwise

correlations

correlation P value cutoff to obtain similar network density 0.0048 0.01
network density (number of edges/nodes) 6.81

(5276/772)
6.83

(5605/823)
2.8% (295)

% of variables in network 91.5% 97.5%
% of inter-CSF and plasma metabolitea correlations 30.35 (1701) 33.17% 0.1% (5)
% of intra-CSF + intraplasma metabolite correlations 69.65% (3575) 66.83% (3854) 1.1% (81)
% of total metabolites involved in the inter-CSF/plasma correlations 71.5% 68.5%
% of total metabolites involved in the intra-CSF or intraplasma correlations 88,7% 96.5%
% of common metabolites involved in both intra and inter-CSF/plasma correlations 77.2% 75.3%
number of metabolites involved in the plasma and CSF cotinine, salicylate, and lactate subnetworks

(Figures S8 andS9)
137 86

aGeneric term for both metabolites and lipids.
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weighted block against the original unblocked data6,18 (see
Figure S6).

Using a statistical multitest procedure, we found a set of 14
biological functions and 8 lipid clusters in both plasma and
CSF that were differentially regulated between DCI+ and
DCI− patients (see Figure S7).

We then set out to hierarchize metabolic functions and lipid
clusters that had the most impact on predicting the DCI

phenotype. For that purpose, we first arbitrarily used the t-test
p-values of the 14 biological functions and 8 lipid clusters
previously selected (Figure 3).

Given that the metabolic regulations rarely occurred
independently,21 we calculated a pairwise partial correlation
network integrating all the functions and clusters connected
within and between plasma and CSF in future DCI+ patients
(Figure 4). This allowed one to highlight nodes with important

Figure 3. Influence of each metabolic function and lipid cluster in determining DCI status from analyses performed at t0 (first 24 h post-aSAH).
The variables are sorted according to their p-value after −log10 transformation (where low p-values indicating high significance correspond to high
log-transformed values). The right inset shows the heatmap score values of the corresponding functions and clusters for each patient. See Tables S2
and S3 for full details on metabolic function and lipid cluster compositions.

Figure 4. Minimum pairwise partial correlation network integrating all the metabolic functions and lipid clusters in future DCI+ patients and
cleaned up from the edges of DCI− patients. The significant functions and clusters of Figure 3 are mapped in the network, with red nodes for
plasma and green nodes for cerebrospinal fluid. Edge size is proportional to the p-value of the pairwise relationships. Node size relates to the value
of the difference centrality coefficients calculated in Cytoscape. These coefficients used for the selection of the 22 significant nodes are also reported
in decreasing order in the right inset. The detailed node composition, along with the betweenness centrality coefficients and P values, are reported
in Table S6.
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connectivity by calculating the coefficient of betweenness
centrality, which represents the degree to which nodes stand
between each other. A node with higher betweenness centrality
would have more control over the network and, thus, over the
metabolic systems. Thus, besides the statistical significance,
this dimension of the network topology also affords a way to
gauge how far specific metabolic regulations influence a
biological system.22

Finally, we plotted the distance centrality coefficient (Figure
4) with the corresponding p-value (Figure 3) of each cluster
and function. This allows us to highlight the regulations that
most influence the metabolic systems related to the develop-
ment of DCI (Figure 5).

Based on this dual filtering analysis (P value and
betweenness centrality), the miscellaneous score value
appeared to have greater importance for determining patient
DCI status. The miscellaneous cluster gathers all metabolites
that are not frequent enough to constitute a functional set (at
least 3 metabolites per set). The miscellaneous score was
mainly driven by both higher plasma cotinine and higher
plasma lactate in DCI+ patients (Figures 5 and S8).

The metabolic disorder function, comprising 32 metabolites,
was associated with dysregulation of important metabolic
pathways such as arginine and proline metabolism, branched-
chain amino acid availability, and tyrosine and phenylalanine
metabolism. Energy metabolism (comprising 8 metabolites)
also emerged as important and mainly had impacts on carnitine
synthesis and purine metabolism. Also, a part of sphingolipid
metabolism appeared to be associated with further DCI
occurrence in aSAH patients.

We also found that the microbiota metabolism score
calculated from 18 plasma metabolites differed according to
DCI status. These metabolites can be produced by 23 different
bacterial species (Table S7), whose metabolism possibly varies
according to patient DCI status. We also found functions in
CSF that were relevantly associated with the further clinical
outcome but that were different from those found in plasma.
Tricarboxylic acid cycle regulation appeared different between
the two patient outcomes, as did two lipid clusters related to
ether lipids and glycerophosphocholine lipid species. Note that
a cluster comprising xenobiotics in CSF scored differently
according to patient DCI status and was mainly driven by
higher CSF salicylate in DCI+ patients.

When focusing on specific metabolites, such as cotinine,
salicylate, and lactate, previously implicated in DCI modulation
(as indicated above and in Figure 5), they exhibited distinct
correlation patterns between plasma and CSF, as illustrated in
Figures S8 and S9. While these metabolites were intercon-
nected within a metabolite cluster, their links between plasma
and CSF displayed a more straightforward pattern in DCI+
patients compared to DCI− patients. Additionally, the two
subnetworks involving cotinine, salicylate, and lactate exhibited
divergent characteristics based on the patients’ future out-
comes (see Table 2).

■ DISCUSSION
DCI is one of the worst complications of aSAH but also one of
the most common: it occurs in approximately 30% of patients,
usually between postbleed day 5 and 14, and is associated with
poor outcomes.23 DCI has a highly complex set of underlying

Figure 5. Betweenness centrality plotted against statistical t-test p-value for the 22 selected metabolic functions and lipid clusters. The most relevant
variables for both the P-value and betweenness centrality coefficient are highlighted in the upper-right region of the plot. The empty arrow serves to
further rank the relevance of each function in DCI occurrences. Functions aligned with the arrow direction are deemed increasingly important. The
individual components of each function and cluster are further analyzed using the enrichment tool to translate the functions into molecular
regulation. When enrichment was not appropriate (CSF_xenobiotics and P_miscellaneous), the main individual variable driver was reported. The
putative bacteria producing metabolites of the P_microbiota metabolism function are reported. Links between metabolites and gut bacteria are
indicated in Table S7.
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mechanisms that include cerebral vascular dysfunction, micro-
thrombosis, cortical spreading depolarization, and neuro-
inflammation.3

Identifying early predictive biomarkers of DCI at hospital
admission would mark a huge step forward for managing aSAH
patients in neurological critical care. A deeper understanding of
the biological dysregulations associated with DCI could lead to
novel therapeutic strategies.

To address these challenges, this study had two main goals:
(i) to identify a shortlist of predictive biomarkers of DCI in
patients admitted to the NCCU with spontaneous aSAH in
blood and CSF sampled in the first 24 h post-aSAH; (ii) to
identify early metabolic deregulations that lead to this life-
threatening complication. To the best of our knowledge, this
study is the first to report the results of metabolomics and
lipidomics approaches on both plasma and CSF in patients
with aSAH.

We identified a set of 20 metabolites from both plasma and
CSF that are putative predictive biomarkers of DCI. These
metabolites were combined into an equation that generated a
per-patient score that was sufficiently sensitive and selective
(0.94 and 0.88, respectively) (Figure 1). We also found that a
100% confidence at FDR of 0.05 can be achieved with a sample
size of 17 patients per group, as was obtained in the DCI−
group following a retrospective power calculation (see Figure
S3). This kind of strategy has proven valuable in other studies
for defining a biomarker that is less affected by interindividual
variation or uncontrolled environmental influences.18 The
multiplex biomarker score at the 99% CI was not associated
with false-negative results and can therefore identify patients
who are not at risk for developing DCI (Figure 1). It is of
interest that independent control patients with neither aSAH
nor DCI were quite confidently assigned as no-DCI cases, as
expected. This substantially consolidates the relevance of our
metabolite panel and score for improving the DCI prognosis.
Furthermore, our new multiplex biomarker shows better
performance than the sole MMP-9 biomarker we previously
used.15 This important key step raises prospects for replicating
our findings in a multicentric study and for precisely
quantifying each selected metabolite to generalize the results.

This panel of 20 metabolites is composed of 14 lipids and 6
polar metabolites. Here, we found that blood lactate has the
greatest discriminant power in the panel of metabolites.
Nevertheless, other studies have yielded inconsistent results for
blood lactate: like here, some showed that blood lactate
correlates to aSAH outcomes,12,24 whereas others did not.25

This highlights the risk of using a single biomarker approach to
predict the DCI, as it can be influenced by orthogonal events.

Cigarette smoking is one of the biggest risk factors for
aSAH26−29 and for recurrent aSAH after aneurysm repair,29

and it has also been associated with symptomatic vasospasm
after aSAH.30,31 Our results are consistent with these findings,
as vasospasm is one of the factors contributing to DCI
pathophysiology, and 90.1% of the DCI+ patients in our study
experienced a vasospasm. Cotinine is a nicotine metabolite that
is widely used as a biomarker of cigarette smoking. Here, we
found a higher level of cotinine in DCI+ patients, whereas the
reported smoking status appeared to be less obvious (Table 1).
This could be due to underreporting by patients or passive
smoking.

The reduced set of 20 metabolites identified through this
biomarker approach remains insufficient to provide a
mechanistic explanation for complex disease phenotypes.

Therefore, in order to push forward and decipher the
metabolic dysregulations associated with DCI, we employed
multiblock analysis and enrichment analysis that together make
it possible to summarize complex metabolite profiles into
meaningful functions or pathways as well as to plot the
relationships of each set of functions and clusters in an
interaction network. In this context, while the intersection of
the two biofluids may seem limited when considering
individual metabolites (approximately 32%, as illustrated in
Figure S2), this heterogeneity dissipates when examining the
broader scope of metabolic functions. This broader perspective
aligns with the convergence of macroscopic regulations
governing all cells and tissues, as depicted in Figure S5.

Then, crossing the statistical impact of the functions/clusters
with the interaction network topology helped to hierarchize
the impact of each biological module on future DCI
occurrences (Figure 5). For instance, the “miscellaneous”
cluster of metabolites had the best statistical power associated
with the influence of the metabolic system (betweenness
centrality) in defining DCI status. Since this cluster was mainly
driven by plasma cotinine and plasma lactate, it again
highlights the major influence of early peripheral tissue
hypoxia together with smoking status for predicting a poor-
prognosis DCI event, as observed elsewhere.12

Note that the xenobiotic cluster in CSF was significantly
predictive of further DCI status, and much of this predictive
power was driven by higher CSF salicylate concentrations in
DCI+ patients. Plasma salicylate likely arose from aspirin
intake and its subsequent deacetylation,32 which would be
higher in DCI + patients and may well represent a surrogate
marker of the frequency of headache at aSAH onset. It could
be important to monitor aspirin intake and the underlying
reasons for aspirin use in adolescent aSAH patients.
Significantly, upon scrutinizing the correlative relationships
among the pivotal DCI-associated metabolites mentioned
above�salicylate, cotinine, and lactate�it is evident that they
consistently manifest within a tightly knit coregulation complex
cluster in both plasma and CSF (Figures S9 and S10). This
clustering underscores their collective significance in contri-
buting to the direct or indirect etiology of DCI.

Enrichment analysis of lipid species in specific relevant lipid
clusters pointed to a lower level of some subspecies of
sphingomyelins in plasma and a higher level of some
phosphatidylcholine subspecies and derivatives in both plasma
and CSF in DCI+ patients (Figures S11 and S12). It is not
possible at this stage to establish whether a metabolic
deregulation of a specific lipid directly drives DCI or is merely
a surrogate mechanism. However, as sphingomyelins are
metabolized in ceramides (CER) by sphingomyelinase
(SMase), a lower level of sphingomyelins could be a
consequence of higher SMase activity. Testai et al.8 found an
elevated level of ceramides, particularly C18:0, within 48 h
postbleed in the CSF of patients with symptomatic vasospasm.
CER are important mediators of apoptosis, and several studies
have described increased CER levels in stroke patients.33

Moreover, SMase-driven CER production induces IL-6
expression8,34 and triggers the vasoconstrictive properties of
sphingolipids.35,36 Further studies are needed to determine
whether lower plasma levels of specific sphingomyelins in DCI
+ patients are linked to enhanced ceramide production and the
occurrence of vasospasm.

The metabolites in three biological functions, namely,
metabolic disorders and energy metabolism in plasma and
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the tricarboxylic acid cycle (TCA) in CSF, can be translated
into metabolic pathways using enrichment analysis. These
functions are related specifically to arginine and proline
metabolism, phenylalanine and tyrosine metabolism,
branched-chain amino-acid degradation, carnitine synthesis,
and purine metabolism. Greater TCA cycle deregulation in the
brain might well be related to the hypoxia described by high
plasma lactate levels, reflecting a greater global impairment of
aerobic respiration, with mitochondria as the main target.37

This global impairment might also be related to the difference
in energy metabolism attached to carnitine and purine
metabolism and measured in plasma between the future DCI
+ and DCI− cases. Other impairments also applied to the
metabolic deregulations observed in plasma that were related
to arginine and proline, phenylalanine and tyrosine, and
branched-chain amino-acid metabolisms. NO bioavailability is
central to controlling brain perfusion in DCI38 and is related to
arginine metabolism. Phenylalanine and tyrosine metabolism
are related to catecholamine synthesis, and high plasma
catecholamine levels were found to be related to poor aSAH
outcomes.38 Our observation further highlights the relation-
ships between aSAH-catecholamine-mediated stress and high
circulating lactate, as hypothesized by Van Donkelaar et al.12

Note that rat studies have found a relationship between
aberrant branched-chain amino acid metabolism and ischemic
stroke. This relationship was due to dysregulation of the
microbiota−gut−brain axis.39 No such mechanism associating
BCAA and microbiota has yet been reported for aSAH and
DCI, but our finding that the BCAA metabolism is linked to
the microbiota metabolism, potentially involving bacterial
species, is consistent with.39 Most previous studies on aSAH
and consecutive DCI have focused on brain metabolic issues.
Most of them, except for Van Donkelaar et al.12 have largely
ignored the relationship of brain metabolic impairments with
peripheral metabolism. It is established that such a relationship
greatly influences the incidence and severity of ischemic stroke
and can impact postischemic stroke outcome.40 Our results in
aSAH patients also pointed to such interaction and integration
between systemic and cerebral metabolism, as touched on
elsewhere.12 How this peripheral impairment would affect DCI
occurrence remains unknown. It could also be a reflection in
the plasma of metabolic deregulation in the brain following
disruption of the blood−brain barrier37 and could be specific
to a poor DCI outcome. Similar to traumatic brain injuries
(TBI), aneurysmal subarachnoid hemorrhage (aSAH) involves
neuroinflammation.3,41,42 This condition frequently induces
substantial peripheral pathophysiological changes, yielding
bidirectional consequences that influence diverse organ
systems. These effects encompass the autonomic nervous
system and the systemic inflammatory response, impacting
vital organs, including the heart, lungs, gastrointestinal tract,
liver, kidneys, spleen, and bones.41,42 aSAH also features
downstream complications, including respiratory distress,43

which may contribute to the observed elevation in circulating
lactate. The exploration of how initial peripheral hypoxia could,
in turn, influence future DCI warrants further investigation. In
addition, our findings reveal robust correlations between the
metabolomes of CSF and plasma, evident not only at a
macroscopic function level but also when scrutinizing
individual metabolites (refer to Table 2 and Figures S9 and
S10). Beyond individual contributing factors, this intercon-
nectedness in the metabolomes of these two biofluids
underscores further potential cerebroperipheral crosstalk in

aSAH patients. Altogether, the above observations implied that
addressing aSAH and further DCI may necessitate consid-
eration of not only localized factors but also the induced early
peripheral dysregulations.

The advantage of our multiblock approach is that it is
possible to hierarchize the importance of each of the above-
discussed events and metabolic deregulations associated with
DCI outcomes, as illustrated in Figure 5. This hierarchization
confirms that smoking status and systemic hypoxia are the
main risk factors, followed by systemic metabolic deregulations
likely associated with NO, catecholamine, and BCAA
metabolism but also impairment of the tricarboxylic acid
cycle in cerebral mitochondria and some phosphorylcholine
lipids. Finally, other factors also emerged as slightly less
important determinants of DCI, such as some aspects of
peripheral sphingolipid metabolism and energy metabolism,
gut microbes, and possibly also aspirin intake. Hence, following
this ranking, targeting peripheral hypoxia could be a relevant
strategy to help prevent DCI.

In conclusion, we identified a high-performance predictive
metabolomic/lipidomic multiplex biomarker of future DCI in
aSAH patients upon admission into neurological critical care.
The integrative approach adopted here also highlighted
important biological (both systemic and cerebral) dereg-
ulations associated with DCI occurrence, including peripheral
hypoxia (blood lactate), specific lipid metabolism alterations,
and deregulation of important metabolic functions. Analysis
also pointed to possible exogenous causes of DCI, such as
smoking and drug (aspirin) intake. Consequently, DCI not
only manifests as a cerebral pathology but also extends to early
peripheral deregulations. This discovery opens new avenues for
potential treatment opportunities. Furthermore, our results
importantly point for the first time to a possible gut
microbiota−brain axis of DCI. However, the demonstration
of such an influence would require dedicated protocols. The
exploratory research reported here is based on a single-center
study. This important first step was necessary to lay the
foundations for a multicentric study to validate our results in
different populations.
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