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Abstract

As roots grow through the soil to forage for water and nutrients, they encounter

mechanical obstacles such as patches of dense soil and stones that locally impede

root growth. Here, we investigated hitherto poorly understood systemic responses

of roots to localised root impedance. Seedlings of two wheat genotypes were grown

in hydroponics and exposed to impenetrable obstacles constraining the vertical

growth of the primary or a single seminal root. We deployed high-resolution in vivo

imaging to quantify temporal dynamics of root elongation rate, helical root move-

ment, and root growth direction. The two genotypes exhibited distinctly different

patterns of systemic responses to localised root impedance, suggesting different

strategies to cope with obstacles, namely stress avoidance and stress tolerance.

Shallower growth of unconstrained seminal roots and more pronounced helical

movement of unconstrained primary and seminal roots upon localised root imped-

ance characterised the avoidance strategy shown by one genotype. Stress tolerance

to localised root impedance, as exhibited by the other genotype, was indicated by

relatively fast elongation of primary roots and steeper seminal root growth. These

different strategies highlight that the effects of mechanical obstacles on spatiotem-

poral root growth patterns can differ within species, which may have major implica-

tions for resource acquisition and whole-plant growth.

K E YWORD S

in vivo imaging, mechanical obstacles, root circumnutation, root elongation, root growth
direction, soil heterogeneity

1 | INTRODUCTION

The belowground environment of most terrestrial plants, including all

arable crops, is shaped by the complex spatial arrangement of solids

and pores in the soil, also referred to as soil structure (Rabot

et al., 2018). Localised differences in soil porosity, pore size distribution,

and pore connectivity result in spatial gradients of soil penetration

resistance, water availability, and soil aeration capacity (Schlüter

et al., 2019; Ebrahimi & Or, 2016; Hinsinger et al., 2009). Furthermore,

soil structural heterogeneity leads to heterogeneous spatial distribution

of organic carbon and plant-available nutrients (Keiluweit et al., 2017;

Wang et al., 2020) and underpins the formation of spatially distinct

microbial communities (Nunan et al., 2020; Borer et al., 2018;

Ebrahimi & Or, 2016). The occurrence of these heterogeneities at the

centimetre, millimetre, and sub-millimetre scale (Vogel et al., 2018) is a

key feature distinguishing soil environments from aboveground
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environments of plants (Walter et al., 2009). Therefore, individual roots

of the same plant can be exposed to distinctly different environmental

conditions, and responses of root systems to soil heterogeneity are cru-

cial to soil exploration by plants (Jin et al., 2013; York et al., 2016).

Interactions between roots and heterogeneous edaphic conditions and

the implications of these interactions for the access and acquisition of

water and nutrients are essential to a holistic understanding of plant

growth and crop productivity (Wang et al., 2020; Jin et al., 2017).

Root elongation rate and thus the access to water and nutrients in

the soil are strongly influenced by the mechanical stress acting on the tip

of a growing root (Colombi et al., 2018; Bengough et al., 2011; Liu

et al., 2022a). As roots grow into deeper and thus denser soil layers, root

mechanical stress gradually increases, decreasing root elongation rate

(Lynch & Wojciechowski, 2015; Kautz et al., 2013; Bengough

et al., 2011). In addition to gradual changes, the mechanical stress acting

on a root tip can increase suddenly. Such sudden increases in root

mechanical stress typically occur when roots encounter a hardpan or

impenetrable objects such as stones (Kolb et al., 2017; Martínez

et al., 2016) or when roots leave macropores and re-enter the soil matrix

(Jin et al., 2013). A sudden increase of root mechanical stress also

reduces root elongation rate (Sjulgård et al., 2021; Croser et al., 1999;

Quiros et al., 2022) and can furthermore lead to a deflection of the root

tip, thereby changing the growth direction of roots (Roué et al., 2020;

Atkinson et al., 2020; Dexter, 1986). Greater root mechanical stress also

increases the nutation amplitude of the helical movement of roots

(Martins et al., 2020) and root circumnutation has been linked to the

avoidance of obstacles and plant establishment on rocky soil (Taylor

et al., 2021). Hence, sudden changes in root mechanical stress directly

affect root growth rate and direction, ultimately affecting the soil volume

and layers in which plants forage for water and nutrients.

Sudden increases in root mechanical stress due to penetrable and

impenetrable mechanical obstacles typically affect only a part of the root

system. Thus, mechanical obstacles in the soil, such as hardpans, stones,

and pore walls, impede root growth locally. Effects of root mechanical

stress on elongation rate, root growth direction, and helical movement of

impeded roots are well documented (Sjulgård et al., 2021; Croser

et al., 1999; Quiros et al., 2022; Roué et al., 2020; Atkinson et al., 2020;

Dexter, 1986; Martins et al., 2020). Localised impedance of one or sev-

eral axial roots can also affect the remaining unconstrained roots of the

same root system, but such systemic responses to mechanical obstacles

in soil are poorly understood. Plants have been shown to reduce root

growth in rocky substrate if the root system has access to more favour-

able soil conditions (Semchenko et al., 2008). Similarly, compensatory

root growth into loose soil upon localised soil compaction has been dem-

onstrated (Bingham & Bengough, 2003; Pfeifer et al., 2014). However, it

remains unclear if plants slowly increase root proliferation into patches

with favourable conditions or if mechanical obstacles have immediate

systemic effects on root growth rate and trajectory. To better under-

stand how plants cope with mechanical obstacles and how this affects

soil exploration, we need to explicitly address systemic responses of root

systems to localised root impedance.

In vivo imaging of spatial and temporal root growth patterns can

provide novel insights into plant-environment interactions (Walter

et al., 2015; Ruts et al., 2012; Atkinson et al., 2020) and offers

possibilities to elucidate root responses to changing environmental

conditions at high spatiotemporal resolution (Quiros et al., 2022; Bizet

et al., 2015; Roué et al., 2020; Basu et al., 2007; Ruts et al., 2013).

Achievable throughput, image resolution, and measurement frequency

of approaches allowing for visualisation of roots in soil, such as X-ray

or neutron imaging, are limited (Tötzke et al., 2017; Tracy et al., 2012;

Zarebanadkouki et al., 2013). Experimental systems using transparent

growth media, including hydroponics, can overcome these limitations

and are therefore, suitable to investigate root-soil interactions at high

spatiotemporal resolution. Gel-based systems (Roué et al., 2020) and

hydroponics (Bizet et al., 2016) were used to reveal temporal patterns

of root tip deflection and bending of roots encountering mechanical

obstacles. Similarly, in vivo quantification of helical root movement

(Martins et al., 2020) and responses of root elongation to suddenly

occurring osmotic stress (Bizet et al., 2015) have been achieved in

transparent growth media. Mechanical obstacles occurring in soil,

such as dense soil patches, stones, and pore walls, affect numerous

soil properties and processes (Ebrahimi & Or, 2016; Naseri

et al., 2019; Banfield et al., 2017), while obstacles placed into hydro-

ponics allow to specifically target effects of root impedance. Thus,

hydroponics allows the disentangling of the effects of mechanical stress

from other soil properties associated with mechanical obstacles.

The aim of the current study was to assess systemic effects of

mechanical obstacles on spatial and temporal growth patterns of roots in

wheat (Triticum aestivum L.). To do so, we grew wheat seedlings in hydro-

ponics and exposed roots to mechanical obstacles that constrained the

vertical growth of either the primary or a single seminal root. In vivo time-

lapse imaging at high spatiotemporal resolution was deployed in conjunc-

tion with particle image velocimetry to quantify systemic responses of

root elongation rate, helical root movement, and root growth direction to

localised root impedance. We performed experiments with two different

wheat varieties to elucidate whether strategies to cope with mechanical

obstacles differ between genotypes of the same species.

2 | MATERIALS AND METHODS

2.1 | Plant material

We used two different wheat varieties, ‘Happy’ and ‘Maggie’ that

respond differently to increasing soil density. As shown in an earlier

study, the adverse impact of increasing soil density on the elongation rate

of embryonic roots (i.e. primary and seminal roots) is significantly more

pronounced in Happy than in Maggie (Colombi et al., 2019). The average

seed weight of both varieties was determined from 200 seeds (Maggie:

48 mg seed�1; Happy: 40 mg seed�1), and seeds with uniform weight

(average seed weight ± 10%) were selected for the experiments.

2.2 | Experimental set-up and treatments

Experiments were conducted in hydroponics using half-strength

Hoagland nutrient solution (Hoagland's No. 2 Basal Salt Mixture;

Sigma Aldrich) adjusted to pH 5.8 with NaOH solution (Bizet
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et al., 2015). The hydroponics system consisted of two containers, a

reservoir container with 10 L volume and a growth container with

1.8 L volume (height/width/depth: 24/15/5 cm) made from transpar-

ent Plexiglas. Three air pumps (Pro Silent a100, JBL GmbH & Co. KG)

were used to aerate the nutrient solution in the reservoir container.

For the experiments, 6 L of aerated nutrient solution was circulated

between the reservoir container and growth container with an aquar-

ium pump (Newa Jet 400, Newa Tecno Industrial SRL) at a rate of

54 L h�1. The nutrient solution was renewed once per week.

Seedlings were grown in growth cells made of two 2 mm thick

Plexiglas plates that were placed vertically into the growth container of

the hydroponics system. The two Plexiglas plates were arranged parallel

with a 1.5 mm gap. This allowed roots to grow freely between the

plates without mechanical resistance while staying in the image plane.

To fix the seed in place, a hole of 7 mm diameter was cut out from the

front plate, and filter paper was used to hold the seed. Horizontal

impenetrable obstacles in the form of microscope slides covered with

sand (0.5–1.0 mm grain size) could be added to the growth cells. The

obstacles constrained either the primary root or one seminal root from

growing further down. In addition to these two treatments in which

plants were exposed to mechanical obstacles, a control treatment with-

out mechanical obstacles was included in the study (Figure 1A). Every

variety-treatment combination was replicated four times (n = 4).

2.3 | Growth conditions and image acquisition

Experiments were conducted in a dark and temperature-controlled

room at a constant temperature of 21.8�C. Seeds were pre-germinated

in an upright position on filter paper soaked in half-strength Hoagland

solution (pH adjusted to 5.8 with NaOH solution) for 56 h. Seedlings

with approximately 12 mm long primary roots and approximately 7 mm

long seminal roots were selected for the experiments. A single seedling

was transplanted into a growth cell, and the growth cell was put into

the growth container of the hydroponics system with the seed halfway

immersed into the nutrient solution.

Root growth was recorded for 24 h in 2-min intervals using a

24-megapixel camera (Canon EOS 750d, Canon) equipped with a macro

lens (EF-S 35 mm f/2.8 Macro IS STM, Canon). The infrared filter of the

camera was removed, and illumination was provided by two rows of

20 infrared LEDs with 830 nm wavelength (TSHG8400 Vishay, 830 Nm

IR LED, Vishay Intertechnology, Inc.). The LEDs were mounted above and

below the growing seedling to illuminate the roots at an angle of 10�.

Due to the illumination with infrared LEDs at such a flat angle, textures at

the root surface appeared as patterns of bright points (Figure 1B; Bizet

et al., 2015; Quiros et al., 2022). The distance between the camera lens

and the roots was 75 mm, resulting in a pixel edge length of 8.55 μm.

2.4 | Image processing and analysis

In all treatments, an image series of 180 consecutive images covering

a growth period of 6 h were analysed. For the two treatments in

which roots were exposed to mechanical obstacles, we included

images taken during 2 h immediately before the obstacle was reached

and images taken during 4 h immediately after the obstacle was

reached. Primary and seminal root lengths at the start of the image

series from treatments with mechanical obstacles were determined

F IGURE 1 (A) Schematic
representation of growth cells made
of two vertical Plexiglas plates placed
into a hydroponics system and the
different treatments included in the
current study with black arrows
indicating unconstrained roots for
which growth parameters were
quantified. (B) Illustration of root

growth parameters derived from
image analysis with KymoRod
(Bastien et al., 2016), namely:
elemental elongation rate (EER [h�1])
as a proxy for cell elongation rate;
length of the root growth zone (LGZ
[mm]) defined as the distance
between root tip and the position
along the root where EER = 0.02
[h�1]; root elongation rate (ER
[mm h�1]) corresponding to the
velocity at the end of the growth
zone (Vmax [mm h�1]); and the
average curvature of the root growth
zone (CGZ [rad mm�1]) obtained from
the curvature profile along the root
growth zone.
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manually in ImageJ (version 1.53e; National Institute of Health). These

measurements were used to select the start of the image series from

treatments without mechanical obstacles to ensure similar root

lengths across treatments and genotypes (Figure S1). Images were

cropped in ImageJ to obtain image series of individual axial roots.

Image series of all roots that did not encounter a mechanical obsta-

cle, i.e. unconstrained primary and seminal roots (Figure 1A), were ana-

lysed with the software KymoRod (Bastien et al., 2016) in a Matlab

2019b environment (The Mathworks). The segmentation threshold, fil-

ter size, and contour smoothing were set manually for every image

series, while the remaining image analysis parameters were fixed for all

image series (Table S1). In KymoRod, particle image velocimetry is per-

formed using patterns of bright points on the root surface (Figure 1B).

This procedure yields displacement fields and, thus velocity profiles as

a function of the curvilinear abscissa along the root skeleton. The spa-

tial derivation of the velocity profiles corresponds to the relative ele-

mental elongation rate (EER [h�1]) along the root skeleton (Bastien

et al., 2016). We set the length of the growth zone (LGZ [mm]) between

the root tip and the position on the curvilinear abscissa along the root

skeleton where EER dropped below 0.02 h�1. The maximum relative

elemental elongation rate (EERmax [h�1]) within the root growth zone

was used as a proxy for the relative cell elongation rate (Youssef

et al., 2018). The root elongation rate (ER [mm h�1] was set as the

velocity at the end of the root growth zone (Figure 1B). For statistical

analyses, we used hourly mean values of LGZ, EERmax, and ER.

Root curvature data provided by KymoRod (Bastien et al., 2016) was

used to characterize temporal patterns of helical movement of primary

and seminal roots and the growth direction of seminal roots. Since active

responses of roots to environmental stimuli occur in the root growth zone,

we obtained the average curvature of the entire root growth zone (CGZ

[rad mm�1]) from root curvature profiles and information on LGZ

(Figure 1B). The average curvature along the root growth zone, hereafter

referred to as the curvature of the root growth zone, was then used to

quantify helical root movement and root growth direction. The difference

between maximum and minimum curvature of the growth zone occurring

within one hour of root growth served as a proxy for the nutation

amplitude of helical movement of unconstrained primary and seminal

roots. To ensure that the difference between maximum and minimum cur-

vature within one hour adequately captured the amplitude of helical root

movement across treatments and genotypes, we additionally calculated

the nutation amplitude over two hours. Effects of localised root imped-

ance on the growth direction of unconstrained seminal roots were quanti-

fied using hourly mean values of the curvature of the root growth zone.

The sign of curvature values of seminal roots located on the left side of

the seed was changed (i.e. multiplied by �1) so that curvature towards

the vertical was denoted in both seminal roots by a negative curvature

value. Temporal changes in root curvature (ΔCt [rad mm�1]) were then cal-

culated as:

ΔCt ¼Ct�
C �2ð Þ þC �1ð Þ

2
ð1Þ

In seedlings exposed to obstacles, Ct denotes the average curva-

ture of the root growth zone during the tth hour (t = 1, 2, 3, 4) after

encountering the obstacle. The average curvature of the root growth

zone during the first and second hour before encountering the obstacle

is indicated by C(�2) and C(�1), respectively. In seedlings grown without

mechanical obstacles, C(�2) and C(�1) denote the curvature during the

first two hours of the image series, and Ct denotes the curvature during

the third, fourth, fifth, and sixth hours of the image series. ΔCt <0 indi-

cated a change in the growth direction of seminal roots towards more

vertical growth, while ΔCt >0 indicated a change in the growth direc-

tion towards more horizontal growth. Seminal root angles at the begin-

ning of each image series were assessed manually in ImageJ using the

angle between the vertical and the root 5 mm from the root base.

2.5 | Statistics

All statistical analyses were done in R version 4.0.2 using the packages

‘stats’ and ‘nlme’ (R Core Team, 2020; Pinheiro et al., 2013) and pri-

mary and seminal roots were evaluated separately. Effects of time,

TABLE 1 Summary statistics on the effects of time (T), treatment (Trt), genotype (GT), and their interactions on hourly mean root elongation
rate (ER) and the nutation amplitude of helical root movement of unconstrained roots. The amplitude of helical root movement was quantified
as the difference between the maximum (Curvmax) and minimum (Curvmin) curvature of the root growth zone within each hour of measurements.
P-values were derived from linear-mixed models that included the sample effect as a random factor to account for repeated measurements
(n = 4). The nutation amplitude of helical root movement was log-transformed

Trait ER [mm h�1] ln(Curvmax-Curvmin) [rad mm�1]

Root class Primary root Seminal root Primary root Seminal root

p(T) < 0.001 < 0.001 < 0.05 0.18

p(Trt) 0.23 0.72 0.08 0.21

p(GT) 0.78 0.76 0.45 0.77

p(T:Trt) 0.31 0.16 0.99 0.33

p(T:GT) < 0.05 0.90 < 0.01 0.10

p(Trt:GT) 0.89 0.92 0.60 0.39

p(T:Trt:GT) 0.16 0.45 < 0.001 < 0.01
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treatment, genotype, and their interactions on root growth parameters

were evaluated with linear mixed models that included the sample effect

as a random factor to account for repeated measurements. Genotype

and treatment were treated as fixed categorical variables, and time was

treated as a fixed continuous variable. The nutation amplitude of helical

root movement described by the difference between maximum and min-

imum curvature of the growth zone within one hour of root growth was

log-transformed to ensure normal distribution of residuals. Analysis of

covariance was used to test for the significance of the effects of time,

treatment, genotype, and their interactions on the different root growth

parameters. Linear regressions were used to explain root elongation rate

as a function of the length of the growth zone and maximum elemental

elongation rate.

3 | RESULTS

3.1 | Effects of localised root impedance on
elongation rate of unconstrained roots

Significant effects of time on the elongation rate of unconstrained pri-

mary and seminal roots occurred (p < 0.001; Table 1), reflecting the

general trend of increased root elongation rate over the analysed

growth period of six hours (Figure 2, Supplemental Figure S2). For pri-

mary as well as seminal roots, the maximum elemental elongation rate

yielded stronger correlations with root elongation rate (R2 > 0.83) than

the length of the growth zone (R2 < 0.35; Supplemental Figure S3)

across treatments, genotypes, and time points. Hence, differences in

maximum elemental elongation rate and, thus the cell elongation rate

was a stronger predictor for differences in root elongation rate than dif-

ferences in the length of the root growth zone.

We found significant time-genotype interaction effects on the elon-

gation rate of primary roots (p < 0.05; Table 1). Evaluating different

treatments separately showed that these time-genotype interaction

effects were significant only if vertical growth of one seminal root was

constrained (p < 0.01; Figure 2A) and not if all roots could grow freely

without encountering obstacles (p = 0.49; Figure S2A). Before reaching

the obstacle, Happy and Maggie showed almost identical primary root

elongation rates. Over the four hours after the vertical growth of one

seminal root was constrained, i.e. after one seminal root reached the

obstacle, the root elongation rate of primary roots in Maggie increased

by more than 25% (Figure 3). This increase was comparable to the tem-

poral increase in primary root elongation rate occurring over the same

time in Maggie seedlings not exposed to obstacles (Figure S2A). In

Happy, however, the primary root elongation rate remained almost con-

stant during the four hours following the impedance of one seminal root

(Figure 3), while it increased by 28% in seedlings that were not exposed

to obstacles (Figure S2A). Such time-genotype interaction effects did not

occur for the elongation rate of seminal roots (p = 0.90; Table 1). Tem-

poral patterns of seminal root elongation rate did not differ significantly

between genotypes if vertical growth of one seminal (p = 0.42;

Figure 2B) or the primary root was constrained (p = 0.96; Figure 2C), or

if no root was exposed to an obstacle (p = 0.33; Figure S2B).

3.2 | Helical root movement in response to
localised root impedance

Different response patterns between genotypes also occurred for the

difference between maximum and minimum curvature of the root

F IGURE 2 Effects of localised root impedance on root elongation
rate of unconstrained (A) primary and (B) and (C) seminal roots. Grey
shaded area indicates period before the obstacle was reached. Area
without shading indicates period after the obstacle was reached and
vertical growth of (A) and (B) one seminal root and (C) the primary root
was constrained. Error bars denote standard error and p-values were
derived from linear-mixed models that included the sample effect as a
random factor to account for repeated measurements (n = 4).
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growth zone during one hour of root growth, representing the nuta-

tion amplitude of helical root movement. We found significant time-

genotype interaction effects (p < 0.01) and time-treatment-genotype

interaction effects (p < 0.001) on the nutation amplitude of helical

movement of unconstrained primary roots (Table 1). As for root elon-

gation rate, the most pronounced genotypic differences occurred in

primary roots of seedlings in which vertical growth of one seminal

root was constrained, as indicated by highly significant time-genotype

interaction effects (p < 0.001; Figure 4A). Before the seminal root

reached the obstacle, the amplitude of the helical movement of pri-

mary roots was comparable between Happy and Maggie. During the

four hours following the impedance of one seminal root, the ampli-

tude of helical movement of primary roots in Happy more than dou-

bled. The amplitude of the helical movement of primary roots in

Maggie, however, decreased by approximately 40% after one seminal

root was constrained from growing further down (Figure 5). If no root

was impeded, similar temporal patterns of the nutation amplitude of

helical movement of primary roots occurred in Maggie and Happy,

and no significant time-genotype interaction effects were found

(p = 0.58; Figure S4A). Similar results on time-genotype interaction

effects on the nutation amplitude of root helical movement occurred

when the nutation amplitude was calculated over two hours

(Supplemental Table S2). We, therefore, suggest that calculating the

nutation amplitude using the minimum and maximum curvature within

one hour of measurement was adequate to quantify the intensity of

the helical movement of primary roots.

The amplitude of helical movement of seminal roots also showed

significant time-treatment-genotype interaction effects (p < 0.01;

Table 1). As observed in primary roots, temporal patterns of the ampli-

tude of helical movement of seminal roots differed significantly

between Happy and Maggie if one seminal root was impeded

(p < 0.01). In Happy, the amplitude of helical movement of uncon-

strained seminal roots increased by 45% over four hours of constrained

vertical growth of the other seminal root. In contrast, the amplitude of

the helical movement of the unconstrained seminal roots of Maggie

decreased by around 20% if the other seminal root was constrained

from growing further down (Figure 4B). No significant interaction

effects between time and genotype on the helical movement of seminal

roots were observed if vertical growth of the primary root was con-

strained (p = 0.70; Figure 4C) or if no root was exposed to a mechani-

cal obstacle (p = 0.37; Figure S4B). Hence, temporal patterns of the

helical movement of seminal roots did not differ significantly between

Happy and Maggie if the primary root was impeded or if no roots were

constrained from growing down. As for primary roots, very similar

results occurred when the nutation amplitude of seminal roots was cal-

culated over two hours of growth (Table S2), indicating that one-hour

intervals adequately captured the intensity of root helical movement.

3.3 | Changing growth direction of seminal roots
upon localised root impedance

Root angle measurements before roots reached the obstacle showed that

Happy had significantly shallower seminal roots than Maggie (p < 0.01;

Figure 6A). Temporal patterns of growth direction of unconstrained semi-

nal roots quantified as the difference in the curvature of the root growth

zone before and after the obstacle was reached (Equation 1), differed

between genotypes. Significant time-genotype (p < 0.01), treatment-

genotype (p < 0.05), and time-treatment-genotype (p < 0.01) interaction

effects occurred for the difference in curvature of the root growth zone

(Table 2). Comparing changes in the curvature of the growth zone

between treatments revealed that the two genotypes exhibited distinctly

different temporal patterns of growth direction of unconstrained seminal

in response to localised root impedance. In Happy, seminal roots of seed-

lings not exposed to mechanical obstacles became steeper over time.

Such changes in growth direction towards the vertical of unconstrained

F IGURE 3 Elongation rate of unconstrained primary roots during 6 h measurement period. Grey shaded area indicates period before the
obstacle was reached and area without shading indicates period after the obstacle was reached and vertical growth of one seminal root was
constrained. Red and blue curves and shading represent mean values and standard error, respectively (n = 4). Insets depict smoothened root
elongation rate using a 10-min moving average.
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seminal roots were less pronounced if the vertical growth of the other

seminal root was constrained (Figure 6B). If the primary root of Happy

was constrained from growing further down, seminal roots became

shallower (Figure 6C). Changes in the growth direction of seminal roots

towards the vertical over time did not occur in seedlings of Maggie that

were grown without mechanical obstacles. The seminal roots of Maggie

became steeper when the vertical growth of primary roots was con-

strained (Figure 6C). Similar yet non-significant changes in the growth

direction of unconstrained seminal roots occurred if the other seminal

root was impeded (Figure 6B).

Thus, the seminal roots of Happy, which grew relatively shallow

at the start of the image series, became even shallower in response to

localised root impedance compared to seedlings grown without

mechanical obstacles. In contrast, seminal roots of Maggie grew

already relatively steep from the start and localised root impedance,

especially the impedance of the primary root, led to even steeper root

growth direction (Figure 6A-C).

4 | DISCUSSION

Localised root impedance and, thus a sudden increase of root

mechanical stress typically occurs if roots enter a dense soil matrix or

encounter impenetrable objects such as stones (Jin et al., 2013; Kolb

et al., 2017). In natural soil environments, increasing localised root

impedance often coincides with further changes in soil conditions.

Gas transport capacity typically decreases with higher soil density,

resulting in changes in the soil atmosphere, shifts in the composition

of localised microbial communities, and alterations of biochemical pro-

cesses (Ebrahimi & Or, 2016; Keiluweit et al., 2017; Borer et al., 2018).

Similarly, hydraulic properties at soil-stone interfaces differ from condi-

tions in the soil matrix (Naseri et al., 2019). Given these interactions

among different soil properties, disentangling the effects of localised

root impedance from the effects of other soil physical, chemical, and

biological properties on roots is challenging (Vogel et al., 2018; Wang

et al., 2020). To specifically quantify the effects of localised root imped-

ance, we placed impenetrable obstacles into a hydroponics system that

constrained the vertical growth of either the primary root or one semi-

nal root of wheat seedlings (Figure 1A). Hydroponics further allowed

for in vivo quantification of root elongation rate at high spatiotemporal

resolution. As in previous studies, we deployed particle image velocime-

try to obtain the length of the root growth zone (Figure 1B; Basu

et al., 2007; Bizet et al., 2015, 2016; Bastien et al., 2016; Youssef

et al., 2018), which we then used to quantify helical movement and

growth direction of unconstrained roots.

The general trend of increasing root elongation rate over time

observed here (Figure 2; Figure S2) corresponds to previous studies

that reported temporal increases in the elongation rate of newly

emerged axial (Croser et al., 1999; Youssef et al., 2018) and lateral

roots (in ‘t Zandt et al., 2015). Performing experiments with two dif-

ferent wheat genotypes enabled us to demonstrate that responses to

mechanical obstacles can differ within a single species. No genotypic

differences in the dynamics of the seminal root elongation rate

occurred, but the temporal patterns of the primary root elongation

rate differed significantly between the two genotypes (Table 1). The

primary root elongation rate of Maggie increased over time if one

F IGURE 4 Effects of localised root impedance on nutation
amplitude of helical root movement of unconstrained (A) primary and
(B) and (C) seminal roots. The nutation amplitude was assessed as the
difference between maximum (Curvmax) and minimum curvature
(Curvmin) of the root growth zone within one hour of root growth.
Grey shaded area indicates period before the obstacle was reached.
Area without shading indicates period after the obstacle was reached
and vertical growth of (A) and (B) one seminal root and (C) the primary
root was constrained. Error bars denote standard error and p-values
were derived from linear-mixed models that included the sample
effect as a random factor to account for repeated
measurements (n = 4).
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seminal root was impeded (Figure 2A). The same pattern occurred in

Maggie and Happy seedlings not exposed to mechanical obstacles

(Figure S2A). In Happy, however, the primary root elongation rate did

not increase and remained nearly constant after the vertical growth of

one seminal root was constrained, suggesting a systemic response to

localised root impedance (Figure 2A). Increased root proliferation in

loose soil patches upon localised soil compaction (Bingham &

Bengough, 2003; Pfeifer et al., 2014) and avoidance of rocky sub-

strate (Semchenko et al., 2008) have been demonstrated in plants that

were several days or weeks old. We showed here that the root elon-

gation rate of unconstrained roots may change within hours in

response to localised root impedance, indicating a near-immediate

systemic response to mechanical obstacles.

Helical root movement and, thus root circumnutation has been

linked to thigmotropism, i.e. the ability to respond to touch stimuli

(Loshchilov et al., 2021; Migliaccio et al., 2013), facilitating root

growth around obstacles and plant establishment in rocky soil

(Taylor et al., 2021). It has been shown that the nutation amplitude

of helical root movement increases if the mechanical stress acting on

the tip of the same root increases (Martins et al., 2020). Here, we

found systemic responses of helical root movement to mechanical

obstacles and show that these responses can differ between geno-

types of the same species (Table 1). Within two hours following the

impedance of one seminal root, the nutation amplitude of helical

movement of unconstrained primary and seminal roots in Happy

increased by 100% and 45%, respectively. In contrast, the amplitude

of helical root movement in Maggie remained constant or decreased

in response to localised root impedance (Figure 4). Effects of

mechanical obstacles on temporal patterns of the growth direction

of unconstrained seminal roots also differed between the two geno-

types (Table 2). The seminal roots of Happy, which had shallower

seminal roots than Maggie (Figure 6A), became steeper over time

if no mechanical obstacles were included. If the vertical growth of

primary roots was constrained, seminal roots in Happy became

shallower. In contrast, the unconstrained seminal roots of Maggie

became steeper if primary root growth was constrained (Figure 6C).

Similar yet less pronounced growth direction patterns of uncon-

strained seminal roots occurred if one seminal root was impeded

(Figure 6B). Changes in root growth direction upon sudden changes

of the mechanical stress at the root tip have been reported previ-

ously (Roué et al., 2020; Atkinson et al., 2020; Dexter, 1986) and we

show here that such responses can also be systemic.

The two wheat genotypes included in the current study exhibited

distinctly different responses to mechanical obstacles (Tables 1 and

2). Genotype-specific responses to other edaphic stresses, including

drought (Li et al., 2021; Katuwal et al., 2020; Songsri et al., 2008) and

flooding (Pedersen et al., 2021; Bailey-Serres et al., 2012; Thomson

et al., 1992) have been reported previously and stress response have

been categorized as ‘stress avoidance’ or ‘stress tolerance’. Avoid-
ance refers to responses enabling plants to circumvent a stress, such

as increased rooting depth upon drought (Songsri et al., 2008) and

shallower rooting in response to flooding (Bailey-Serres et al., 2012).

Tolerance on the other hand, describes responses enabling plants to

withstand stress, such as the formation of root cortical aerenchyma in

flooded soil (Pedersen et al., 2021; Thomson et al., 1992). Our study

suggests that responses to mechanical obstacles can also be classified

into these two categories. Shallower seminal roots (Figure 6) and

reduced primary root elongation rate (Figure 2; Figure S2) upon loca-

lised root impedance, as shown by Happy, suggest avoidance of fur-

ther obstacles that could compromise vertical root growth. Given the

association between helical root movement and the ability to avoid

mechanical obstacles (Taylor et al., 2021), more pronounced helical

root movement upon localised root impedance, as observed in Happy

(Figure 4), likely facilitates the avoidance of potential future obstacles.

In contrast, steeper seminal root growth (Figure 6) and relatively fast

elongation of primary roots (Figure 2) upon localised root impedance,

as shown by Maggie, contribute to deeper root growth, which indi-

cates stress tolerance.

F IGURE 5 Curvature of the growth zone of unconstrained primary roots during 6 h measurement period. Grey shaded area indicates period
before the obstacle was reached and area without shading indicates period after the obstacle was reached and vertical growth of one seminal
root was constrained. Red and blue curves and shading represent mean values and standard error, respectively (n = 4).
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We showed previously that the root elongation rate is less

affected by increasing soil density in Maggie than in Happy (Colombi

et al., 2019), corroborating that these two genotypes exhibit contrast-

ing response patterns to soil physical stress. Besides mechanical con-

ditions, dense soil patches and stones influence local soil hydrological

and gas transport properties (Naseri et al., 2019; Ebrahimi &

Or, 2016), which can have pivotal impacts on root growth and devel-

opment (Pandey et al., 2021; Gupta et al., 2020). Hence, experiments

in soil are needed to gain further insights into the effects of mechani-

cal obstacles on soil exploration. Recent studies identified hormonal

F IGURE 6 Growth direction of unconstrained seminal roots of Happy and Maggie grown without mechanical obstacles (Ctrl) or exposed to
horizontal obstacles constraining vertical growth of one seminal root (SRH) or the primary root (PRH). (A) Seminal root angle to the vertical at the
beginning of the 6 h measurement period. (B) and (C) Temporal changes in the growth direction of unconstrained seminal roots assessed as the
change in curvature of the root growth zone after the first two hours of measurements (Equation 1). Positive and negative differences in
curvature indicate shallower and steeper root growth, respectively. Roots of seedlings exposed to obstacles, i.e. SRH and PRH, reached obstacles
at Time = 120 min. Error bars denote standard error and p-values were derived from (A) analysis of variance models and (B) and (C) linear-mixed
models that included the sample effect as a random factor to account for repeated measurements (n = 4).
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signalling pathways and underlying genes involved in root phenotypic

responses to local differences in water availability (Mehra et al., 2022;

Orosa-Puente et al., 2018; Dietrich et al., 2017), highlighting the need

to combine molecular and physiological data. Thus, simultaneous

quantification of molecular and physiological processes will be crucial

to identifying molecular mechanisms and underlying genes that regu-

late systemic responses to mechanical obstacles in soil.

Avoidance and tolerance are different strategies that contribute to

the resistance of plants to environmental stress (Bailey-Serres

et al., 2012; Li et al., 2021). The responses to mechanical obstacles

observed here suggest that strategies to cope with obstacles in the soil

differ between genotypes of the same species. Steeper seminal roots

and relatively fast primary root elongation in Maggie suggest stress tol-

erance, while prioritisation of shallow over deep root growth in combi-

nation with more pronounced helical root movement in Happy

indicates stress avoidance. Since the current study was conducted with

commercially available wheat varieties, we suggest that these different

strategies are (presumably unintended) results of plant breeding. Both

strategies will likely come with trade-offs that can adversely affect

overall plant growth and crop productivity. Increased topsoil explora-

tion (Saengwilai et al., 2014; Gao & Lynch, 2016) and helical root move-

ment (Taylor et al., 2021) reduce the access to subsoil resources, while

steep root growth limits the acquisition of nutrients abundant in the

topsoil (Sun et al., 2018; Liu et al., 2022b). We, therefore, propose that

different strategies to cope with mechanical obstacles may have major

impacts on the soil layers in which plants forage for water and nutrients

and thus the exploration of heterogeneous soil environments.

5 | CONCLUSIONS

In the current study, we quantified in vivo root responses of wheat to

mechanical obstacles at high spatiotemporal resolution using time-

lapse imaging in conjunction with automated image processing. We

showed that constraining vertical growth of a single axial root can

affect the elongation rate, helical movement, and the growth direction

of unconstrained axial roots of the same plant within a few hours.

Hence, we provide evidence for near-immediate systemic responses of

roots to mechanical obstacles. Moreover, we demonstrate that differ-

ent genotypes of the same species can show distinctly different

response patterns to localised root impedance, which can be linked to

different strategies to cope with mechanical obstacles. Stress avoidance

was characterised by shallower root growth and more pronounced heli-

cal root movement in response to localised root impedance, while

steeper root growth and relatively fast root elongation indicated stress

tolerance. We conclude that systemic responses to localised root

impedance and different strategies to cope with mechanical obstacles

likely play a pivotal role in plant growth under heterogeneous edaphic

conditions, which define most soil environments.
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