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A B S T R A C T   

Recently, magnetically functionalized polymer tubes (MFPTs) have been fabricated through a multistep elec-
trospinning process. These innovative MFPTs can serve as ducts suitable for microfluidic components and 
biomedical devices. Considering these applications, it is crucial to investigate the effectiveness of inducing 
oscillating contractions at low frequencies. For this purpose, we designed an experimental setup to study the 
cross-sectional contraction of these smart tubes when subjected to a magnetic field produced by the oscillation of 
a small permanent magnet. A magnetoelastic wave resonator placed near the MFPT section detects the induced 
contraction, enabling the calculation of both its magnitude and response times. The results demonstrate that 
oscillating contractions, resulting in a maximum reduction of duct radius by approximately 43%, can be achieved 
with an oscillating magnetic induction field of amplitude around 10 mT, at a low frequency not exceeding 1/ 
2 Hz. These findings highlight the potential of such innovative MFPTs, particularly in the fields of surgery and 
endoscopy.   

1. Introduction 

In recent years, the use of smart devices composed of magnetic 
charges dispersed in various configurations (uniformly or localized) 
within a flexible matrix has increased significantly. These devices have 
wide applications in micromechanical and biomedical fields, serving 
purposes such as neural probes, microneedles, micro-pumps for insulin 
delivery, intraocular and inner ear drug delivery systems, and fluid 
pumps [1–15]. Magnetic actuators generally offer precise control and 
high performance [16]. For instance, a small magnet placed between 
two flexible polyimide membranes was used to achieve moderate 
displacement (ranging from 0 to 0.05 mm) in response to an external 
magnetic field (4–30 mT) for 1-second time [17]. More frequently, a 
combination of micro- or nanoparticles within a polymer matrix, such as 
biocompatible polydimethylsiloxane, is utilized to produce magneto-
rheological elastomer sheets, that exhibit deflections or notable changes 
in resistivity when subject to an applied magnetic field [18–22]. In the 

wake of these pioneering studies, there have been significant advance-
ments in the production of electrospun fibers, greatly contributing to the 
production of advanced functional materials [23–27]. Tubular electro-
spun devices are becoming increasingly important in biotechnology [28] 
and many biomedical applications [29–31]. These applications range 
from prostheses designed to support various tissues and organs, such as 
blood vessels [32], intestines [33], peripheral nerves [34], tendons [35, 
36], and bones [37], to antimicrobial catheters [38]. Furthermore, 
substantial efforts have been directed towards the development of smart 
polymer tubes capable of offering versatile and complex deformations 
for use in applications such as robotic manipulation [39], displacement 
actuators [40], shape recovery components [41], and pH control [42]. 

In the context of this research topic, in a previous investigation we 
focused on the fabrication and characterization of elastomagnetic 
nanostructured tubes made of polycarbonate-urethane nanofibers with 
embedded nickel (Ni) nanoparticles [43]. We optimized the process for 
incorporating and dispersing magnetic particles in the fibers while 
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considering the role of particle size and aggregation in the device 
functionalities. These nanostructured tubes exhibited remarkable 
properties, including significant longitudinal strain under a moderate 
magnetic field. Based on previous studies that combined a magnetic field 
with the electrospinning process [44], we developed a configuration 
that allowed us to align magnetic nanofibers along the line of the 
maximum magnetic force intensity. This results in the formation of 
nanofibrous wires with a high density of magnetic nanoparticles [45], 
which is crucial for achieving substantial elastomagnetic deflection and 
elongation useful for applications in electromechanical and biomedical 
devices. Additionally, we explored recent developments in producing 
programmed and aligned filament-like fibers [46] using various external 
assistance methods during electrospinning, even in a cylindrical 
configuration [47]. 

In our recent studies, we achieved significant improvements in 
magnetic smart devices with tube-shaped designs. Specifically, we 
developed nanocomposite tubes that incorporated a thin longitudinally 
oriented ribbon of magnetic nanofibers localized along the lateral sur-
face of the tube [48]. This innovative structure results in tubes that 
undergo substantial transverse contraction, with a tube eccentricity of 
over 50% and radius decreasing by 40% along the axis of an external 
magnetic field. These effects were achieved with a moderate magnetic 
stimulus characterized by a magnetizing field gradient of ≤30 mT/mm 
at a basic intensity of < 40 mT. 

These newly developed magnetically functionalized polymer tubes 
(MFPTs) can play a crucial role in meeting the demand for tubular de-
vices capable of inducing transverse strains. Such devices have the po-
tential to address common issues in biomedicine, such as obstructions, 
and serve as microelectromechanical flow regulators. In this state-of- 
the-art study, the primary objective was to characterize the dynamic 
response of the newly produced MFPTs under an alternate magnetic 
field. First, we investigated the correlation between the contraction 
levels and the static external magnetic field. Subsequently, we charac-
terized the dependence of the actuated contraction on an alternating 
magnetizing field, revealing the potential and limitations of MFPTs in 
generating oscillating contractions at low frequencies. The miniaturi-
zation of the investigated tubular devices and their possible imple-
mentation with elastic membranes opens up new and exciting 

possibilities in biomedical and microfluidic applications, as discussed in 
the conclusions. 

2. Experimental methods 

2.1. MFPT characterization 

The MFPTs were fabricated via electrospinning, as reported else-
where [48]. Here, for brevity, we will directly provide a summary of the 
sample morphology along with the essential geometry data. The core of 
the production process involves electrospinning a solution of 
polycarbonate-urethane (PCU) and magnetic nanoparticles (MNPs) onto 
a pre-deposited pure PCU tube. The magnetic ribbon consists of an 
electrospun mat of polycarbonate-urethanes (PCU) (Chorethane 80 A) 
nanofibers, which includes Ni nanoparticles (99,99% Aldrich Chemical) 
serving as a magnetic filler at a concentration of 12% v/v relative to the 
polymer. A previous investigation showed that the average nanofiber 
diameter is 2.2 μm, and the nanoparticles are below 200 nm in size [48]. 
The MFPTs used in this study were cut to a fixed length of 20 mm. 

Fig. 1 displays the cross-section of the samples with the average 
value of key parameters such as D (vertical diameter), L (horizontal 
diameter), l (width of magnetic nanofiber mat (MNM) electrospun on 
the top side of the tube), t (thickness of MNM), s (average thickness of 
the tube wall), and s’ (wall thickness on the inside and outside of the 
mat). The weight-induced strain effect is evident, reducing D and 
increasing L when viewing the cross-section in a vertical plane with the 
MNM on the top. 

2.2. Apparatus and methodology for actuating static and oscillating 
transverse strain 

To apply a magnetic field with a defined intensity and gradient to the 
MFPTs, we used a cylindrical NdFeB permanent magnet (PM; 3 mm in 
diameter and 5 mm in height). The B0 magnetic induction field along the 
magnet axis versus the distance from its polar surface was measured 
using a standard Hall Probe, and it is shown in Fig. 2. When the MNM 
piece was exposed to the PM field (inset of Fig. 2), the Ni nanoparticles 
inside the nanofiber developed a magnetic moment (ms) along the x- 

M N M
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L (Horizontal Diameter) = 6.3 mm
D (Vertical Diameter) = 5.4 mm

l = 2.6 mm

t = 0.4 mm External PCU Layer 
(Thickness s΄ ~ 0.1 mm)

Internal PCU Layer 
(Thickness s΄ ~ 0.1 mm)

Tube Wall With Average 
Thickness s ~ 0.2 mm

Fig. 1. Cross-section of the magnetically functionalized polymer tubes placed on a 1.2 mm thick plexiglass support P, with the MNM in a horizontal plane. Pho-
tographs were captured using a TESLONG MS 100 optical magnification camera. 
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axis, simultaneously generating a magnetic force  

Fx = ms ∂B0/∂x                                                                               (1) 

that pulled the magnetized MNM on the top side of the tube toward 
the magnet. As a result of Fx, the MNM displaces towards the region of 
higher magnetic field intensity, causing concurrent deformation (as seen 
in the crushed cross-section of the tube in Fig. 3(a), and (b)). Notably, 
the magnetic force did not uniformly strain the MFPT because the 
magnetic action was concentrated at one end of the tube segment used in 
the experiment. Consequently, the elastic response of the polymer 
nanocomposite tube is not symmetrical on either side of Fx (see the inset 
of Fig. 2, where the MNM’s left side shows the tube segment’s end, while 
the right side displays a longer portion of the tube). The displacement 
not only leads to deformation but also enhances Fx because the 
magnetized MNM approaches regions of a higher magnetic induction 
field as it moves. 

Considering the magnetic force component in Eq. (1), we can assume 
that the magnetic moment (ms) is the product of the magnetization in-
tensity in the Ni particles (M) and the volume of the MNM portion 
affected by the magnetization (Δτ), reduced to 12% (percentage occu-
pied by the nickel particles):  

ms = M Δτ 12%                                                                              (2) 

M is determined as:  

M = (μr/μ0) B0                                                                                (3) 

where μr, μ0, and B0 are the relative magnetic permeability, the ab-
solute magnetic permeability of the vacuum, and the magnetic induction 
field, respectively. 

Therefore, Eq. (1) becomes:  

Fx = ms ∂B0/∂x =M Δτ 12% ∂B0/∂x = (μr/μ0) B0 Δτ 12% ∂B0/∂x           (4) 

Fig. 2. The orange curve (square dots) illustrates the variation of the B0 
magnetic induction field along the axis of the PM as a function of the distance 
(x) from the polar surface. The photo in the inset shows the action of the 
magnet on the MNM positioned towards one end of the MFPT and its conse-
quent contraction. In blue (star dots), the behaviour of the force acting on the 
MNM, which induces the cross-section contraction of the MFPT, is depicted 
based on the simplified model producing Eq. (5). 

Fig. 3. MFPT contraction study: Magnetic force-induced deformation and experimental setup. (a) MFPT cross-section when the PM is distant (d > 3 mm) from the 
plexiglass support P. (b) MFPT cross-section when the PM is near (d < 3 mm) to the plexiglass support P. In particular, the specific photo refers to d= 4.5 mm and d’=
0.7 mm, the minimum distance recorded during the experiment. (c) Experimental apparatus scheme: MR = Magnetoelastic resonator; SA= Signal Analyzer; S =
sample; PM = permanent magnet; CC = cursor; FA = fixed rod on which CC slides; CR = Connecting rod; RA = rotating apparatus; θ = rotation angle; r = distance 
from the axis of rotation of the CR; w = 1 mm is the distance between MR and MNM in the zero-contraction condition. 

V. Iannotti et al.                                                                                                                                                                                                                                 



Sensors and Actuators: A. Physical 371 (2024) 115272

4

Considering that the average relative permeability from transversal 
magnetization measurements on MNM is approximately μr ≈200 (be-
tween 10 mT and 70 mT) and that the MNM volume directly in front of 
the permanent magnet is Δτ = 0.4 • 2.6 • 3.0 mm3 ≈ 3.1 • 10− 9 m3, Eq. 
(4) can be expressed as:  

Fx ≈ 59 • 10− 3 (A m2/T) • B0 • ∂B0/∂x                                              (5) 

By utilizing the calibration curve (Fig. 2) to determine, for each x 
value, both B0 and its derivative with respect to x, Eq. (5) enables to 
approximate calculation of the force acting along the x-axis, pulling the 
end of the MFPT towards the magnet. The trend of this force is depicted 
by the blue line in Fig. 2. It is evident that the actuating mechanism is 
capable of generating a total force equivalent to a few grams, reaching 
its maximum at a distance of approximately 6 mm from the MNM. 

To further investigate, we employed a highly sensitive sensor to 
detect changes in the local induction magnetic field (B) and monitor the 
strain induced on the MFPTs at a fixed position. For this purpose, we 
utilized a magnetoelastic resonator (MR) featuring a sensitive core 
composed of an amorphous metal strip with high initial magnetic sus-
ceptibility [49]. The MR has proven effective in monitoring both static 
and dynamic displacements and oscillations [50–52]. 

The experimental setup illustrated in Fig. 3(c) was designed for the 
production, detection, and characterization of the magnetically actuated 
transverse contraction of the MFPTs under static and dynamic condi-
tions. The monitored sample section ‘S’ is positioned such that its 
diameter D is aligned with the vertical axis. The MR is located coaxially 
above S, whereas the PM is below it. The PM can be moved toward or 
away from the sample or oscillated at a low frequency using the tele-
scoping cursor CC, which slides on the fixed cylindrical axis FA. The 
sliding motion is driven by a connecting rod CR controlled by a rotor RA. 
The rotor can be turned manually using a micrometer knob or rotated at 
a fixed angular speed using a motor (with a frequency ranging from 0 to 
3 Hz). The connecting rod is engaged at a distance r from the axis of 
rotation. Because the length of the connecting rod is 50 mm and r =
3 mm, it can be demonstrated that the displacement of the slider’s end, 
measured from its topmost position, is approximately equal to r − r cos 
(θ), where θ is the angle formed by r with the vertical axis (see Fig. 3(c)). 

3. Experiment modeling, results, and discussion 

The magnetoelastic resonator is sensitive to the local axial magnetic 
field because an increase in this field reduces the amplitude of the 
resonant magnetoelastic waves in its core sensor. This occurs because 
the resonance condition is initially established at the peak of the mag-
netic permeability of the amorphous ribbon core. Therefore, an increase 
in axial magnetization leads to a decrease in magnetic permeability, 
subsequently reducing the amplitude of the magneto-elastic waves. 

Fig. 4 illustrates the calibration curve of the MR, representing the 
magnetoelastic wave amplitude (A0) versus the distance d. This exper-
imentally detected data is presented under two different conditions: in 
the presence of fields produced by PM+MNM (triangle dots), and when 
the MFPT is removed, causing changes in the magnetizing field due only 
to the PM displacement (circle dots). In these measurements, the dis-
tance (d) from the magnet to plexiglass support P was statically changed 
using a micrometric cursor, enabling an excursion greater than that in 
the dynamic oscillating condition (> 6 mm). As the parameter 
d changes, Fig. 4 reveals that A0 remain unaffected by the presence of 
MNM when d > 6.7 mm. A decrease is noted when d falls below 6.7 mm, 
consistent with expectations that the MNM’s magnetization intensifies 
the magnetic field acting on the MR. 

However, as d decreases to less than 3.7 mm, the rate of decrease 
diminishes. This effect arises from tube contraction, displacing the 
magnetized ribbon (MNM) away from the sensor (MR), thus reducing 
the local magnetic field on the MR. Additionally, below 3 mm, the 
greater contraction of the tube in the presence of MNM leads to a larger 

Ao compared to the corresponding value observed without MNM. 
In the experimental configuration shown in Fig. 3, it is important to 

note that the cursor has a total stroke of 6 mm. To prevent contact with 
the plexiglass base, the minimum value of d was 0.7 mm. Based on the 
interpretation provided, Fig. 4 suggests that the MFPT contracts signif-
icantly when d values range from 0.7 mm to 2.7 mm. 

As shown in Movie.S1, shifting the PM closer to the pipe in static 
positions, initially from a distance of approximately d ≈ 3 mm and 
moving downwards, gradually increases the section’s contraction, 
reducing the D diameter. Fig. 5 provides a detailed representation of the 
trend of A0 in relation to d, compared to the corresponding variation in 
diameter D for the range 0.7 mm < d < 3.0 mm. The D value decreases 
from approximately 43% to 4%. The values at the experimental points 
remained consistent across repeated measurement cycles (increasing 
and decreasing d), falling within the instrumental measurements error 
of ± 1 mV for A0 and ± 0.1 mm for d and D. This result suggests the 
possibility of indirectly obtaining D values from measurements of the 
amplitude A0, using the corresponding curves in Fig. 5. In principle, 
since the measurement of the amplitude A0 has an instrumental per-
centage error (0.3–0.4%) smaller than that of the diameter dimension D 
(2–3%), it is evident that performing an indirect evaluation of the 
contraction through the measurement of A0 allows for greater sensitivity 
than direct measurement. A limitation lies in the fact that the experi-
mental trends are not linear. Consequently, to obtain corresponding 
values in unmeasured conditions, linear interpolation between the 
known values of both A0 and D must be considered valid. However, the 
indirect estimation of D through the measurement of A0 is particularly 
suitable for online monitoring of the impact of magnetic fields that vary 
slowly enough to induce actual contraction of the tubes. 

Consequently, after calibrating the experimental system and con-
ducting static checks to evaluate the shrinkage effect of the new poly-
meric tubes under an external magnetic field, the focus of this 
investigation shifted to implementing and detecting the contraction 
under dynamic conditions. Specifically, this involves applying an 
alternating magnetic field with a variable frequency. 

The magnetic field was generated by alternately moving the PM, 
controlled by the rotating apparatus shown in Fig. 3, at low frequencies 
≤ 3 Hz. Fig. 6 shows the displacement Y (black line) over time for 1 Hz 

Fig. 4. Amplitude of the magnetoelastic waves detected by MR as a function of 
the distance d between the PM and the base of the plexiglass support P (see 
Fig. 3). The circle dots represent measurements obtained when only the PM 
field is present, while the triangle dots correspond to measurements taken with 
the smart tube and its MNM in position, as depicted in Fig. 3. The reported 
values were obtained from 10 repeated runs (increasing and decreasing d), with 
an experimental error of ± 1 mV. 
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oscillations under the most favorable conditions, where the minimum 
distance (d=0.7 mm) is achieved. The same figure includes the corre-
sponding B0 field value (square dots) obtained from the calibration 
curve in Fig. 2. Additionally, it displays the expected amplitude (A0) of 
the magnetoelastic waves, derived from the calibration curves reported 
in Fig. 5, both in presence (triangle dots) and absence (circle dots) of 
MNM. Upon careful examination of the trends in Fig. 6, it becomes 
evident that a nearly cosine-shaped oscillation of the actuator magnet 
displacement (black line) does not correspond to an equally harmonic B0 

field trend applied to the nanofiber mat (square dots). This discrepancy 
is mainly due to the significant field decay that occurs as the magnet 
moves further away. The variation in amplitude of the resonant mag-
netoelastic waves, depicted by the circle dots without MNM and the 
triangle dots with MNM, was more pronounced at shorter distances, 
gradually diminishing as the distances increased. Furthermore, the 
comparison of the magnetoelastic wave amplitude (A0) without MNM 
and with MNM aligns with the behavior of the actuating force Fx (star 
dots in Fig. 6), calculated using Eq. (5) for x values corresponding to the 

Fig. 5. Behavior of A0 compared with the corresponding behavior of D (vertical diameter of the sample cross-section parallel to the applied magnetic field), as 
d changes. Square dots represent the D values. Triangle dots represent A0 values in the presence of the MFPT, while circle dots denote measurements obtained when 
the sample is absent. 

Fig. 6. Simulation of the magnet displacement (Y) versus time (t) (black line) during one complete oscillation at a frequency of 1 Hz, correlated with the corre-
sponding magnetic induction field (B0) (square dots), actuating force Fx (star dots), and magnetoelastic wave amplitude (A0) versus displacement. A0 is depicted 
under conditions without MNM (circle dots) and with MNM (triangle dots). 

V. Iannotti et al.                                                                                                                                                                                                                                 



Sensors and Actuators: A. Physical 371 (2024) 115272

6

magnet displacement and adjusted so as to take into account the 
contraction of D illustrated in Fig. 5. Notably, in Fig. 6, the increasing 
separation of the A0 curves, indicating the deformation of the MFPT 
cross-section, correspond to the growth of the actuating force Fx 
responsible for this deformation. 

The experimental trend of the modulation of the magnetoelastic 
wave amplitude, in presence of the MNM, is visualized in Fig. 7 for PM 
oscillations at frequencies of 1/3, 1/2, and 1 Hz. It is evident that A0 
exhibits the expected rapid decay as the magnet approaches the MNM. 
Furthermore, as the frequency exceeds 1/2 Hz, the A0 value decreases 
more than in quasi-static measurements (1/3 Hz). This indicate that 
tube contraction does not reach its complete excursion. In other words, 
the behavior of A0 versus t suggests that the MNM has negligible 
displacement. 

In essence, if the step (Δ) between higher and lower A0 values in the 
modulation induced by alternate magnetization is 131 mV (matching 
the circle dots curve in Fig. 6), it indicates the absence of contraction. 
Conversely, if this step reduces to 102 mV, as observed in the triangle 
dots curve in Fig. 6, it signifies that contraction has reached its optimal 
excursion. 

In Fig. 8, the behavior of Δ versus frequency in the range from 0.2 Hz 
to 1 Hz is presented. One can observe the progressive increase of Δ 
(indicating constriction abatement) starting from 0.5 Hz up to 1 Hz. The 
uncertainty in repeated measurements was kept within ± 0.05 Hz for 
frequency and ± 1 mV for Δ. 

4. Conclusions 

In this investigation, we present a range of experimental results that 
enhance our understanding of magnetically actuated transverse 
contraction in recently developed nanostructured polymer tubes. The 
significance of these findings can be summarized as follows: 

I. A simple mechanical apparatus, specifically designed and con-
structed for this purpose, enables the oscillating contraction of 
MFPT at a low frequency without direct contact.  

II. Our experiment revealed that the cross-sectional contraction of 
the new MFPT occurred in response to the magnetic field of a 
small PM, resulting in a contraction ranging from 4% to 43%. 
This behavior was experimentally confirmed by the MR data, as 
depicted in Fig. 5. 

III. By using the static calibration curve of PM (axial magnetic in-
duction field versus distance; Fig. 2) in combination with the 
MR’s static calibration curve (illustrating the magnetoelastic 
wave amplitude A0 versus distance from the PM in both absence 
and presence of MNM; Fig. 5), we can simulate the expected 
behavior of A0 during oscillating contraction, highlighting its 
correlation with the force generated by the actuating alternate 
magnetizing field (Fig. 6).  

IV. Our experiments directly detected A0 and confirmed its expected 
behavior, particularly at low frequencies (Fig. 7). Moreover, the 

complete set of experimental (Fig. 8) and simulated data under 
dynamic conditions allows us to conclude that the contraction 
begins to be incomplete at frequencies above 1/2 Hz. In other 
words, due to the viscoelastic response of the complex MFPT 
structure, their oscillating contraction is actuated only for oscil-
lation periods exceeding 2 s. 

Overall, these findings reveal the promising smart properties of new 
MFPTs, with vast potential applications across a spectrum of fields. 
Specifically, these materials offer innovative solutions for resolving 
occlusive phenomena in small- or medium-caliber conduit substitutes, 
which are critical in vascular prostheses [53], cardiology [54], as well as 
in the urinary [55], biliary [56], bowel [57], lacrimal [58], and 
esophagogastic [59] ducts, and the insertion of guidewires and probes 
[60]. Considering successful applications involving compression 
induced by magnets [61] and magnetically induced vibrations in metal 
elements [62] that have already emerged, the most significant advan-
tage of the new MFPTs is the elimination of the need for metal parts or 
internal magnets in the body, thus ensuring patient safety. 

Beyond the biomedical context, these tubes also offer substantial 
advantages for controlling fluid flow in conduits, particularly in 
microelectromechanical devices such as fluid flow gates [63]. Their 
unique properties, including elasticity, deformability, and conductivity, 
make them versatile for various applications, including flexible sensors 
and piezoelectric devices [64,65]. In summary, magnetically function-
alized polymer tubes represent a groundbreaking development with a 

Fig. 7. Modulation of the magnetoelastic wave amplitude due to the periodic magnetizing field generated by the oscillating permanent magnet at frequencies of 1/ 
3 Hz (on the left), 1/2 Hz (center), and 1 Hz (on the right). The amplitude of the A0 modulation in the absence of tube contraction (131 mV) is shown on the right, 
while on the left is the corresponding value (102 mV) when contraction occurs as effectively as in static conditions. 

Fig. 8. Variation in the Step (Δ) between higher and lower A0 values in the 
modulation induced by the alternate magnetizing field as the frequency ranges 
from 0.2 Hz to 1 Hz. 
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wide range of potential applications, marking a significant step toward 
innovative and minimally invasive solutions in various fields. 
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