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2MISTEA, Université de Montpellier, INRAE, Institut Agro,
Montpellier, France.
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Abstract

Polyhedral models of metabolic networks are computationally tractable and
can predict some cellular functions. A longstanding challenge is incorporating
metabolites without losing tractability. In this paper, we do so using a new
second-order cone representation of the Michaelis-Menten kinetics. The resulting
model consists of linear stoichiometric constraints alongside second-order cone
constraints that couple the reaction fluxes to metabolite concentrations.
We formulate several new problems around this model: conic flux balance
analysis, which augments flux balance analysis with metabolite concentrations;
dynamic conic flux balance analysis; and finding minimal cut sets of networks
with both reactions and metabolites. Solving these problems yields information
about both fluxes and metabolite concentrations. They are second-order cone or
mixed-integer second-order cone programs, which, while not as tractable as their
linear counterparts, can nonetheless be solved at practical scales using existing
software.

Keywords: Michaelis-Menten kinetics, Metabolite concentrations, Second-order cone,
Flux balance analysis, Minimal cut set
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1 Introduction

The structure of a metabolic network contains useful information about its cellular
functions. Two techniques for analyzing this structure are

• flux balance analysis (FBA), in which optimization is used to predict reaction
fluxes [1], and

• minimal cut set (MCS) analysis, which attempts to find critical subsets of reactions
that, when removed, disable certain functions [2].

Standard formulations of FBA and MCS analysis are based on a linear approximation
in which only the reaction fluxes are variables. The benefit of this simplification is
that FBA is a linear program (LP), which can be reliably solved at large scales, and
powerful analytical tools like Farkas’ Lemma are available for finding the MCSs of
polyhedral systems. Quoting [1], “FBA has limitations, however. Because it does not
use kinetic parameters, it cannot predict metabolite concentrations.” For the same
reason, MCS analysis cannot explicitly identify critical metabolites.

In this paper, we augment FBA and MCS analysis with Michaelis-Menten kinetics
and metabolite concentrations. Using the results of [3], we represent the Michaelis-
Menten kinetics as a second-order cone (SOC) constraint. This leads to several original
problem formulations.

• Conic FBA (CFBA). CFBA predicts both reaction fluxes and metabolite concen-
trations in steady state. It is a single SOC program (SOCP), which, while not as
tractable as LP, can be solved at practical scales [4]. We use the dual to derive
sensitivities to maximum reaction rates and Michaelis constants. We also formulate
dynamic CFBA, in which the SOC representations of the reaction kinetics are used
in dynamic FBA [5].

• Conic MCS (CMCS). A CMCS is a cut set through a network of paths from reactions
to metabolites, as specified by the stoichiometric matrix, and from metabolites
to reactions, as specified by the Michaelis-Menten kinetics. To solve for CMCSs,
we follow the strategy of [6], which uses Farkas’ Lemma [4] and results from [7,
8] on irreducible infeasible subsystems (IIS) to identify MCSs. We generalize this
to CMCSs using the recent results of [9] on the IISs of semidefinite systems. We
also formulate a linear approximation that, due to the discrete nature of cut sets,
produces similar results.

We remark that CFBA and CMCS analysis might not produce better predictions of
reaction fluxes than existing methods. The main benefit of CFBA and CMCS analysis
is that they incorporate metabolite concentrations and reaction kinetics while retaining
much of the tractability of standard linear formulations.

We now describe how our contributions relate to the existing literature. Using LP to
analyze metabolic networks was first suggested in [10]. Since then FBA has gained wide
acceptance [1, 11], and is available in open source implementations [12, 13]. Dynamic
FBA (DFBA) is an extension that incorporates reaction kinetics, which are typically
nonlinear, and metabolite concentrations, potentially as well as other transient infor-
mation such as reprogramming and light intensity. Reference [5] first formulated the
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two main types of DFBA. The ‘dynamic optimization approach’ is a large nonlin-
ear program, in which the reaction kinetics constrain the fluxes through time. In the
‘static optimization approach’, one solves a sequence of LPs and integrates the solution
between time periods. There have been several refinements such as putting the opti-
mization directly into the ODE simulation [14], and using lexicographic optimization
to improve robustness when the LP has multiple solutions [15].

CFBA is similar to DFBA in that it also captures metabolite concentrations and
reaction kinetics, but only when modeled as Michaelis-Menten. They differ in that
CFBA is in steady state, and hence does not capture transients. If one approximates
the biomass concentration as a constant, or approximates Michaelis-Menten with the
Contois function [16], one can formulate the dynamic optimization approach of [5] as an
SOCP. We refer to this as Dynamic CFBA. Dynamic CFBA can capture transients and
accommodate time-varying parameters. CFBA and dynamic CFBA are not necessarily
more accurate than dynamic FBA, but are more tractable in that they are single
SOCPs.

CFBA is also related to resource balance analysis (RBA) [17, 18], a more general
problem that can predict fluxes, metabolites, macromolecular cellular processes, and
proteins. RBA differs from CFBA in that it does not contain the Michaelis-Menten
function or any other nonlinearities, and as a result is an LP. In principle, our SOC
representation of the Michaelis-Menten function could be incorporated into RBA,
leading to an SOCP.

Another relevant literature stream focuses on the analysis of pathways through
metabolic networks (see, e.g., [19, 20]). In the linear case, the nonnegativity and stoi-
chiometric constraints form a polyhedral cone, the extreme rays of which correspond
to the elementary flux modes of the metabolic network [21]. It is not clear that this
perspective extends to our setup because SOC constraints are nonpolyhedral, and
the SOC representation of the Michaelis-Menten kinetics is not in fact a cone. The
Minkowski-Weyl Theorem states that a cone is finitely generated if and only if it is
polyhedral [22]. Therefore, such a system could have an infinite number of elementary
modes if it has any at all. If elementary modes do exist, at present we are not aware
of any reliable techniques for obtaining them.

For these reasons, we focus on the adjacent problem of identifying MCSs. Refer-
ence [6] showed that the MCSs of a metabolic network are the elementary modes of a
dual network specified by Farkas’ Lemma [4]. We make use of the results of [9] to gener-
alize this strategy to networks with metabolite concentrations coupled to the reaction
fluxes through Michaelis-Menten kinetics. By then using a linear approximation of the
Michaelis-Menten kinetics, we recover the use of tools for polyhedral systems, which
we find produce more reliable results.

The paper is organized as follows. Section 2 reviews metabolic network model-
ing and the SOC representation of the Michaelis-Menten kinetics. Section 3 presents
FBA, CFBA, and dynamic CFBA. Section 4 presents the MCS analysis of [6] and our
extensions to systems with Michaelis-Menten kinetics. In Section 5, we apply CFBA,
dynamic CFBA, and CMCS analysis to a model of Escherichia coli.
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2 Background

2.1 Metabolic networks

The reactions are indexed by the set N , where n = |N |. Let R ⊆ N and I ⊆ N be
the sets of reversible and irreversible reactions, where R ∪ I = N and R ∩ I = ∅.
There are a total of m′ metabolites.

Let z ∈ Rm′

+ be a vector of metabolite concentrations and v ∈ Rn a vector of fluxes

due to the reactions. S ∈ Rm′×n is the stoichiometric matrix. The dynamics of the
metabolites are given by

ż = zbSv, (1)

where zb is the element of z corresponding to biomass [5, 14, 23]. While the biomass
is not a metabolite, its evolution can be written as zb times a linear combination of
the reaction fluxes, and hence can be represented as a row of (1).

In quasi-steady state, ż = 0. We then have zbSv = 0, which, because zb is a
nonzero scalar, implies Sv = 0. The fluxes are subject to the bounds v ≤ v ≤ v.
Typically, vi = 0 for i ∈ I and −∞ otherwise. When v = 0 and v = ∞, the system
is a polyhedral cone [21]. Quasi-steady state models generally do not explicitly model
the metabolites. Here we will include a subset of them, M, where m = |M|. We will
henceforth let z ∈ Rm

+ .
Some of the fluxes are also bounded by a nonlinear function, usually the Michaelis-

Menten kinetics [24]. We denote this set by Q ⊆ N , where q = |Q|. We expect that
q ≥ m, because otherwise there are metabolites that are not substrates in any reaction,
and thus have no coupling to the rest of the model. To simplify notation, we order
N so that its first q elements are Q. Let V max ∈ Rq

+ and Km ∈ Rq
+ be vectors of

maximum reaction rates and Michaelis constants. We can write this bound for each
reaction i ∈ Q as

vi ≤
V max
i zσ(i)

Km
i + zσ(i)

. (2)

Here σ(i) identifies the index of the metabolite concentration appearing in reaction
i. In general σ is not invertible because the same metabolite can appear in multiple
reactions. The inequality (2) defines a convex set because the right-hand side is concave
for zσ(i) ≥ 0, as can be shown, e.g., by taking the second derivative. Note that if i is
a reversible reaction, (2) may be applied in the reverse direction by putting a minus
sign in front of vi. We note that there are other ways to model reversible reactions,
e.g., by making the product metabolite the substrate of a different kinetics [25].

When a reaction has multiple reactants, its flux may be limited by more compli-
cated functions such as the product of several Michaelis-Menten kinetics (cf. Table IV
in [26]). We can straightforwardly generalize our notation to this case. Suppose that
reaction i has pi reactants. For k = 1, ..., pi, let σk(i) be the index of the kth metabolite
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in the reaction. Then we can write the upper bound on reaction i ∈ Q as

vik ≤
V max
ik zσk(i)

Km
ik + zσk(i)

(3a)

vi ≤
pi∏

k=1

vik. (3b)

Note that the product,
∏pi

k=1 V
max
ik , is the maximum reaction rate of reaction i, V max

i .
The intermediary variables, vik, k = 1, ..., pi, will be convenient for representing (3) in
SOC form. We remark that this is not a general model, and that there are reactions
with multiple reactants that are not well-described by (3).

2.2 Convex representation of the Michaelis-Menten kinetics

As shown in [3], we can represent the inequality (2) as the SOC constraint∥∥∥∥∥∥
V max

i zσ(i)
Km

i vi
V max
i Km

i

∥∥∥∥∥∥ ≤ V max
i zσ(i) −Km

i vi + V max
i Km

i , (4)

for i ∈ Q,1 One can confirm equivalence by squaring both sides and simplifying. We
refer the reader to Appendix A for a brief introduction to SOCP. As will be seen later,
the advantages of the SOC formulation include amenability to powerful, specialized
solvers, and more refined analytical tools such as conic duality.

Suppose now there are multiple reactants. As with (2), we can write (3a) as an
SOC constraint in the form of (4). Unfortunately, (3b) is nonconvex and has no SOC
representation, and so does not fit the problems we later formulate. As such, one
potential approximation is

vi ≤
pi∏

k=1

vπik

ik , (5)

which has an SOC representation if
∑pi

k=1 πik ≤ 1 [28]. When πik = 1/pi for k =
1, ..., pi, it is the geometric mean. Equation (5) is ad hoc in that it cannot in general be
derived from first principles. However, we believe it could be a useful approximation
because there is considerable room to tune the fit via the exponents and Michaelis-
Menten parameters; and, similar ad hoc expressions have been used in the past when
Michaelis-Menten alone was not sufficiently descriptive (cf. Table IV in [26]). The
exponents could be fit using nonlinear least squares.

1The Hill function is a generalization of (2) with zζ
σ(i)

instead of zσ(i) [27]. If 0 < ζ ≤ 1 and ζ ∈ Q, it is

also representable as an SOC using standard compositional rules [4].
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In the simple case where pi = 2 and πi1 = πi2 = 1/2, (5) is a hyperbolic constraint
with SOC representation ∥∥∥∥[ 2vi

vi1 − vi2

]∥∥∥∥ ≤ vi1 + vi2. (6)

We emphasize that as (5) and (6) have not been used in prior studies, they require
validation via simulation or experiments; this is a topic of future work.

Sometimes LP is more practical to work with than SOCP, e.g., when there are
numerous discrete constraints or commercial solvers are too expensive. Fortunately an
SOCP can always be approximated to arbitrary accuracy with an LP, albeit a poten-
tially large one. Reference [29] provides a constructive procedure for approximating
a generic SOC constraint with a family of linear constraints. Alternatively, the right
hand side of (2) can be straightforwardly approximated by a family of line segments.

3 Flux balance analysis

In this section, we first review the standard formulation of FBA, and then formulate
CFBA and Dynamic CFBA. We also use the duals to derive several sensitivities.

3.1 Linear FBA

The below LP is a basic FBA routine.

max
v

c⊤v (7a)

subject to Sv = 0 (7b)

v ≤ v ≤ v. (7c)

Here c ∈ Rn
+ selects and/or weights the fluxes for maximization. Let F denote the

optimal objective value.
Let λ ∈ Rm be the vector of dual multipliers of (7b), and let δL ∈ Rn

+ and δU ∈ Rn
+

be the vectors of dual multipliers associated with the upper and lower bounds in (7c).
The dual of (7) is

min
λ,δL,δU

v⊤δU − v⊤δL (8a)

subject to S⊤λ = c+ δL − δU (8b)

δL ≥ 0, δU ≥ 0. (8c)

The dual variables, or shadow prices, can be interpreted as the sensitivities of the
objective in (7) to changes in the constraints. More precisely, for each i ∈ N ,

δLi =
dF
dvi

, δUi =
dF
dvi

.
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λ is similarly interpretable as the sensitivity of the objective to perturbations to (7b).
This, for example, can be used to determine which reactions are most influential [30,
31].

We an also obtain insight by observing that the objectives of (7) and (8) must be
equal due to strong duality:

v⊤c = v⊤δU − v⊤δL.

This breaks down the optimal objective into contributions from each constraint. In
the common case where we maximize a single reaction, vs, and v = 0, this simplifies
to vs = δ⊤Uv, a convex combination of the upper flux limits.

3.2 Conic FBA

We now generalize the FBA (7) to include metabolites, which are coupled to the
reactions by the Michaelis-Menten kinetics. Let z ∈ Rm

+ and z ∈ Rm
+ be vectors of

upper and lower bounds on the metabolite concentrations. Let d ∈ Rm
− be a vector

weighting the metabolites in the objective. Consider the below optimization.

max
v,z

c⊤v + d⊤z (9a)

subject to Sv = 0 (9b)

v ≤ v ≤ v (9c)

z ≤ z ≤ z (9d)

vi ≤
V max
i zσ(i)

Km
i + zσ(i)

, i ∈ Q. (9e)

We make the following comments.

• This is an SOCP if we write (9e) in the form of (4).
• Within the subset of reactions limited by Michaelis-Menten kinetics, Q, it may be
that not all are important, and therefore that not all metabolites are limiting. We
can identify which metabolites are limiting through sensitivity analysis, as described
later in this section. It is these influential metabolite concentrations that we expect
CFBA to predict well.

• We could include reaction limits in the form of (5) that depend on multiple
Michaelis-Menten kinetics, and retain the SOC structure. We have not done so as
to retain simplicity in (9) and its dual, and because the numerical examples in
Section 5 only have upper bounds with single Michaelis-Menten reactions.

• (9e) is only meaningful if the corresponding metabolite concentrations are minimized
in the objective, i.e., d < 0. Otherwise, it is trivially optimal to fix the metabolites
at their maximum concentrations, z, in which case (9e) can be represented as an
upper bound on v in (9c).

• The objective is interpretable as maximizing the fluxes specified by c while mini-
mizing the metabolite concentration. We discuss an alternative formulation below
in Section 3.2.1.
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We now derive the dual. For matrices A and B of the same size, let A ◦B denote
the element-wise product. We let Ai: and A:j denote the ith row and jth column of A.

Let λ ∈ Rm be the vector of dual multipliers of (9b), δL ∈ Rn
+ and δU ∈ Rn

+ of
(9c), and γL ∈ Rm

+ and γU ∈ Rm
+ of (9d).

Let Φ ∈ R3×q and ϕ ∈ Rq
+. For a given reaction i ∈ Q, the constraint (9e) (in SOC

form (4)) has dual multipliers Φ:i ∈ R3 and ϕi ∈ R+, which satisfy the SOC constraint
∥Φ:i∥ ≤ ϕi.

Let M ∈ Rq×m be such that Mij = 1 if σ(i) = j and zero otherwise. The inter-
pretation of M is complementary to that of S. S encodes a network representing how
the reactions influence the evolution of the metabolite concentrations. Similarly, M
encodes a network representing which metabolites appear in each reaction.

The dual of (9), which is also an SOCP, is below.

min
λ,δL,δU,γL,γU,Φ,ϕ

v⊤δU − v⊤δL + z⊤γU − z⊤γL −
(
Φ3: − ϕ⊤) (V max ◦Km) (10a)

subject to

[(
Φ⊤

2: + ϕ
)
◦Km

0

]
+ S⊤λ = c+ δL − δU (10b)

M⊤ ((
Φ⊤

1: − ϕ
)
◦ V max

)
= d+ γL − γU (10c)

δL ≥ 0, δU ≥ 0, γL ≥ 0, γU ≥ 0 (10d)

∥Φ:i∥ ≤ ϕi, i ∈ Q. (10e)

Strong duality holds if a constraint qualification is satisfied, e.g., Slater’s con-
dition [4]. In this case λ, δL, λ, δU, γL, and γU all have the usual LP sensitivity
interpretations and complementary slackness with their respective constraints.

We can similarly interpret Φ and ϕ; see, e.g., Section 5.9.3 of [4]. ϕi is the sensitivity
of the optimal objective value, F , to perturbations to the right hand side of (4). Φ:i is
a vector of sensitivities of F to perturbations to each element in the left hand side. We
can use the chain rule to derive sensitivities for the parameters of the Michaelis-Menten
function. For i ∈ Q we have

dF
dV max

i

= Φ1izσ(i) +Φ3iK
m
i + ϕi

(
Km

i + zσ(i)
)

(11a)

dF
dKm

i

= Φ2ivi +Φ3iV
max
i + ϕi (V

max
i − vi) . (11b)

If a reaction, i, has high sensitivity to Km
i , then the corresponding metabolite con-

centration is limiting in the sense that a small change will substantially change the
reaction flux and objective value. On the other hand, if the sensitivity to V max

i is high
andKm

i low, then the solution is on the flatter, rightward part of the Michaelis-Menten
function, and so the corresponding metabolite concentration has little influence on
the solution. In this case, the Michaelis-Menten constraint could be replaced with a
simple upper limit on vi.
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As in the previous section, the objectives of (9) and (13) match if strong duality
holds. If we assume that v = 0, z = 0, and z = ∞, the equality simplifies to

c⊤v + d⊤z = v⊤δU −
(
Φ3: − ϕ⊤) (V max ◦Km)

= v⊤δU −
∑
i∈Q

(Φ3i − ϕi)V
max
i Km

i .

3.2.1 Alternative objectives

A shortcoming of (9) is that the objective—flux rates minus metabolite
concentrations—mixes units. This is problematic because the corresponding value does
not have a clear interpretation, e.g., the concentration of a metabolite of interest; and,
the two terms might differ numerically by orders of magnitude. We need not directly
compare fluxes and metabolite concentrations if we instead maximize d⊤z alone sub-
ject to a constraint on v, e.g., vs ≥ 1, where s is the index of a reaction of interest.
This is interpretable as the minimum metabolite concentration necessary to carry out
a certain function. Such a constraint could be incorporated into (9c).

An objective consisting only of metabolite concentrations might be more physically
interpretable. For instance, minimizing internal metabolite concentrations was used as
a model of cellular function in [32]. A second advantage is that the dual sensitivities
in (11) also have physical meanings. For these reasons, we maximize −1⊤z in the
example in Section 5.1, where 1 is the appropriately sized vector of all ones.

We could also maximize c⊤v alone and add constraints on z. This would be non-
trivial, e.g., with coupled polyhedral constraints. However, box constraints like (9d)
would simply lead to z binding at its upper bounds.

Note that while the dual is slightly different for these alternative formulations, the
expressions for the sensitivities to V max and Km in (11) are unchanged.

3.3 Dynamic FBA

Dynamic FBA extends conventional FBA in two ways: the incorporation of metabolite
concentrations, and changes over time not captured in a steady state model. Metabolite
concentrations are present in CFBA, but not transients. We thus formulate dynamic
CFBA for the purpose of capturing transient phenomena.

There are two main approaches to dynamic FBA, as described in [5].

• In the dynamic optimization approach, the full trajectory is optimized. The con-
centrations across time periods are coupled by a finite difference approximation
of the derivative; note that we could use a more accurate approximation, e.g.,
a higher order Runge-Kutta scheme [33]. The optimization is nonlinear due to
the Michaelis-Menten kinetics and bilinearities between the fluxes and biomass
variables.

• In the static optimization approach, a conventional FBA is solved in each time
period. The resulting flux vector is used to propagate the concentrations to the next
time period.
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The first is harder to solve because it is larger and nonlinear. Here, we optimize the
full trajectory as in the dynamic optimization approach. We render the problem more
computationally tractable by representing the Michaelis-Menten kinetics in SOC form,
(4).

A difficulty not present in steady state FBA is the biomass, zb, which we recall is
an element of the vector z. Because we are not setting the derivatives in (1) to zero, we
cannot divide it out, and the product of the Michaelis-Menten function and zb does
not have an SOC representation. To maintain consistent notation, we introduce the
variable ν ∈ Rn, which takes the place of the product zbv. We can recover convexity
in two ways.

1. If the biomass evolution is predictable, we can approximate it as a fixed param-
eter in each time period, z̄b(t). Then the kinetics can be represented as an SOC
constraint in the form of (4).

2. Instead of Michaelis-Menten, we can model the reaction limits with the Contois
function [16]:

νi ≤
V max
i zσ(i)zb

Km
i zb + zσ(i)

, i ∈ Q. (12)

The Contois function is commonly used to model biochemical processes [34], and
differs from Michaelis-Menten only in that the denominator depends on zb. Given
its similarity to the Michaelis-Menten kinetics, (12) could also be an acceptable
approximation. As shown in [3], we can represent the inequality (12) as the SOC
constraint ∥∥∥∥∥∥

 V max
i zσ(i)
Km

i νi
V max
i Km

i zb

∥∥∥∥∥∥ ≤V max
i zσ(i) −Km

i νi + V max
i Km

i zb.

Which approximation is more appropriate depends on the context. For example, if the
biomass does not vary much, holding it constant in Michaelis-Menten is a clear choice.
If the evolution of the biomass does depend strongly on the other metabolites, then
the Contois function might be a better choice. Alternatively, we could fit a generic
SOC constraint to reaction data, which would retain compatibility with SOCP and
potentially be more accurate than either of the above approximations [35].

There are time periods t = 0, ..., τ , each of length ∆. Let ν(t) and z(t) denote the
fluxes and metabolite concentrations in period t. We thus obtain the below SOCP for
dynamic CFBA.

max
ν(·),z(·)

τ∑
t=1

c⊤ν(t) + d⊤z(t) (13a)

subject to z(0) = z0 (13b)

z(t)− z(t− 1) = ∆Sν(t− 1) (13c)

z ≤ z(t) ≤ z (13d)
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ν̇ ≤ ν(t)− ν(t− 1) ≤ ν̇ (13e)

t = 1, ..., τ.

(13b) is the initial condition. (13c) is the Euler approximation of (1), and couples the
variables across time periods. If we approximate the biomass as a fixed parameter, we
also have for t = 1, ..., τ :

z̄b(t)v ≤ ν(t) ≤ z̄b(t)v (13f)

νi(t) ≤
V max
i zσ(i)(t)z̄b(t)

Km
i + zσ(i)(t)

, i ∈ Q. (13g)

If we model the reaction limits with the Contois function, (12), then instead of (13f)
and (13g), we have:

zb(t)v ≤ ν(t) ≤ zb(t)v (13h)

νi(t) ≤
V max
i zσ(i)(t)zb(t)

Km
i zb(t) + zσ(i)(t)

, i ∈ Q. (13i)

(13d) and (13f) (or (13h)) are bounds on the reactions and metabolites. (13e) limits
the rate of change of the reactions. In (13g) (or (13i)), νi(t) is less than either the
Michaelis-Menten kinetics with fixed biomass or the Contois function, depending on
which of the above approximations is used.

In dynamic FBA, the evolution of the metabolites generally depends on more than
just the stoichiometry, as in (13c). The same should also be the case for dynamic
CFBA. For example, there could be inflows and outflows with endogenous or exogenous
metabolite concentrations, or biomass death [15].

4 Minimal cut sets

In (11) in Section 3.2, we used dual variables to compute sensitivities to kinetic param-
eters. This was one of several potential applications of the CFBA dual system. We
now explore another in which we use Farkas’ Lemma to identify CMCSs.

An MCS is the smallest set of reactions which, if constrained to be zero, disables
some function of interest. In this regard, the reactions in an MCS are the lynchpins
of the system. In [6], it was shown that the MCSs of a metabolic network correspond
to the elementary modes of a dual network, which is specified by Farkas’ Lemma [22].
This was an application of a result from [7, 8], which states that there is a one-to-one
mapping between the IISs (irreducible infeasible subsystems) of a linear system and
the vertices of its dual polyhedron. One can therefore identify the MCSs of a metabolic
network by solving for the vertices of the dual polyhedron, which can be done via
mixed-integer LP (MILP).

In [9], a weaker version of the result of [7, 8] was extended to semidefinite systems,
which generalize SOC systems. We make use of this in Section 4.1 to extend the results
of [6] to networks with metabolites linked by Michaelis-Menten kinetics. Whereas an
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MCS contains only reactions, a CMCS contains the smallest set of reactions and/or
metabolites that the system cannot function without. We then formulate a linear
approximation that produces similar results in Section 4.2.

4.1 Conic minimal cut sets

We now describe the setup, starting with the linear part as given in [6]. Let Tv ⊆ N
denote the polyhedral set of target reactions, parametrized by the matrix T and vector
v∗.The target set, which does not contain the origin, encodes some function of interest,
which the removal of a cut set disables. The constraint

T⊤v ≥ v∗ (14a)

forces the reactions in Tv to be active. The below two constraints encode the steady
state operation of the metabolic network:

Sv = 0 (14b)

vi ≥ 0, i ∈ I. (14c)

We say that Cv is a cut set for Tv if vi = 0 for i ∈ Cv implies that vi = 0 for i ∈ Tv
under (14b) and (14c). It is an MCS if it contains no smaller cut sets, i.e., cut sets
with fewer elements, for Tv.

To make (14a)-(14c) infeasible, following [36], we add the constraints

vi ≤ 0, i ∈ I and vi = 0, i ∈ R. (14d)

Note that together, (14c) and (14d) imply v = 0.
Lemma 1 in [6] states that each MCS corresponds to an IIS of (14a)-(14d). Note

that an MCS could correspond to multiple IISs, but no two MCSs correspond to the
same IIS.

We now incorporate metabolite concentrations and reaction kinetics. We assume
there is also a target set of metabolites, Tz, each of which is constrained to be in some
concentration range by

W⊤z ≥ z∗, (14e)

whereW and z∗ are an appropriately dimensioned matrix and vector. Tz similarly does
not contain the origin. The below two constraints prohibit negative concentrations
and relate the concentrations to the reactions:

z ≥ 0 (14f)

vi ≤
V max
i zσ(i)

Km
i + zσ(i)

, i ∈ Q. (14g)
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Similar to (14d), we make this portion of the system infeasible by adding the constraint

z ≤ 0, (14h)

which, together with (14f), implies z = 0.
We note that infeasibility is not always precise enough when moving from linear to

nonlinear systems because in the latter case, the set of solutions might not be closed. As
in [9], we say that a semidefinite system is weakly feasible if any positive perturbation
to its eigenvalues makes it feasible, and weakly infeasible if it is not weakly feasible.
Feasibility implies weak feasibility, and weak infeasibility implies infeasibility. (14) is
weakly infeasible, and hence also infeasible, because there are positive perturbations
that do not make it feasible. We henceforth take the definition of an IIS to refer to
weak infeasibility.

We now extend the definition of an MCS.
Definition 1. C = {Cv, Cz} is a cut set for {Tv, Tz} under (14b), (14c), (14f), and
(14g) if the additional constraints vi = 0 for i ∈ Cv and zi = 0 for i ∈ Cz imply that
vi = 0 for i ∈ Tv and zi = 0 for i ∈ Tz. It is a CMCS if it contains no smaller cut sets.

The following lemma relates Definition 1 to the IISs of the second-order cone
system, (14).
Lemma 1. Each CMCS C = {Cv, Cz} for target set {Tv, Tz} under (14b), (14c), (14f),
and (14g) specifies an IIS of (14).

The proof is similar to that of Lemma 1 in [6].

Proof. Consider the CMCS C = {Cv, Cz} for target set {Tv, Tz}. The definition specifies
an infeasible system consisting of (14a)-(14c), (14e)-(14g), and

vi = 0, i ∈ Cv, zi = 0, i ∈ Cz. (15)

Denote this system Ψ. Ψ is a subsystem of (14) because (15) is a subsystem of v = 0
and z = 0. If Ψ is not irreducible, it must contain an IIS. Because the cut set is
minimal, the removal of any element from Cv or Cz makes Ψ feasible. Therefore, any
IIS of Ψ must contain (15). Because C = {Cv, Cz} is distinct to the CMCS, any IIS of
Ψ is also distinct to the CMCS.

As discussed for MCSs in [6], Lemma 1 has the following two implications: while
each IIS corresponds to at most one CMCS, a CMCS can correspond to multiple IISs;
and there may be IISs that do not correspond to a CMCS.

We now seek to relate the IISs of (14) to some dual system, which we recall was
specified by Farkas’ Lemma in the linear case in [6]. Farkas’ Lemma does not apply
to (14) due to the SOC constraint, (14g). There are several extensions to semidefinite
systems, e.g., [37], which [9] employs to generalize the results of [7, 8] to semidefinite
systems. The dual system in this case is also referred to as the alternative spectra-
hedron. Because any SOC constraint can be written as a semidefinite constraint, the
results of [9] specialize to SOC systems like (14) without modification.

The dual system of (14) is(
Φ3: − ϕ⊤) (V max ◦Km) + ρ⊤v v

∗ + ρ⊤z z
∗ = 1 (16a)
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[(
Φ⊤

2: + ϕ
)
◦Km

0

]
+ S⊤λ+ δ = T⊤ρv (16b)

M⊤ ((
Φ⊤

1: − ϕ
)
◦ V max

)
+ γ = W⊤ρz (16c)

ρv ≥ 0, ρz ≥ 0 (16d)

∥Φ:i∥ ≤ ϕi, i ∈ Q. (16e)

λ is the dual variable of (14b); δ of v = 0; γ of z = 0; ρv of (14a); ρz of (14e); and
(Φi, ϕi), i ∈ Q, of the SOC form of (14g).

Theorem 3.2 in [9] states that if (14) is weakly infeasible, then each of its IISs
corresponds to an extremal point of (16). More precisely, each IIS determines the
nonzero entries of some extremal point of (16). We can thus identify CMCSs by finding
the extremal points of (16).

Unfortunately, (16) may have extremal points that do not correspond to an IIS of
(14). Theorem 4.1 in [9] provides conditions under which the alternative spectrahedron
has a single solution; however, it does not appear to apply in general to (16).

Lemma 3.1 in [9] states that the indices of a minimal cardinality solution of (16)
correspond to an IIS of (14). In our case, similar to [6], we seek solutions in which the
vectors δ and γ have minimal cardinality.

In the linear case, there are several different MILPs for solving for IISs. Likewise,
one could formulate multiple mixed-integer SOCPs (MISOCP) for finding the IISs of
(14); e.g., (9) in [9] can be expressed as an MISOCP when specialized to our problem.
The MISOCP below differs from [9] in that we only seek minimal cardinality in δ and
γ, and not the other variables. The portion of the problem corresponding to reaction
fluxes is based on the MILP (14) in [38].

min
λ,δ,γ,ρv,ρz,Φ,ϕ,βδ,βγ

1⊤βδ + 1⊤βγ (17a)

subject to (λ, δ, γ, ρv, ρz,Φ, ϕ) solves (16)

βδ,i ∈ {0, 1}, βγ,i ∈ {0, 1} (17b)

|δi| ≤ Υβδ,i, i ∈ R (17c)

0 ≤ δi ≤ Υβδ,i, i ∈ I (17d)

0 ≤ γi ≤ Υβγ,i, i ∈ M (17e)

|ϕi|+ ∥Φ:i∥ ≤ Υβγ,σ(i), i ∈ Q. (17f)

βδ and βγ are vectors of binary variables. (17b)-(17f) are disjunctive constraints that,
for large enough Υ, either force their left hand sides to be zero or have no effect.
The left side of (17f) is the 2-norm of the SOC variable (Φ:i, ϕi) [28]. We include this
constraint because if βγ

i = 0, the dual variables of (14g) and (14h) should be zero.
Given a solution, the IIS is specified by the entries of βδ and βγ that are equal to one.

There are a number of further refinements one can make to (17). For example,
by weighting the terms in the objective, one can promote cuts with reactions or with
metabolites. To exclude either the reactions or metabolites in the target set, or a cut
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that has already been found, say
(
β̂δ, β̂γ

)
, we can add the constraint

β̂δ⊤βδ + β̂γ⊤βγ ≤ 1⊤βδ + 1⊤βγ − 1.

4.2 Linear approximation

There are severals reasons why solving (17) might not be the best way to identify
CMCSs. First, as discussed, the underlying theoretical results are weaker than in the
linear case—an extremal point of the alternative spectrahedron might not correspond
to an IIS [9]. Second, MISOCP is less tractable than MILP. And third, given the
discrete nature of cut sets, it is not clear that the nonlinearity could not be replaced
with something simpler.

The following is a standard linear approximation for when the metabolite
concentration is smaller than the Michaelis constant:

vi ≤ ηizσ(i), i ∈ Q, (18)

where ηi = V max
i /Km

i . If zσ(i) is in a cut set, i.e., we set it to zero, then vi ≤ 0 under
either (14g) or (18). Definition 1 and Lemma 1 also hold in both cases. Note that
while this definition of η has precedent, any positive value would serve similarly.

Let (14)* denote (14) with (18) instead of (14g), and let α ∈ Rq
+ be the dual

variable of (18). The dual system of (14)* is

ρ⊤v v
∗ + ρ⊤z z

∗ = 1 (19a)[
α
0

]
+ S⊤λ+ δ = T⊤ρv (19b)

γ = M⊤ (α ◦ η) +W⊤ρz (19c)

ρv ≥ 0, ρz ≥ 0, α ≥ 0. (19d)

Because (14)* is polyhedral, the results of [7, 8] apply—each IIS of (14)* corresponds to
exactly one extreme point of (19). Lemma 1 establishes that each CMCS corresponds
to some IIS of (14)*.

Similar to (17), we can identify the IISs of (14)* by solving the below MILP.

min
λ,δ,γ,ρv,ρz,α,βδ,βγ

1⊤βδ + 1⊤βγ (20a)

subject to (λ, δ, γ, ρv, ρz, α) solves (19) (20b)

(17b)− (17e) (20c)

αi ≤ Υβγ
σ(i), i ∈ Q. (20d)

Here (20d) serves the same role as (17f), but is linear because (18) is a linear inequality.
Note that the system Sv = 0, v ≥ 0, z ≥ 0, and (18) is a polyhedral cone, of which

we could therefore analyze the extreme rays. This is a topic of future work.
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5 Escherichia coli example

We now apply the tools we have developed to an example based on the model
e coli core in the BiGG database [39], which corresponds to Escherichia coli str.
K-12 substr. MG1655. The model has 95 reactions and 72 metabolites, of which we
explicitly model the twelve that appear in Table 1.

We take all parameters for the FBA routine (7) from the COBRA Toolbox [12, 13].
We augment the model with Michaelis-Menten kinetics for the reactions listed in
Table 1. The values of Km and V max for each reaction were taken from Table 1 in [40].

All optimizations were carried out in Python using CVXPy [41] and the solver
Gurobi [42]. All figures were made with Matplotlib [43].

5.1 CFBA

We first apply CFBA. We solve the alternative formulation described in Section 3.2.1,
which is identical to (9) except in two respects.

• The objective is −1⊤z, which corresponds to minimizing the sum of the concentra-
tions of the metabolites in Table 1.

• We add the constraint vb ≥ Ξ. vb is the flux of the biomass reaction, which is
BIOMASS Ecoli core w GAM in the BiGG database.

We are thus finding the minimum metabolite concentrations necessary to keep the
biomass flux above Ξ.

The SOCP for CFBA took 0.08 seconds to solve. For comparison, the LP for FBA
took 0.007 seconds, roughly an order of magnitude less.

Figure 1 shows the sensitivities of the optimal objective to V max and Km for three
of the reactions in Table 1 for Ξ = 0.1. Given primal and dual CFBA solutions, the
sensitivities are computed via (11). Each represents the change in total metabolite
usage resulting from a small change in a Michaelis-Menten parameter, given that the
biomass reaction flux cannot go below Ξ. Of the reactions that are not shown, 1 and
2 have sensitivities on the order of 10−4, and the rest 10−8.

We can see that the objective is most sensitive to the kinetics of Reaction 3
(ACONTa), which depends on the concentration of citrate. This reaction produces H20
for a number of other reactions. Via inspection of the network structure and opti-
mal reaction fluxes, we can see that it also directly enables the reactions aconitase
(half-reaction B, Isocitrate hydrolyase) and then isocitrate dehydrogenase (NADP).

The objective is also sensitive to Km for Reactions 12 (GLCpts) and 17 (O2t),
which depend on glucose and oxygen, indicating that an increase inKm for either reac-
tion will significantly increase the amount of metabolite needed to keep the biomass
reaction flux at Ξ.

We may interpret this as follows. High sensitivity to Km indicates that at the opti-
mal solution, we are near zero, on the steeply increasing part of the Michaelis-Menten
function—where a slight increase in concentration significantly increases the reaction
rate. On the other hand, high sensitivity to V max indicates that we are on the flatter,
right side of the Michaelis-Menten function—where changing the metabolite concen-
tration does not significantly affect the reaction rate. Note that conventional FBA
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does not provide this information because it identifies which reactions are important,
but not how they depend on the metabolite concentrations.

In this example, CFBA reveals that Reactions 3, 12, and 17 are successively further
to the left on the steeply increasing part of the Michaelis-Menten function. This means
that a slight increase in oxygen would significantly increase the maximum rate of
Reaction 17, whereas a slight increase in citrate and glucose would moderately increase
the maximum rates of Reactions 3 and 12, respectively.

Fig. 1 Sensitivities of the optimal CFBA objective, the sum of the metabolite concentrations, to
V max and Km for ACONTa, GLCpts, and O2t. The lower bound on the biomass reaction flux is Ξ = 0.1.

Figure 2 shows the concentrations of citrate, glucose, and oxygen as Ξ, the required
biomass flux, increases from 0.05 to 0.5. Because these are limiting metabolites, their
concentrations increase with Ξ, and do so at a greater than linear rate. The concentra-
tions of citrate and glucose increase rapidly with Ξ because, at the optimal solution,
they are further to the right on flatter part of the Michaelis-Menten function. The
concentration of oxygen increases least rapidly because, as described above, a slight
increase dramatically increases the reaction rate.

These concentrations are consistent with reported ranges. When Ξ = 0.5, the
predicted concentration of citrate is 1.17 mM, within the range of 1.1 to 3.5 mM
reported in Supplementary Table 3 of [44]. Escherichia coli ’s metabolism can function
over a wide range of oxygen concentrations. When Ξ = 0.5, the predicted oxygen
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Fig. 2 Optimal concentrations of citrate, glucose, and oxygen as a function of the lower bound on
the biomass reaction flux, Ξ, in CFBA.

concentration is 0.01 mM, which, for example, falls well within the range depicted in
Figure 4A of [45].

5.2 Dynamic CFBA

We now test dynamic CFBA by solving (13). Our secondary goal in this section is
to understand the scalability of CFBA and its dynamic extension, which we do by
varying the time horizon in (13), τ .

The objective, (13a), is to maximize the biomass concentration in the last period,
zb(τ), as in equation (6b) in Case 2 of [5]. The initial biomass concentration is zb0 =
0.001, and the remaining elements of z0 are ones. The biomass concentration evolves as

zb(t)− zb(t− 1) = ∆vb(t− 1),

where vb(t), as described in Section 5.1, is the biomass reaction flux.
As described in Section 3.3, we approximate the Michaelis-Menten kinetics with

the Contois function, parameterized using the values in Table 1. This means using
constraints (13h) and (13i) (and not (13f) or (13g)).

We solved (13) for time horizons ranging from τ = 50 to τ = 500. In each instance
the time step was ∆ = 0.001 hours. Figure 3 shows the time taken by the solver as
a function of τ . When τ = 50, there are 8,473 variables, and when τ = 500, there
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are 84,073 variables. The trend is increasing with problem size, though some smaller
instances take longer than larger ones, presumably due to specific problem structure
and solver behavior. The longest time taken by the solver was roughly six minutes.
This confirms that, by virtue of being SOCPs, CFBA and dynamic CFBA are highly
tractable problems.

Fig. 3 Computation time of dynamic CFBA as a function of the number of periods, τ .

The upper plot in Figure 4 shows the biomass, citrate, glucose, and glutamine
concentrations through time for the case when τ = 500. Recall that in Section 5.1,
citrate and glucose were two of the metabolites CFBA identified as most important.
Glutamine enables the glutaminase reaction, v9 (GLUN), and citrate enables aconitase,
v3 (ACONTa), both of which are shown in the lower plot.

The biomass concentration increases from near zero, first exponentially, and then
more gradually—this is a standard behavior. The glutaminase reaction first increases
as the biomass concentration increases, and then decreases as the concentration of glu-
tamine drops. The aconitase reaction also increases as biomass concentration increases
and then levels out.

These observations point to several potential refinements of dynamic CFBA. First,
to induce more complicated behaviors like loss or death of biomass, one must include
more complicated exogenous conditions; e.g., in [40] there are five different metabolic
phases, some of which have distinct exogenous inputs.
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Fig. 4 Concentrations (upper) and reactions (lower) through time produced by dynamic CFBA with
τ = 500 periods.

A second potential shortcoming is that dynamic CFBA assumes too much fore-
sight, in that the entire trajectory of 500 periods is optimized at once, and with full
knowledge of future exogenous inputs. Full foresight is consistent with the dynamic
optimization approach, as described in Section 3.3. However, it is the static optimiza-
tion approach that finds more usage today, wherein optimization only occurs within
individual time periods. A potential remedy is to implement dynamic CFBA with a
shorter horizong in receding horizon fashion [46]. This would both limit foresight and
enhance scalability.

5.3 CMCS analysis

We compute CMCSs of our example by solving (17), an MISOCP, and (20), an MILP.
In addition to the setup at the start of this section, we must also specify target sets,
Tv and Tz, in the form of (14a) and (14e).

Table 2 lists reaction ‘knockouts’ and the corresponding CMCSs found by (17) and
(20), specified by their IDs in the BiGG database [39]. The target set in each case
consists of constraining the flux to be greater than one. Note that we only list the first
CMCSs found by the solver, that one target set can have many CMCSs, and that a
given CMCS can be a solution for both (17) and (20).
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Table 2 Target knockout reactions and the CMCSs found
via (17) and (20).

Target CMCS from (17) CMCS from (20)
GLNS EX nh4 e, GLUDy, GLUN gln L c, GLUDy, NH4t
FUM fum c fum c

SUCDi succ c succ c

CS ACONTb cit c

MDH Biomass Ecoli core,
ACONTa, ADK1,

FBA, PYK

ADK1, FBA, PIt2r
PYK, cit c

ME2 Did not converge. EX nh4 e, EX pi e

FORti, MALS, O2t
AKGDH, AKGt2r,
ALCD2x, ATPS4r,
NADTRHD, TALA,

succ e

The CMCSs in Table 2 consist of reactions, metabolites, or combinations of both.
For example, to disable the glutamine synthetase reaction (GLNS), we can elimi-
nate the substrate L-Glutamine (gln L c) and disable the glutamate dehydrogenase
(NADP) (GLUDy) and ammonia reversible transport (NH4t) reactions. On the other
hand, conventional MCS analysis can only identify critical reactions, not metabolites.

The prevalence of metabolites in the CMCSs depends on which reactions are limited
by Michaelis-Menten kinetics. For instance, fum c and succ c are both CMCSs because
they limit FUM and SUCDi, among other reactions. Note that adding more metabolites
and Michaelis-Menten constraints will increase the number of CMCSs, but does not
invalidate those that exist for a smaller number of metabolites.

The computation time in all but the final case was under one second. In the last
case, (20) took six seconds to solve, and (17) was still not solved after an hour. This
highlights the fact that MILP and MISOCP are NP-hard, and similar instances of a
problem can take very different times to solve.

Problem (20) often has the same or similar solutions to (17) and, due to the higher
tractability and maturity of MILP, is easier to solve in some cases. For these reasons,
(20) appears to be more practical than (17).

6 Conclusion

By representing the Michaelis-Menten kinetics as a second-order cone constraint, we
can add metabolite concentrations to standard models of metabolic networks without
losing much tractability. This has enabled us to formulate several new tools: conic
flux balance analysis, dynamic conic flux balance analysis, and conic minimal cut
set analysis. In our numerical examples, we demonstrated that each of these new
problems is tractable and can provide insight into both reaction fluxes and metabolite
concentrations.

There are several directions for future work. We believe that there are numerous
potential applications to the many different organisms there are. Such studies could
both provide new insights into metabolic networks and further clarify when these tools
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are appropriate. A starting point for this is applying them to larger metabolic net-
work models. This entails augmenting more existing models with Michaelis-Menten
parameter data. There is also room for methodological advancements. For example,
a receding horizon implementation [46] could make dynamic conic flux balance anal-
ysis both more realistic and tractable. The SOC representation of Michaelis-Menten
could be incorporated into flux variability analysis [47] so as to find near optimal
ranges of both fluxes and metabolites. There is certainly more to understand about
the basic geometry of our setup, which, though convex, is not amenable to many of
the techniques used to analyze polyhedral models.

Code availability

The code for the examples is available at: https://github.com/JAT38/conic-metabolic.
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A Second-order cone programming

We here provide cursory background on SOCP, and refer the reader to [28] and [4] for
in-depth coverage. Let A ∈ Rm×n, b ∈ Rm, c ∈ Rn, and d ∈ R. A standard form SOC
constraint on the variable x ∈ Rn is written

∥Ax+ b∥ ≤ c⊤x+ d,

where the left-hand side is the two-norm. If A = 0, this reduces to a linear constraint.
A commonly occurring constraint with SOC form is the hyperbolic constraint

x2
1 ≤ x2x3. It can be written ∥∥∥∥[ 2x1

x2 − x3

]∥∥∥∥ ≤ x2 + x3.

We must also require x2 ≥ 0 and x3 ≥ 0.
An optimization problem with a linear objective and p SOC constraints is an

SOCP, and can in general be written

min
x

f⊤x

subject to ∥Aix+ bi∥ ≤ c⊤i x+ di, i = 1, ..., p,

where Ai ∈ Rmi×n, bi ∈ Rmi , ci ∈ Rn, and di ∈ R. Note that the number of rows
in Ai and bi can be different for each i. SOCP is a generalization of LP because any
linear constraint can be written as an SOC constraint.
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The SOC is self-dual, i.e., its dual cone is the SOC. The dual of an SOCP is
therefore also an SOCP. The dual of the above SOCP is

min
ui,vi, i=1,...,p

p∑
i=1

b⊤i ui + divi

subject to

p∑
i=1

A⊤
i ui + vici = f

∥ui∥ ≤ vi, i = 1, ..., p.

Strong duality is attained if a constraint qualification holds, e.g., the existence of a
Slater point. In this case the two optimizations have the same objective.
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