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Abstract 14 

Xylosandrus crassiusculus is an invasive ambrosia beetle comprising two differentiated genetic 15 

lineages, named cluster 1 and cluster 2. These lineages invaded different parts of the world at different 16 

periods of time. We tested whether they exhibited different climatic niches using Schoener’s D and 17 

Hellinger’s I indices and modeled their current potential geographical ranges using the Maxent 18 

algorithm. The resulting models were projected according to future and recent past climate datasets 19 

for Europe and the Mediterranean region. The future projections were performed for the periods 2041-20 

2070 and 2071-2100 using 3 SSPs and 5 GCMs. The genetic lineages exhibited different climate niches. 21 

Parts of Europe, the Americas, Sub-Saharan Africa, Asia, and Oceania were evaluated as suitable for 22 

cluster 1. Parts of Europe, South America, Central and South Africa, Asia, and Oceania were considered 23 

as suitable for cluster 2. Models projection under future climate scenarios indicated a decrease in 24 

climate suitability in Southern Europe and an increase in North Eastern Europe in 2071-2100. Most of 25 

Southern and Western Europe was evaluated as already suitable for both clusters in the early 20th 26 

century. Our results show that large climatically suitable regions still remain uncolonized and that 27 

climate change will affect the geographical distribution of climatically suitable areas. Climate conditions 28 

in Europe were favorable in the 20th century, suggesting that the recent colonization of Europe is rather 29 

due to an increase in propagule pressure via international trade than to recent environmental changes. 30 

 31 

Keywords 32 
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 34 

Introduction 35 

Biological invasions are a consequence of human population growth and the development of 36 

worldwide trade. Invasive species are responsible for considerable environmental and economic losses 37 

worldwide and the number of new invaders shows no sign of a decrease (Seebens et al. 2017). Global 38 

changes possibly facilitate new invasions by improving climatic suitability and exacerbating the impact 39 

of ongoing ones (Bradshaw et al. 2016). In that context, one important aspect of preparedness is the 40 

anticipation of areas at risk. Such anticipation can be reached using species distribution models (SDM) 41 

that assess species' potential range shifts or expansions under current or future climate conditions 42 

(Baquero et al. 2021; Rossi and Rasplus 2023).  43 

In general, SDMs are calibrated at the species level, but this is increasingly debated because the 44 

resulting models are not always able to capture local adaptation (Pearman et al. 2010; Maguire et al. 45 

2018; Banerjee et al. 2019; Smith et al. 2019). Subclade models are calibrated using datasets describing 46 

the geographical distribution of intraspecific lineages. Such data generally come from genetic analyses, 47 
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and the number of genotyped populations usually encompasses only a small subset of the occurrence 48 

records available in databases such as GBIF (Global Biodiversity Information Facility 49 

https://www.gbif.org/) in which information is mainly available at the species level. As a consequence, 50 

subclade models sometimes perform poorly, and deciding whether a species or a subclade-level model 51 

should be used is therefore a matter of data availability, model performance, or evidence of a niche 52 

divergence (Collart et al. 2020). 53 

Xylosandrus crassiusculus is an ambrosia beetle native to Southeast Asia and invasive worldwide (Storer 54 

et al. 2017). During the last century, it reached most tropical and subtropical areas, as well as some 55 

countries in temperate regions. It was first detected in Madagascar more than a century ago (Schedl 56 

1953). Later discovered in Hawaii in 1950 (Samuelson 1981) and North America in 1974 (Anderson 57 

1974), it is now established in 31 states in the USA and one Canadian province. It was discovered in 58 

South America, specifically in Argentina, in 2001 (Kirkendall 2018) and in Australia in 2011 (Nahrung 59 

and Carnegie 2020). It reached Europe recently, as it was detected in Italy in 2003 (Pennachio et al. 60 

2003), in France in 2014 (Roques et al. 2019), in Spain in 2016 (Gallego et al. 2017) and in Slovenia in 61 

2017 (Kavčič 2018).  62 

These recent detections have sparked considerable interest in the potential expansion of X. 63 

crassiusculus in Europe. In a first attempt at modeling the species potential distribution in Europe using 64 

species-level SDM, Urvois et al. (2021) failed and hypothesized that it could be due to the existence of 65 

differentiated genetic lineages exhibiting niche divergence. A preliminary study by Storer et al. (2017) 66 

suggested that X. crassiusculus is indeed divided into two differentiated subclades hereafter referred 67 

to as clusters, but these authors did not include specimens from Europe or South America. Interestingly, 68 

Ito and Kajimura (2009) documented a large genetic diversity in Japan and suggested that several 69 

subspecies could occur in this country. Unfortunately, because the two studies used different molecular 70 

markers and focused on different and hardly overlapping regions of the world, it was impossible to 71 

compare and synthesize the reported genetic structures. Using a comprehensive sampling and 72 

complementary molecular markers, Urvois et al. (2023) confirmed the existence of two genetic clusters 73 

that displayed different geographical distributions. They only co-occurred in Oahu Island in Hawaii, 74 

South Africa (Nel et al. 2020), Taiwan (Storer et al. 2017), Papua New Guinea, Australia (Tran et al. 75 

2023), the Guangxi province in China, and Okinawa Island in Japan. Only cluster 2 was found in Europe. 76 

This study provided an occurrence dataset at the cluster level, which was lacking so far. As X. 77 

crassiusculus is a highly polyphagous species (Ranger et al. 2016), the availability of suitable hosts is 78 

probably not the main constraint upon its establishment or expansion but climate could be the decisive 79 

factor (Urvois et al. 2021). 80 

The first goal of the present study was to assess the climatic niche differentiation between both clusters 81 

to evaluate whether they displayed different climatic preferences. Our second objective was to assess 82 
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their worldwide potential distribution according to a reference climate dataset (1979-2013), to identify 83 

(i) new areas where at least one cluster could establish, and (ii) areas where a geographical expansion 84 

is possible. Our third goal was to explore the effect of future climate change on both clusters’ potential 85 

distributions in Europe. This would allow to identify the areas where cluster 2 could expand in the 86 

coming decades and, conversely, if some areas could become unsuitable (range shrink). In addition, it 87 

would allow us to assess whether suitability in Europe would increase for cluster 1, and identify 88 

potential areas where the species could establish. Finally, the fourth goal of the study was to test the 89 

hypothesis that European environmental conditions were unsuitable for X. crassiusculus in the past 90 

and that the continent became suitable only recently due to climate change, which could explain why 91 

X. crassiusculus invaded Europe only recently.  92 

To achieve these goals, we compared the climatic niches of each genetic cluster and calibrated subclade 93 

SDM using the Maxent algorithm. A model was calibrated for each genetic cluster using reference 94 

climate conditions, and we projected the resulting models according to future climate scenarios in 95 

2041-2070 and 2071-2100 and past climate conditions for each decade of the 20th century. 96 

 97 

Methods 98 

Data analysis and graphical displays were performed using the R Software v4.0.0 (R Core Team 2020). 99 

 100 

Occurrence data 101 

Records of X. crassiusculus specimens unambiguously assigned to each cluster were retrieved from 102 

Urvois et al. (2023) and Storer et al. (2017). We obtained 39 records for cluster 1 and 44 for cluster 2. 103 

We then removed the duplicated data by withdrawing all but one occurrence per pixel of the climate 104 

raster (see below), and obtained 38 and 44 records for cluster 1 and cluster 2, respectively (see Figure 105 

S1.1 in online resource 1 and online resources 2 and 3). 106 

 107 

Environmental variables 108 

We used the Chelsa dataset (version 1.2), which provides worldwide environmental layers with a 30 109 

arc-second resolution (≈1 km² at the equator) for the past, reference (near current), and future climate 110 

conditions (Karger et al. 2017, 2020). The reference climate conditions corresponded to the period 111 

1979-2013. We also used forecasts of future climate conditions for two periods, 2041-2070 and 2071-112 

2100, and three Shared Socio-Economic Pathways (SSPs). SSPs represent different future scenarios 113 

named after their narrative (i.e. potential socio-economic development, ranging from 1 to 5) and 114 

radiative forcing value (i.e. change in energy flux, from 1.9 to 8.5 W/m²), ranging from the most 115 

optimistic SSP1-1.9 to the most pessimistic SSP5-8.5. The SSPs available from the Chelsa database for 116 

the period 2041-2070 and 2071-2100 were SSP1-2.6 (low greenhouse gas emission, estimated warming 117 
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in 2041-2060: 1.7 °C), SSP3-7.0 (high greenhouse gas emission, estimated warming in 2040-2060: 118 

2.1 °C) and SSP5-8.5 (very high greenhouse gas emission, estimated warming in 2040-2060: 2.4 °C). For 119 

each SSP, we used five Global Circulation Models (GCMs). These are numerical models simulating the 120 

effect of changes in greenhouse gas concentrations on the climate and are named GFDL-ESM4, IPSL-121 

CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, and UKESM1-0-LL. Past climate conditions were described for 122 

each decade from 1901-1910 to 1981-1990 based on the monthly data from CHELSAcruts (Karger and 123 

Zimmermann 2018) using the biovar function from the R package `dismo´ (Hijmans et al. 2017). We a 124 

priori selected seven climate descriptors assumed to be potential drivers of X. crassiusculus’ 125 

distribution, to analyze both the relative niche of the clusters and their potential distributions. Six were 126 

associated with temperatures: the average temperatures of the warmest, coldest, wettest, and driest 127 

quarters (bio8, bio9, bio10, bio11, respectively), the maximum temperature of the warmest month 128 

(bio5) and the coldest temperature of the coldest month (bio6). The last variable was the precipitation 129 

seasonality (bio15) which can be considered as a proxy for water-related stress (Dannenberg et al. 130 

2019), and thus increases tree susceptibility to X. crassiusculus (Ranger et al. 2015). X. crassiusculus 131 

spending most of its life buried in galleries, variables linked to monthly and quarterly precipitations 132 

were assumed to be less relevant and discarded.  133 

 134 

Ecological niche divergence  135 

We compared the realized niche of the two genetic clusters using the method proposed by Warren et 136 

al. (2008) implemented in the R package ‘ecospat’ (Broennimann et al. 2021). We computed Schoener’s 137 

D (Schoener 1968) and Hellinger’s based I indices (Guisan et al. 2017) and formally tested niche 138 

equivalency using 1000 randomizations. Two tests were run. The first one included all the climate 139 

descriptors involved in the model calibration and the second one was performed on the four bioclimatic 140 

variables that were selected in the course of the SDM calibration (see below): maximum temperature 141 

of the warmest month (bio5), mean temperature of the driest quarter (bio9), mean temperature of the 142 

coldest quarter (bio11) and the precipitation seasonality (bio15). The background environment used 143 

to calculate the clusters’ niche overlap (i.e. all pixels of X. crassiusculus’ distribution area) was 144 

characterized using six areas encompassing all occurrences used in this study (Figure S1.1 in online 145 

resource 1).  146 

 147 

Species distribution modeling 148 

 149 

Modeling 150 

X. crassiusculus’ invasion is still ongoing, and thus its geographical range is constantly changing. Such a 151 

non-equilibrium situation in the studied range makes it difficult to distinguish between locations where 152 
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the species is absent due to environmental conditions (i.e. true absences), and locations where it is 153 

absent because of dispersal limitations. In such situations, presence-only algorithms are recommended 154 

(Guisan et al. 2017). The Maxent algorithm uses presence data and background points (Phillips et al. 155 

2006): the latter corresponds to randomly sampled points in the study area and provides information 156 

about the environmental conditions across that area. It has been widely adopted in the last decade 157 

because of its easy accessibility (Ahmed et al. 2015) and high-performance results (Elith et al. 2006). 158 

We used the Maxent implementation available in the `MIAmaxent´ R package (Vollering et al. 2019), 159 

which adapts Maxent with a different penalization method. Maxent penalizes the models’ complexity 160 

with lasso regularization, which keeps all predictors and transformations but shrinks their coefficients 161 

to balance fit quality and model complexity. MIAmaxent, on the other hand, relies on subset selection 162 

and performs a forward stepwise selection to either discard or retain variables and their 163 

transformations. This leads to simpler models, which are therefore more easily interpretable, better 164 

suited to small sample sizes, and more easily transferable to spatial or temporal projections (Elith et al. 165 

2010; Moreno-Amat et al. 2015). This procedure additionally facilitates the management of collinearity 166 

that may arise between environmental descriptors. MIAmaxent subset selection procedure only retains 167 

two highly correlated variables when both account for a significant amount of variation.  168 

Six transformation types were used on the environmental variables: linear, monotonous, deviation, 169 

forward hinge, reverse hinge, and threshold. Because an infinity of transformations is possible for 170 

spline-type transformations (i.e. forward hinge, reverse hinge, and threshold), the R package 171 

MIAmaxent automatically identifies the ones that best explain the variation in the data and thus should 172 

be involved in the selection procedure (see package documentation and Vollering et al. 2019). The 173 

significance threshold in the subset selection was 0.05, and the best model for each cluster was 174 

selected among the significant models (p < 0.05) based on the fraction of the deviance it explained 175 

(D²). The modeling approach was performed separately for each cluster. In each case, 10,000 176 

background points were generated by randomly sampling locations in five and six areas encompassing 177 

all occurrences of clusters 1 and 2, respectively (Figure S1.1 in online resource 1). 178 

 179 

Model evaluation 180 

Model performance was assessed using the Continuous Boyce Index (CBI) (Hirzel et al. 2006) and the 181 

Area Under Curve (AUC). AUC typically relies on presence-absence data and is widely used (Ahmed et 182 

al. 2015) even in presence-only modeling situations. AUC is provided here for comparison purposes 183 

only. The CBI is a metric developed to evaluate presence-only models. This method involves dividing 184 

the range of climatic suitability values into classes and calculating the frequency of occurrences falling 185 

into each class (P) as well as the expected frequency of points falling into each class after random 186 

reallocation (E). The CBI corresponds to the Spearman-ranked correlation between P/E and the 187 
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suitability classes (Hirzel et al. 2006). It ranges from -1 via 0 to 1, corresponding to counter-prediction, 188 

randomness, and perfect prediction, respectively. CBI was calculated using the `ecospat´ R package 189 

(Broennimann et al. 2021). Ideally, independent data points should be used to assess model quality, 190 

but these data are often not available. Here we had to compute the CBI using the dataset used for 191 

model calibration because we relied on a very limited number of genetically-characterized occurrences 192 

for each cluster. Following Hirzel et al. (2006), we identified climate suitability thresholds for the two 193 

clusters. These thresholds were used to reclassify climate suitability into three classes for cluster 1, 194 

namely unsuitable, marginal, and suitable climatic conditions, and four classes for cluster 2 (unsuitable, 195 

marginal, suitable, and optimal climatic conditions, see Results). The marginal areas correspond to 196 

climatic conditions nearing the species’ tolerance limits and where the populations’ growth rate is 197 

expected to be low. On the other hand, the optimal areas correspond to climatic conditions where the 198 

species can thrive. Finally, we computed the proportion of the area corresponding to each class 199 

worldwide and in the focal area including most of Europe and the Mediterranean region, between 200 

longitudes 20° W and 50° E and latitudes 27.5° N and 70° N.  201 

 202 

Potential distribution under reference climate data (1979-2013) 203 

The model was used to compute the climate suitability using the reference climate data (1979-2013). 204 

We reclassified these continuous values into 3 (respectively 4) discrete classes of suitability for cluster 205 

1 (respectively 2). The classes were defined based on the thresholds resulting from the continuous 206 

Boyce analysis (see above).  207 

 208 

Species level 209 

We combined the areas considered as unsuitable for both clusters to derive a species-level projection 210 

and evaluated its accuracy using occurrences available from a previous survey for which no genetic 211 

information is available (Urvois et al. 2021). 212 

 213 

Potential distribution under past and future climate conditions 214 

The two models were projected in the focal area (parts of Europe and the Mediterranean) using the 215 

past and future climate datasets described in the Environmental variables section above.  216 

Past. We built 11 maps for each cluster depicting the potential distribution for each decade from 1901-217 

1910 to 1981-1990.  218 

Future. We focused on 3 SSPs (SSP1-2.6, SSP3-7.0, and SSP5-8.5) projected in two periods (2041-2070 219 

and 2071-2100) leading to six possible future situations. In each case, we computed the median of the 220 

projections associated with the five selected GCMs. The results are called consensus projections 221 

(Guisan et al. 2017). These maps were reclassified using the thresholds described above to produce 222 
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maps showing suitability classes for cluster 1 (unsuitable, marginal, and suitable) and cluster 2 223 

(unsuitable, marginal, suitable, and optimal). 224 

 225 

Results 226 

Ecological niche comparison between clusters 227 

Using the seven a priori selected variables, the ecological niche test indicated that the two clusters 228 

exhibited significantly different climatic niches (p < 0.001), with a Shoeners’ D of 0.023 and a Hellingers’ 229 

based I of 0.10 (Figure 1). The results obtained when running the same analyses with the four variables 230 

retained in the MIAmaxent models also showed a significant difference between the two clusters, with 231 

a Shoeners’ D of 0.172 (p = 0.040) and a Hellingers’ based I of 0.310 (p < 0.01) (Figure 1). 232 

 233 

SDM under reference climate conditions 234 

The raster source files (geotiff format) are available from Recherche Data Gouv at 235 

https://doi.org/10.57745/UB977K 236 

cluster 1 237 

MIAmaxent performed three selection rounds for cluster 1 and transformed the seven environmental 238 

variables into 62 transformed variables. The best model accounted for 6.8% of the null deviance (p < 239 

0.01) and comprised the variables bio5, bio9, and bio15, accounting for 11.8%, 42.6%, and 45.6% of 240 

the total variation, respectively. The best model comprised four transformed variables, two of which 241 

included a deviation–type transformation with a parameter value of 1 and 2, bio9 and bio15, 242 

respectively. The variable bio9 had a threshold transformation for knot value of 11, and bio5 had a 243 

forward hinge transformation with a knot in the 15th position. The AUC was 0.815, and the CBI was 0.9. 244 

The shape of the P/E curve allowed identifying two thresholds. The first threshold (th1 = 0.280) 245 

corresponded to the habitat suitability value for which P/E is lower than 1 (i.e. the model is predicting 246 

fewer occurrences than expected by chance) (see Figure S1.2 in online resource 1 for continuous Boyce 247 

index). The second threshold (th2 = 0.535) denoted the climate suitability for which the P/E value 248 

sharply increased. These thresholds were used to reclassify climate suitability into three categories 249 

corresponding to unsuitable (≤ th1), marginal (> th1 and ≤ th2), and suitable climatic conditions (> th2).  250 

The worldwide proportion of emerged lands corresponding to suitable, marginal, and unsuitable 251 

climate conditions were 10.6, 22.9, and 66.5% respectively when considering the extent of Figure 2 (A, 252 

B). High climate suitability was observed in Eastern and Western North America, South America (Brazil, 253 

Argentina), Southern Africa (South Africa, Botswana), Western Australia, and Southeastern China. 254 

Lower suitability, considered to reflect marginally suitable areas (Figure 2 A, B) was observed in Sub-255 

Saharan Africa, Western Europe, Southeastern Asia, and South America from Guatemala to Brazil.  256 
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Around 16% of the focal area (parts of Europe and the Mediterranean area) were considered marginally 257 

suitable for X. crassiusculus’ cluster 1 (Figure S1.3 and Table S1.1, in online resource 1). These marginal 258 

areas were mostly found in France, Spain, Italy, Greece, Turkey, and the Northern parts of Morocco, 259 

Algeria, and Tunisia (Figure 2 B; Figure S1.3 in online resource 1). The suitable areas represented 7% of 260 

the focal area and consisted of a few patches in Northwestern Spain, Brittany (France), the United 261 

Kingdom, Turkey, and the surroundings of the Azov Sea. 262 

cluster 2 263 

MIAmaxent performed four selection rounds for cluster 2 and transformed the seven environmental 264 

variables into 55 transformed variables. The best model accounted for 12.1% of the null deviance (p < 265 

0.0001) and included variables bio5, bio11, and bio15, accounting for 28.1%, 37.2%, and 34.7% of the 266 

total variation, respectively. It comprised six transformed variables, three of which included a 267 

deviation–type transformation with a parameter value of 1, namely bio5, bio11, and bio15, and one 268 

(bio15) with a parameter of 5. The variable bio11 had a reverse hinge transformation with a knot in the 269 

10th position, and bio15 had a forward hinge transformation with a knot in the 7th position. The AUC 270 

was 0.879, and the CBI was 0.901. The shape of the P/E curve allowed the identification of three 271 

thresholds. The first threshold (th1 = 0.144) corresponded to the habitat suitability value for which P/E 272 

is lower than 1 (Figure S1.2 in online resource 1). The second threshold (th2 = 0.424) denoted the 273 

climate suitability for which P/E increased over 1 (i.e. where the model started predicting more 274 

occurrences than expected by chance). The third threshold was placed where the habitat suitability 275 

value sharply increased (th3 = 0.720). These thresholds were used to reclassify climate suitability into 276 

four categories corresponding to unsuitable (≤ th1), marginal (> th1 and ≤ th2), suitable (> th2 and ≤ 277 

th3), and optimal climatic conditions (> th3). The category referred to as optimal was not found for 278 

cluster 1. 279 

The worldwide proportion of emerged lands corresponding to optimal, suitable, marginal, and 280 

unsuitable climate conditions was 1.0, 3.9, 10.1, and 85.0% respectively (Figure 2 C, D). Optimal areas 281 

were found in the native range in China and Japan, and the invaded range in Argentina, Uruguay, South 282 

Africa, Southeastern and Southwestern Australia, and Europe. Marginal and suitable areas were 283 

distributed in China and Japan in the native area and Southwestern USA, Argentina, Central Africa, 284 

South Australia, and Europe in the invasive area (Figure 2 D).  285 

Around 23% of the focal area was estimated to be at least marginally suitable (marginally suitable + 286 

suitable + optimal) for cluster 2 (Table S1.1 in online resource 1). Climate suitability was higher near 287 

the Mediterranean coast and generally decreased with increasing distance from the coast (Figure 2 C 288 

and Figure S1.3 in online resource 1). The optimal areas represented 2% of the surface and were 289 

distributed in Northwestern Spain, Northeastern Portugal, Southeastern France, Mediterranean coast 290 

from Almeria to Istanbul, and islands in the Eastern Mediterranean. Suitable areas represented 8% of 291 
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the focal area and were primarily found in Northern Spain, Central France, Italy, and the Balkans. 292 

Marginally suitable areas were found in Southern Spain, from Northern France to the Netherlands, and 293 

in the Balkans. 294 

 295 

Non-genetically assigned occurrences 296 

A total of 561 occurrences used in Urvois et al. (2021) were not genetically assigned to cluster 1 or 297 

cluster 2 due to a lack of samples for genetic analyses. After removing duplicates, 420 such 298 

observations remained worldwide. Among those, 65 (15.48%) fell into areas considered unsuitable for 299 

both clusters (Figure 3). These records occurred on average ca. 56 km from the nearest suitable, 300 

optimally or marginally suitable grid cells (see also Figure S1.4 in online resource 1 for details about the 301 

distance separating these points from the nearest grid cell associated with suitable climate conditions).  302 

Nearly fifty-seven percent of these points (56.9%) fell less than 25 km from the nearest suitable grid 303 

cell.  304 

 305 

SDM projection under future conditions in Europe and the Mediterranean region 306 

cluster 1 307 

Around 78 to 79% of the focal area were evaluated as unsuitable under SSP1-2.6 for the two time 308 

periods. This value was 80% under SSP3-7.0 and SSP5-8.5 for 2041-2070 and 83-85% for 2071-2100 309 

(Table S1.1, Figure 4, Figure S1.5 to Figure S1.8 in online resource 1).  310 

Our results indicated a decrease in suitability in North Africa and Southern Spain and an increase in 311 

suitability around the Netherlands and Northern Germany between the reference (1979-2013) and 312 

future climate conditions (Figure 2 A, B, Figure 4, Figure S1.3 in online resource 1).  313 

The projections obtained under SSP1-2.6, SSP3-7.0, and SSP5-8.5 showed similar situations with most 314 

of Western Europe, Italy, Greece, and Turkey evaluated as at least marginally suitable in 2041-2070. 315 

The suitability increased in northern Europe in 2071-2100 for SSP3-3.7 and SSP5-8.5 (Figure 4, Figure 316 

S1.5-S1.8 in online resource 1). 317 

cluster 2 318 

The proportion of unsuitable areas decreased between the reference period and all future climate 319 

conditions tested for cluster 2: it was 77.1% in 1979-2013 and ranged from 71.7% to 75.6% for the 320 

future projections tested (Table S1.1 in online resource 1). The corresponding maps indicated a 321 

decrease of suitability in the South of X. crassiusculus’ potential distribution, and a range shift towards 322 

Northern Europe, with suitable areas reaching Uppsala and Gävle (Sweden) for SSP5-8.5 for 2071-2100 323 

(Figure 2 C, D, Figure 4 and Figure S1.5 to S1.8 in online resource 1). Optimal areas were mainly located 324 

in Northern Spain and Western France in the six future conditions tested. 325 

 326 
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SDM under past conditions in Europe and the Mediterranean region 327 

cluster 1 328 

Around 25% of the focal area was projected to have been at least marginally suitable (i.e. suitable + 329 

marginally suitable surfaces) in 1901-1910, and this value ranged from 21.8 to 28.7% in the following 330 

decades (Table S1.1, Figure 5, Figures S1.9 to S1.11 in online resource 1). Despite variations between 331 

decades, the geographical distribution of suitable and marginally suitable areas corresponded to what 332 

is observed for the reference climate conditions (1979-2013, Figure 2 and Figures S1.3 in online 333 

resource 1). 334 

cluster 2 335 

The sum of marginally suitable, suitable, and optimal surfaces ranged from 18.8 to 24.3% of emerged 336 

lands in the focal area in the 20th century (Table S1.1, Figures S1.9 to S1.11 in online resource 1). As 337 

for cluster 1, the pattern of climate suitability observed during the 20th century did not differ strongly 338 

from what is observed for the reference climate conditions (1979-2013, Figure 2 and Figures S1.3 in 339 

online resource 1). 340 

 341 

Discussion 342 

Two genetic lineages with diverging climate niches 343 

X. crassiusculus includes two highly divergent genetic clusters (Storer et al. 2017; Urvois et al. 2023). 344 

Even though genetic differentiation does not necessarily translate into ecological divergence (e.g. 345 

Andersen et al. (2012) showed complete overlap in resource utilization in two deeply diverging 346 

haplotypes in X. morigerus), our results revealed divergent, albeit partially overlapping, climatic niches 347 

between the lineages of X. crassiusculus. This is in line with the initial hypothesis stating that the 348 

clusters have different climatic requirements, and in addition to the genetic divergences, this suggests 349 

that X. crassiusculus may be composed of cryptic species rather than genetic lineages, although no 350 

morphological differences were observed (A. Cognato, comm. pers.). The evolution of secondary sexual 351 

characters – commonly used as morphological characters to distinguish Scolytinae species – is mainly 352 

driven by sexual selection. Thus, in species where siblings mate before dispersal, morphological 353 

evolution is expected to slow down due to a lack of sexual selection (Jordal et al. 2002), although the 354 

lack of outcrossing could help mutation fixation and thus morphological differences. Therefore, 355 

resolving the taxonomic status of the clusters will involve a revision of the whole taxonomic group (i.e., 356 

including all former species currently synonymized with X. crassiusculus) using molecular, 357 

morphological, ecological, and distribution data. In that context, our results constitute a first step in 358 

illustrating the existence of some ecological divergences between the genetically-identified clusters of 359 

X. crassiusculus.  360 

 361 
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Both clusters could invade new areas and widen their distribution in already-established areas 362 

As we performed the SDM analyses at the lineage scale, we relied only on a limited number of 363 

occurrences for which genetic assignments were available. The resulting models performed well with 364 

high CBI and AUC, although the limited number of occurrences prevented model evaluation based on 365 

independent datasets. The area where cluster 1 could establish is evaluated as twofold the area 366 

suitable for cluster 2, the former including most of the latter. Regarding X. crassiusculus’ native area, 367 

the models indicated suitable areas for both clusters in South-eastern China, Southeast Asian islands, 368 

and the Japanese archipelago. Concerning its invasive range, the areas estimated to be suitable for 369 

both species included Equatorial and South Africa, Southern and Western Australia, parts of the United 370 

States of America and South America, and Europe. A recent study actually showed that the two clusters 371 

are now indeed present in Australia (Tran et al. 2023). Urvois et al. (2023) showed that clusters 1 and 372 

2 were mostly allopatric and co-occurred only in a few areas in the native and invasive ranges. Thus, 373 

the areas named above are at risk of being invaded by a second cluster, which could affect the invasion 374 

dynamic, host range, and damage, and could be treated as a new invasion. 375 

The models also pointed towards areas where cluster 1 could establish but not cluster 2, and 376 

reciprocally. The areas optimal for cluster 2 were mainly in Australia, Japan, China, South Africa, 377 

Argentina, Uruguay, and Europe. Bark and ambrosia beetles are known to be easily transported and 378 

can be accidentally transferred over long distances as hitchhikers on traded plants (Raffa et al. 2015). 379 

As a consequence, dispersal is probably not a long-term limiting factor for this species, contrary to what 380 

was hypothesized in other cases (Monsimet et al. 2020) and all climatically suitable areas listed above 381 

are in fact at risk of invasion. 382 

Our work has also allowed us to identify regions of the world where X. crassiusculus is unlikely to 383 

establish. As for X. compactus (Urvois et al. 2021), they correspond to either too cold or very hot 384 

regions, such as most of Northern North America, the highest regions of the Andean Mountains, hot 385 

and cold desert climates from Africa and the Middle East, desert, semi-desert and tropical regions of 386 

Australia, India, and most Northern Eurasia. Some occurrences from Urvois et al. (2021) for which 387 

genetic assignments were unavailable were found in areas estimated as unsuitable for both clusters. In 388 

addition, specimens from cluster 2 were identified in one locality in the Limpopo province in South 389 

Africa (Nel et al. 2020) not used in the models (because the dataset used for the present study was 390 

assembled earlier), which was considered unsuitable for cluster 2. Most of these occurrences were 391 

found in Central and Northeastern USA in the invaded area, while they were mainly found in Korea and 392 

Japan in the native area. Except for a few records in North America and South Korea, most occurrences 393 

falling in unsuitable areas fell within 25 km of the nearest climatically suitable areas. These mismatches 394 

could occur if the occurrences in unsuitable areas correspond to non-established or sink populations 395 

(Araújo and Peterson 2012) although this should not be the case since the occurrences were filtered to 396 
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keep only established populations of X. crassiusculus, according to the literature. Mismatches could 397 

also result from the existence of other genetic groups within X. crassiusculus with divergent ecological 398 

niches; indeed, Urvois et al (2023) showed that some individuals sampled in Japan could not be 399 

assigned to cluster 1 nor cluster 2, suggesting the existence of cryptic lineages that remain to be 400 

investigated. They could also correspond to misidentified specimens with similar morphology, such as 401 

X. declivigranulatus, previously synonymized as X. crassiusculus but recently "resurrected" by Smith et 402 

al. (2022). In the future, it will be crucial to increase the number of samples with genetic 403 

characterization and to include regions at the margins of the distribution ranges. Indeed, populations 404 

with local adaptations to certain climate conditions, for instance, at the margin of the native area, might 405 

have been overlooked and are known to potentially play an important role in invasion processes (Rey 406 

et al. 2012). From a methodological point of view, it would also be interesting to have a greater number 407 

of occurrence points and to better know the contours of the native range of each cluster in order to 408 

improve the performance of the models and possibly use algorithms requiring pseudo-absences (e.g. 409 

GLM or boosted regression trees). 410 

 411 

Cluster 1 could invade Europe and cluster 2 could widen its distribution in Europe  412 

Only cluster 2 has established in Europe yet, but the results indicate suitable climate conditions for 413 

cluster 1 in ca. 23% of the focal area, including Western France, most of Southwestern Europe, and a 414 

large part of the Mediterranean coast. Interestingly, suitable and marginal areas were distributed 415 

differently for the two clusters. Marginal areas were defined as nearing the clusters’ tolerance limits 416 

and hence correspond to regions where the populations’ growth rate could be limited and where 417 

populations are expected to be more susceptible to stochastic demographic processes. For cluster 2, 418 

suitable and optimal areas were mostly grouped and surrounded by marginal areas, while for cluster 419 

1, the suitable areas consisted of small separated patches in a large marginal area. This suggests that 420 

the establishment of cluster 1 would be more difficult and that, once established, its dispersion would 421 

be more constrained and subject to demographic stochasticity. This could explain why cluster 1 is not 422 

yet present in Europe, even though some regions are climatically suitable.  423 

The total suitable area for cluster 1 is expected to decrease between the reference climate and future 424 

climate projections, while it is expected to increase for cluster 2. The future model projections for the 425 

three SSPs showed a decrease in suitability in Southern Europe for both clusters and an increase 426 

towards the Netherlands and Denmark for cluster 1, and towards Northern Poland and Estonia for 427 

cluster 2. This northward shift would include some of the busiest ports in Europe, such as Amsterdam 428 

and Rotterdam, which are expected to be surrounded by suitable areas in the future for both clusters 429 

(SSP3-7.0 and SSP5-8.5). Climate suitability will also increase in Hamburg and Antwerp for both clusters. 430 

This pattern should increase the probability that X. crassiusculus enters Europe near climatically 431 
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suitable areas, hence the risk of new establishments in Northern Europe, possibly from different 432 

sources in the native area or in already invaded regions. These projected changes in the distribution of 433 

suitable areas in Europe could furthermore facilitate intra-continental dispersion.  434 

 435 

Europe was already suitable for both clusters at the beginning of the 20th century 436 

Cluster 2 invaded Africa, the Pacific Islands and North America between the beginning of the 20th 437 

century and 1974, while Europe was only recently colonized (between 2003 and 2019), probably with 438 

several independent introduction events (Urvois et al. 2023). This could be due to the fact that climate 439 

in Europe was not suitable during the 20th century, but became suitable and was actually invaded due 440 

to recent climate change. Our results did not support this hypothesis. On the contrary, the models 441 

showed that parts of the focal area were already suitable for both clusters during the 20th century, 442 

suggesting that both clusters could have established in Europe earlier. Thus, the late invasion of cluster 443 

2 and lack of invasion of cluster 1 could result from (i) dispersal limitations or reduced propagule 444 

pressure, (ii) local climatic mismatches as parts of Europe associated with unsuitable climate conditions 445 

could have received specimens that failed to establish populations, (iii) stochastic processes leading to 446 

the extinction of the introduced specimens before reproduction, or a combination of the three. Indeed, 447 

X. crassiusculus’ biology is known to limit the effects of mate-finding Allee effect (Gascoigne et al. 2009) 448 

and inbreeding depression (Peer and Taborsky 2005) but does not prevent environmental or 449 

demographic stochasticity. It is known that some invasion can take years before being detected so the 450 

invasion of X. crassiusculus in Europe could in fact be older than 2003. However, our models show that 451 

Europe had been suitable for decades, which probably predates X. crassiusculus’ invasion, even if we 452 

account for this delayed detection. 453 

Numerous studies showed that climate change is expected to have diverse effects depending on 454 

taxonomic groups, shrinking or expanding their potential distribution and favoring range shifts (Bellard 455 

et al. 2013; Pureswaran et al. 2018; Rahimi et al. 2021). Our results showed that climate change is 456 

expected to significantly affect X. crassiusculus’ distribution in the future but is unlikely to have played 457 

a role in its late invasion of Europe. Using species distribution modeling with past climate data is a 458 

promising approach to decipher the impact of climate change on biological invasions' success, and to 459 

explicitly question whether current climate change has promoted recent invasions as frequently 460 

hypothesized. 461 
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Figure legends  589 

 590 

Figure 1. Bivariate plots of the realized ecological niche of cluster 1 (A, C) and cluster 2 (B, D). A, B: PCA 591 

based on the four climate descriptors after model the selection procedure (bio5, bio9, bio11 and 592 

bio15); C, D: PCA based on the seven climate descriptors used to calibrate the models (bio5, bio6, 593 

bio8, bio9, bio10, bio11 and bio15). The color gradient shows the density of the occurrences of the 594 

clusters. Solid lines indicate the 95% of the available (background) environment. For a given cluster, 595 

dashed line indicates the envelope of the occurrences of the other cluster. 596 

 597 

Figure 2. Worldwide climate suitability for two genetic lineages of Xylosandrus crassiusculus according 598 

to reference climate conditions (1979-2013). A. Climate suitability for cluster 1. B. Reclassified 599 

climate suitability for cluster 1. C. Climate suitability for cluster 2. D. Reclassified climate suitability 600 

for cluster 2. Reclassifed maps are based on the continuous Boyce index approach (Figure S1.2 in 601 

online resource 1). Projection: EPSG 4326. 602 

 603 

Figure 3: Map showing areas estimated as climatically unsuitable for both clusters 1 and 2 of 604 

Xylosandrus crassiusculus. Neither cluster 1 nor cluster 2 is expected to occur in these regions. Red 605 

crosses depict occurrence records from Urvois et al. (2021) falling into unsuitable areas. Projection: 606 

EPSG 4326. 607 

 608 

Figure 4: Potential distribution of two genetic lineages of Xylosandrus crassiusculus in the period 2071-609 

2100 according to the shared socio-economic pathways SSP1-2.6 and SSP-8.5 in parts of Europe and 610 

the Mediterranean region. Maps depict the consensus derived from the median of the model 611 

projected using five GCM for each SSP. A. Climate suitability for cluster 1 in 2071-2100 under SSP1-612 

2.6. B. Climate suitability for cluster 2 in 2071-2100 under SSP1-2.6. C. Climate suitability for cluster 613 

1 in 2071-2100 under SSP5-8.5. D. Climate suitability for cluster 2 in 2071-2100 under SSP5-8.5. 614 

Projection: EPSG 4326. 615 

 616 

Figure 5. Potential distribution of two genetic lineages of Xylosandrus crassiusculus in the period 1941-617 

1950 5 in parts of Europe and the Mediterranean region. A cluster 1. B cluster 2. Projection: EPSG 618 

4326. 619 
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