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Tropical moist forests have been severely affected by natural and anthropogenic
disturbances, leading to substantial changes in global carbon cycle and climate.
These effects have received great attention in scientific research and debates.
Here we review recent progress on drivers and ecological impacts of tropical
moist forest disturbances, and their monitoring and modeling methods.
Disturbances in tropical moist forests are primarily driven by clearcutting,
selective logging, fire, extreme drought, and edge effects. Compound
disturbances such as fire and edge effects aggravate degradation in the edge
forests. Drought can result in terrestrial carbon loss via physiological impacts.
These disturbances lead to direct carbon loss, biophysical warming and
microclimate change. Remote sensing observations are promising for
monitoring forest disturbances and revealing mechanisms, which will be
useful for implementing disturbance processes in dynamic vegetation models.
Yet, constrained spatiotemporal coverages and resolutions limit the application
of these data in process-basedmodels. It is also challenging to represent physical
processes derived from fine-resolution remote sensing data in coarse-resolution
models. We highlight the need to continuously integrate new datasets and
physical processes in forest disturbance modeling to advance understanding
of disturbance patterns and impacts. Interactions and impacts of climate change
and anthropogenic activities should also be considered for modeling and
assessing feedbacks of tropical moist forest disturbances.
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1 Introduction

Tropical moist forests are one of the world’s largest and most
productive ecosystems and an important component of the global
carbon cycle, containing 44% of the global aboveground biomass
(Liu et al., 2015; Xu et al., 2021). Over the past decades, they have
been affected by severe natural (e.g., drought, fire) and
anthropogenic (e.g., deforestation, shifting cultivation, mining)
disturbances, leading to substantial decreases in forest area,
aboveground biomass, and soil carbon (Pugh et al., 2019a;
Hansen et al., 2020; Pyles et al., 2022). Deforestation and forest
degradation induced by these disturbances can destroy vegetation
and reduce aboveground carbon stock, resulting in significant
carbon emissions (Molinario et al., 2017; Wigneron et al., 2020;
Ahmed et al., 2021). Nevertheless, carbon sequestration from post-
disturbance ecosystem recovery remains limited in tropical moist
forests at a regional scale due to soil carbon loss (Kleinschroth et al.,
2015; Heinrich et al., 2023). Under intensifying climate change and
human activities, disturbance-induced emissions will likely increase
in the future (Dai, 2013; Li et al., 2017). Additionally, disturbances
can harm vegetation health and vitality, lead to tree mortality, and
threaten ecosystem services in the tropics (FAO, 2020). Studying
disturbances in tropical moist forests is thus of great value in
exploring physical mechanisms of disturbances, designing
management and conservation policies, and mitigating climate
change in the future.

Forest disturbances can cause forest loss and degradation. The
extent, type, and impact of forest disturbances can be measured from
field experiments, forest inventory data, and remote sensing
observations. Field experiments such as the Biological Dynamics
of Forest Fragments Project and the throughfall exclusion
experiment were designed to study the effects of a particular
disturbance type (Fisher et al., 2007; Laurance et al., 2011).
Forest inventory data from the Food and Agriculture
Organization of the United Nations (FAO) indicated a decrease
in tropical deforestation rate from 15.8 Mha yr−1 during
1990–2000 to 10.2 Mha yr−1 during 2015–2020 (FAO, 2020).
Recently, remote sensing data have been commonly used to
investigate forest disturbances as multi-year products at
moderate-to high-resolutions became available. For example,
global forest loss data at 30 m resolution revealed that
deforestation decreased in Amazon but increased in Indonesia
during 2000–2012 (Hansen et al., 2013). Multi-year optical and
microwave data also indicated that the total forest degradation area
exceeded the deforested forests in the Amazon since the 1990s
(Matricardi et al., 2020; Qin et al., 2021). However, there is still
difficulty in monitoring forest degradation and its ecological
impacts, preventing full understanding of its driving mechanisms
and modeling development of the physical processes.

This review aims to present key findings from recent studies
about the magnitudes, mechanisms, and impacts of disturbances in
tropical moist forests. We first summarized the disturbances and
their underlying drivers that lead to deforestation and degradation
in pantropical moist forests, specifically focusing on the physical
processes and mechanisms. We then evaluated the impacts of the
disturbances on the carbon cycle, surface energy budget, and
microclimate. We further discussed the data and modeling needs
for studying these disturbances. In particular, we emphasized the

integration of remote sensing data for representing related processes
in dynamic global vegetation models (DGVMs).

2 Recent scientific advances in forest
disturbances

2.1 Definitions and types of forest
disturbances

In ecology, disturbance is commonly defined as regular or
irregular events that disrupt the structure of an ecosystem,
community, or population and alter the physical environment or
resource availability (White and Pickett, 1985). Here we focus on the
most common disturbance types in tropical moist forests (Figure 1).
For anthropogenic types, we consider clear-cutting, selective
logging, forestry, shifting agriculture (and related fire use), and
edge effects induced by forest fragmentation. Wildfire and
extreme drought are the major natural disturbance types
reviewed in this article. Driven by natural climate variability and
anthropogenic activities, forest disturbances typically result in
substantial deforestation and forest degradation in the tropics.
Deforestation refers to the transition of forests to other land
cover types, such as forest clear-cutting for cropland (Curtis
et al., 2018). Unlike deforestation, forest degradation leads to a
loss of forest attributes (e.g., canopy cover, biomass) and a decrease
in ecosystem functioning and services (e.g., carbon sequestration,
soil protection, biodiversity), but the land cover type remains
unchanged (Ghazoul et al., 2015; Zhu et al., 2023).

2.2 Driving factors of forest disturbances

Natural and anthropogenic drivers of forest disturbances vary
across the tropics (Andoh et al., 2022). Long-term and permanent
deforestation is typically caused by commodity production,
urbanization, and mining, with forests converted into other land
cover types such as agriculture, plantation, or infrastructure (Curtis
et al., 2018; Giljum et al., 2022). Meanwhile, short-term forest loss is
commonly associated with shifting cultivation, forestry, and fire.
Forest degradation is mainly caused by forest fragmentation
resulting from deforestation, forestry, overgrazing, uncontrolled
fire, and extreme climatic events like drought (Kissinger et al.,
2012; Zhu et al., 2023).

In Africa, increasing food and energy demands due to
socioeconomic development and rapid population growth lead to
deforestation and degradation (Rudel, 2013; Heinimann et al., 2017;
Curtis et al., 2018; Tyukavina et al., 2018). Two major types of
human activities have resulted in substantial forest loss: 1)
widespread selective logging and the following constructions of
roads and log landings (Kleinschroth et al., 2016; Umunay et al.,
2019) and 2) fires for forest clearing induced by shifting cultivation
or land management (Barlow and Peres, 2008; Dwomoh et al., 2019;
Zubkova et al., 2019). Impacts of industrial mining in Africa are
relatively minor except for Ghana, where direct forest loss from
mining was 213 km2 during 2000–2019. Charcoal collection as a
local energy resource is another driver of deforestation and
degradation in low-income regions (Balomba et al., 2018). In
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addition to human activities, extreme floods, droughts, and
megaherbivores (e.g., elephant, hippo, rhino) have led to forest
damages and become common natural disturbances in Africa in
recent years (Wieczkowski, 2009; Parolin and Wittmann, 2010;
Cromsigt and te Beest, 2014; Schmitz et al., 2018; Xu et al., 2019;
Hyvarinen et al., 2021).

Commodity-driven clear cutting is a main driver of
deforestation in South America. Lost forest area was likely
converted to cropland or pastureland (Curtis et al., 2018). Over
the past 2 decades, massive cropland (e.g., soybean, corn, sugarcane)
expansion strongly drive deforestation in Brazil (Zalles et al., 2019;
Song et al., 2021). Between 2005 and 2015, mining also led to 9% of
forest loss directly and indirectly in Brazilian Amazon (Sonter et al.,
2017). Edge effects from deforestation-driven fragmentation, fire,

and extreme droughts are the main drivers of forest degradation in
South America (Lapola et al., 2023). In particular, about 60% of the
degraded forests in the Brazilian Amazon can be attributed to edge
areas and isolated fragments of forests from 1992 to 2014
(Matricardi et al., 2020). During this period, a notable increasing
fraction of the degraded forests is from the logged and burned area.
The humid forests in South America have also suffered from severe
droughts that lead to tree mortality and threaten the carbon sink
(Lapola et al., 2023). Additionally, flooding has become a new
disturbance agent that leads to tree mortality and decreased
resilience in Amazon forests (Resende et al., 2019; Boulton et al.,
2022; Bredin et al., 2022).

Southeast Asia (SEA) has one of the highest rates of
deforestation and biodiversity loss globally (Felbab-Brown, 2013),

FIGURE 1
Types, underlying drivers, and biogeochemical and biophysical impacts of major disturbances in pantropical moist forests discussed in this review.
The dashed arrows highlight potential interactions of compound disturbances. Forestry is included as a driver to represent natural forest loss induced by
forestry commodities or plantations (e.g., oil palm, rubber). Here ET refers to evapotranspiration.
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primarily due to human activities such as palm oil production,
agriculture, and logging (Wilcove et al., 2013; Curtis et al., 2018;
Zeng et al., 2018). Oil palm and rubber plantation expansion are the
principal drivers of deforestation in the insular SEA and mainland
SEA, respectively (Jamaludin et al., 2022). Land use for oil palm
plantations has quadrupled since 1980, and approximately 50% of
oil palm expansion occurs in the forests in Indonesia and Malaysia
(Koh and Wilcove, 2008). Over 2001–2015, oil palm plantations led
to about 50.2 TgC yr−1 biomass loss in these two countries (Xu et al.,
2022). Forests with high biomass density were particularly
encroached by small-scale plantations after 2007 (Xu et al.,
2022). Additionally, Indonesia has experienced 1,901 km2 area of
deforestation directly from industrial mining, which is the most
affected country in the tropics (Giljum et al., 2022).

2.3 Physical processes and mechanisms

The natural and anthropogenic drivers of deforestation and
forest degradation affect tropical moist forests through various
physical processes. Compared to deforestation, forest degradation
involves more complex processes and mechanisms (Bullock et al.,
2020a; Pandey et al., 2020). In recent decades, small-scale
deforestation (e.g., shifting cultivation and road construction) has
led to severe forest fragmentation and a large amount of edge forests
(Taubert et al., 2018; Umunay et al., 2019). Edge forests become
degraded over time through edge effects: local circulation transfers
moist air in edge forests to adjacent non-forest areas, resulting in
higher temperature, stronger wind, and more severe drought in edge
forests. Influences of edge effects can extend from forest patch edges
to interior forests by about 110 m in tropical moist regions, and the
forests experiencing the most severe degradation are typically
located near the edges of forest patches (Broadbent et al., 2008;
Laurance, 2008).

Fire is also an important driver of degradation in tropical moist
forests, where trees are typically not resistant to fires. Compared
with forests that have never suffered a fire, burned forests show
reduced biomass and divergent vertical structures dominated by
pioneers and saplings (Barlow and Peres, 2008). A positive feedback
loop may exist between fire and edge effects in Africa: in edge forests
with low humidity, it is easy for fires to intrude and burn the forests;
fires also enhance the degradation of edges in tropical moist forests
(Dwomoh et al., 2019; Zhao et al., 2021). However, under severe
fires, tropical forests could experience substantial tree cover loss,
become prone to burning, and eventually transform into savannas
(D’Onofrio et al., 2018; Hoffmann et al., 2012). Fires can further
interact with forest edge effects via two possible mechanisms:
directly burning into forest patches and indirectly enhancing
local circulation between edge forests and non-forest areas (Zhao
et al., 2021). Such interactions of these compound disturbances will
further worsen the degradation of edge forests in the tropics.

Widespread drought directly reduces terrestrial carbon storage
via physiological impacts (Reichstein et al., 2013; Xu et al., 2019).
Drought-driven soil water depletion and heat stress cause water
deficit for plant uptake and affect tree growth and photosynthesis.
Tree mortality induced by extreme drought then reduces terrestrial
carbon sink (Brienen et al., 2015). During the 2010 drought, the
Amazonian rainforest lost about 2.2 PgC carbon, even reversing it

from a carbon sink to a source (Phillips et al., 2009; Lewis et al.,
2011). Drought also has complex impacts on vegetation
evapotranspiration. Decreased soil moisture and transpiration
from stomatal closure under drought typically lead to suppressed
evapotranspiration in tropical moist forests (Corlett, 2016). On the
other hand, increased atmospheric moisture demand under drought
may promote evapotranspiration, which can cause flash droughts
and exert ecosystem stresses (Zhao et al., 2022). Additionally,
drought indirectly impacts tropical forests by increasing the
frequency and intensity of other disturbances, such as fire and
edge effects (Staal et al., 2020; Numata et al., 2021). With more
defoliation and litter accumulation, and drier vegetation
components, it increases the vulnerability of moist forests to fires
in Amazon (Asner and Alencar, 2010; Brando et al., 2014). The long-
lasting legacy effects of drought cause continuous carbon loss and
accelerate widespread forest degradation (Bullock et al., 2020a; Qin
et al., 2021).

2.4 Biogeochemical and biophysical impacts

Disturbances substantially impact forest structure, vegetation
composition, and biogeochemical cycles (carbon, nitrogen,
phosphorus, etc.) in tropical moist forests (Ciais, 2013; Longo
et al., 2020). Specifically, they cause direct loss of carbon storage
via emissions and affect carbon sequestration capability, which may
change the ecosystems from carbon sinks to sources (McLauchlan
et al., 2014; Kranabetter et al., 2016). The changes in forest structure
and carbon cycle, in return, can affect ecosystem resilience and
disturbance regime. Here we only focus on the disturbance impacts
on the carbon cycle in tropical moist forests. According to satellite
data, carbon loss due to tropical deforestation was about
0.57–1.22 PgC yr−1 during 2000–2005, and South America,
Africa, and Asia accounted for 54%, 32%, and 14% of the total
loss, respectively (Harris et al., 2012). Another study found a similar
magnitude of carbon loss (0.60–1.24 PgC yr−1) in the 2010s by
integrating field samples and satellite imagery (Achard et al.,
2014). In comparison, estimations based on forest inventory data
and a bookkeeping model delivered a considerably higher carbon
loss of 2.94 PgC yr−1 during 1990–2007 from tropical deforestation
(Pan et al., 2011). This difference is likely because forest inventory
data are often collected from undisturbed forests with higher carbon
densities. Also, bookkeeping models ignore natural disturbances and
the impacts of climate and CO2 on biomass, likely causing different
results from satellite-based analyses. Compared to deforestation,
carbon loss from forest degradation is relatively difficult to quantify
since large-scale degradation monitoring is challenging. With
commonly used data fusion methods and bookkeeping models,
degradation-induced carbon loss was estimated to be 32%–69%
of the total amount in tropical forests (Asner et al., 2010a; Baccini
et al., 2017).

Tropical forest disturbances also result in biophysical warming
by altering the surface energy budget. Deforested and degraded areas
in tropical moist forests generally have lower evapotranspiration and
surface roughness, thus having higher local surface temperature
than the undisturbed forests (Li et al., 2015; Chen et al., 2020; Zhu
et al., 2023). Although the albedo of deforested areas is higher than
that of intact forests, the resultant cooling effect is more obvious in
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high-latitude regions with snow cover in winter (Lee et al., 2011;
Peng et al., 2014). However, this effect is non-negligible in the
tropics: complete tree cover loss from deforestation will increase the
local land surface temperature by about 1.53°C from biophysical
impacts (Alkama and Cescatti, 2016). In tropical moist forests,
degradation could have a daytime warming effect of 0.78°C on
the local land surface temperature, which is about 18% of that from
deforestation (Zhu et al., 2023). Although the biophysical impacts of
forest disturbances were found equally important as the
biogeochemical effects, the underlying mechanisms are still
unclear, and the biophysical effects are commonly overlooked by
climate mitigation policies (Bala et al., 2007; Windisch et al., 2021).

Moreover, disturbance-induced deforestation and degradation
can modify vegetation structure, species density, and distance to
forest edge, leading to changes in microclimate conditions in
tropical moist forests. Functioning as thermal insulators, forest
canopies can adjust understory temperature and constrain
extreme values of the microclimate (Jucker et al., 2018). Post-
disturbance canopy loss drives temperature increase and air
desiccation locally. In Malaysia, understory air temperatures in
oil palm plantations and logged forests were about 6.5°C and
2.5°C warmer than those in primary forests (Hardwick et al.,
2015). In addition to modifying forest structure, fragmentation in
Amazonian rainforests can elevate tree-community dynamics
(mortality, damage, turnover) near forest edges, further
exacerbating edge effects on disturbance-sensitive species
(Laurance et al., 1998; Ewers and Banks-Leite, 2013). Such
impacts on microclimate can substantially affect the carbon
balance, ecosystem functioning, and biodiversity in tropical moist
forests (Vourlitis et al., 2004; Jucker et al., 2020; Sanczuk et al., 2023).
Warmer and drier microclimate and leaf area reduction after
deforestation may potentially convert transitional forests between
tropical moist forests and savanna in Brazilian Amazon to be CO2

sources in the future, by affecting forest respiration and canopy
photosynthesis (Vourlitis et al., 2004). During extreme drought, the
disruption of microclimate effects further intensifies forest
mortality, impact evapotranspiration, and trigger a positive
feedback loop that accelerates climate change (Au et al., 2022).

In recent years, compound disturbances have become an
emerging issue for the degraded forests in the tropics. They exert
multiplicative impacts on forest ecosystems from two or more
combined disturbances, often by affecting the resilience to the
subsequent disturbance during the recovery processes (Buma,
2015; Kleinman et al., 2019). Remote sensing observations reveal
that the interactions between fire and edge effects aggravate
degradation in the edge forests across Africa through fire
intruding into forests (direct impact) and enhanced local
atmospheric circulations (indirect impact) (Zhao et al., 2021).
The aggravated degradation is mainly controlled by the direct
impact in dry forests but mutually by both the direct and
indirect impact in moist forests (Zhao et al., 2021). In Brazilian
Amazon, the 2015 drought has led to increased fire occurrence in the
degraded forests, resulting in substantial carbon emissions (Aragão
et al., 2018). Compound disturbances from repeated fire, drought,
and windstorms also result in prolonged forest degradation by
impeding the recovery of carbon stocks and tree cover in
southeast Amazon, according to multi-year field measurements
(Brando et al., 2019). Nevertheless, our understanding of the

ecological impacts from compound disturbances is still limited
compared to individual disturbances (Graham et al., 2021).

2.5 Ecosystem recovery after disturbances

Recovery of secondary and degraded forests after disturbances is
critical in ecosystem restoration, biodiversity conservation, and
climate mitigation (Anderson-Teixeira et al., 2013; Poorter et al.,
2021). Secondary forests (≤ 60 years) comprise approximately 28%
of the forest area in Latin America (Chazdon et al., 2016). Over
1990–2019, only 13.5% of the deforested areas have been recovering
after disturbances, with the largest proportion in Asia (Vancutsem
et al., 2021). Though with less ecological values than primary forests
due to the loss of biodiversity and habitat, these regrowing forests
have a strong carbon sequestration capability that can potentially
offset the carbon emissions from forest loss in the tropics (Poorter
et al., 2016; Pugh et al., 2019b; Heinrich et al., 2023). After the
extreme drought and heat from the 2015–2016 El Niño, moist
forests typically did not recover to pre–El Niño levels
pantropically by the end of 2017, according to aboveground
biomass carbon estimated with remote sensing data (Wigneron
et al., 2020). In contrast, long-term tree-level plot measurements
of biomass carbon sink indicate that secondary tropical forests in
drier climates were more vulnerable to the 2015–2016 El Niño event
than the intact forests in South America (Bennett et al., 2023).
Nevertheless, it can take up to a century for the biomass status and
species composition to recover to those of the old-growth forests in
the tropics (Poorter et al., 2021). Spatial variations also exist in forest
recovery speed pantropically. In particular, intact tropical moist
forests exposed to repeated past disturbances tend to have lower
resilience and decreased recovery rate (Tao et al., 2022).

Forest recovery and resilience to disturbances can be quantified
with forest attributes from multiple aspects, including soil
properties, plant functions, and forest structures (Walker et al.,
2010; Martin et al., 2013; Jamaludin et al., 2022). Chronosequence
studies are the major approach to exploring forest recovery and
resilience by reestablishing fire disturbance history and tracking the
long-term forest properties (Cole et al., 2014; Poorter et al., 2016;
Poorter et al., 2021). Site observations over the past 2 decades
suggest high resilience of tropical forests to low-intensity land
use change, with the forest attributes recovering to 78% of the
old-growth states over 20 years (Poorter et al., 2021). In particular,
biomass and species composition tend to recover much more slowly
than other forest components, including structure, plant
functioning, and soil. Recently, finer resolution and frequent
satellite products provided a new opportunity for spatially-
explicit representation of the recovery pace using multi-temporal
observations (Wigneron et al., 2020; Xu et al., 2021) or a space-for-
time method (Heinrich et al., 2021; Heinrich et al., 2023).

Recent studies have identified non-structural carbohydrates
(NSC) as a crucial characteristic that controls the carbon balance
and hydraulic processes of trees, further affecting forest resistance
and resilience to disturbances (Hartmann and Trumbore, 2016;
Fatichi et al., 2019). Its allocation strategies influence the growth and
mortality of trees (Blumstein et al., 2022). For example, allocation to
light-harvesting organs enables sufficient photosynthate, whereas
more NSC allocation to storage can improve survivorship by
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providing a buffer against resource shortage when suffering
disturbances but at the expense of growth. Conservative-growing
species with larger NSC reserves and structural carbon inputs,
therefore, are more likely to survive during extreme climatic
events (Piper and Paula, 2020; DAndrea et al., 2021). Moreover,
to maintain respiration and other metabolic functions, plants may
eventually deplete stored NSC during the long-term disturbances
(e.g., drought), resulting in increased mortality risk (Doughty
et al., 2015).

3 Knowledge gaps and future research
perspectives

3.1 Remote sensing observations

Satellite remote sensing is a primary tool to continuously
monitor forest disturbances and quantify their impacts at a large
scale in forest management and conservation practices (Lechner
et al., 2020). Passive optical and microwave data have been widely
adopted to map disturbances by tracking temporal changes in
spectral information (Hirschmugl et al., 2017). Active sensors like
Light Detection and Ranging (LiDAR) or synthetic aperture radar
(SAR) provide high-quality data for assessing forest structure,
canopy composition, and carbon sequestration potential (Mitchell
et al., 2017).

However, limitations exist in forest disturbance research with
remote sensing data. First, applications of such data are largely
constrained by their spatiotemporal resolutions and coverages. Until
recently, detecting small-scale disturbances or individual tree-level
changes at a continental scale became possible by applying artificial
intelligence (AI) to very high resolution (VHR) imagery (Brandt
et al., 2020; Li et al., 2023). Yet, the low temporal resolution of the
VHR data limits long-term monitoring of disturbances with time
series analysis (Wang et al., 2019; Hethcoat et al., 2021). The
effectiveness of optical products is also constrained by frequent
cloud cover in the tropics (Hethcoat et al., 2021). Second, it is
challenging to determine the causes of the disturbances and
differentiate between natural or anthropogenic events purely
based on remote sensing data (Stahl et al., 2023) such as
lightning- or human-ignited fires. Third, primary and secondary
forests may respond differently to disturbances regarding carbon
sequestration abilities and ecological services (Gurevitch, 2022; Hua
et al., 2022). Distinguishing their distributions and responses to
disturbances is challenging at a large scale due to the complex
information from heterogeneous canopy structures, species
compositions, and within-canopy shadows (da Silva et al., 2014).
Additionally, gradual forest changes induced by degradation may
not be easily detectable using typical remote sensing techniques,
making it difficult to monitor the legacy effects of degradation (Gao
et al., 2020).

Satellite-based sensors have been newly launched or planned for
data collection in recent years (Hwang et al., 2023). The combination
of new optical, LiDAR, and SAR data has the potential to improve
the characterization of forest disturbances and enhance our
understanding of forest responses to disturbances. For example,
observations from Global Ecosystem Dynamics Investigation
(GEDI), the first spaceborne LiDAR sensor for monitoring global

ecosystem structure, are utilized to quantify canopy structure and
biomass and support monitoring of disturbances and their impacts
on the carbon cycle (Dubayah et al., 2020). Though the GEDI data
itself has limited spatiotemporal coverage, its integration with
optical sensors (e.g., Landsat, Sentinel-2) provides wall-to-wall
mapping of additional forest structure metrics (Potapov et al.,
2021; Dwiputra et al., 2023). European Space Agency plans to
launch the new “biomass” satellite carrying P-band SAR in 2024,
which can capture the forest structure and help improve biomass
and canopy height measurement. Meanwhile, newly developed
products based on existing satellite data provide insights into
disturbances and their impacts (Brandt et al., 2018; Fan et al.,
2019; Xu et al., 2021; Santoro et al., 2021). Very promising AI
approaches have been developed very recently, bypassing the
problems of optical data saturation, by analyzing image texture
in all spectral bands. Integrated with deep learning algorithms,
recent studies have identified a surprisingly high quantity of trees
and developed new benchmark datasets for tree cover and biomass
in Africa utilizing multispectral VHR imagery from DigitalGlobe
satellites (Brandt et al., 2020; Mugabowindekwe et al., 2023).

3.2 Integration of remote sensing data in
model development

Development of remote sensing data can substantially support
model development of tropical forest disturbances in several aspects.
First, a major usage of remote sensing in DGVMs is to provide
plenty of high-quality data for calibration and validation. Compared
to field observations, remote sensing provides a wealth of
continuous data in space and time. Products of aboveground
biomass, gross primary productivity (GPP), leaf area index (LAI),
and burned area have been widely adopted for calibrating and
evaluating important model ouputs (Jung et al., 2011; Santoro
et al., 2021). Second, satellite-based observations provide key
forcing data for model simulation. Vegetation and land cover
data provide plant functional type (PFT) maps and
spatiotemporal deforestation information for DGVMs (Li et al.,
2018). Burned area products are also critical for forcing historical
forest disturbances induced by wildfires (Yue et al., 2014).
Nevertheless, current application of remote sensing-based forcing
data is limited to the contemporary period. Backcasting data before
the satellite period can be improved by historical reconstruction
(e.g., fire activity) based on contemporary remote sensing
observations (Mouillot and Field, 2005; Yang et al., 2014) and
machine learning methods. Third, abundant remote sensing data
can be used to derive quantitative representations of physical and
ecological processes related to forest disturbances (Figure 2).
Currently terrestrial ecosystem models typically have very few
representations of forest disturbances developed from limited
field or experimental data for deriving the processes. With large
spatial-temporal coverage, remote sensing data can summarize the
general principles of the physical processes and thus improve the
modeling capability of forest disturbance and the following recovery
in DGVMs. For example, moderate-resolution (30 m) forest cover
maps developed from Landsat data have been utilized to derive
forest fragmentation metrics and analyze the fragmentation
dynamics across the tropics (Taubert et al., 2018; Fischer et al.,
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2021). These results were further used to optimize the fragmentation
model FRAG-B for simulating future patterns of tropical moist
forests under different scenarios (Fischer et al., 2021).

Oil palm plantation is a typical example of deforestation and
forest degradation in Southeast Asia (Vijay et al., 2016). Oil palm
modeling has been implemented in DGVMs to simulate the carbon
and climate impacts of land use change induced by oil palm
expansion (Fan et al., 2015; Xu et al., 2021). For example, Xu
et al. (2021) introduced an oil palm module in ORCHIDEE with
specific morphology, phenology, and harvest processes for oil palm.
They utilized 100 m global oil palm plantation maps developed from
moderate-resolution (25 m) PALSAR observations to generate PFT
forcing data integrating oil palm distribution. Satellite-observed
GPP values were also used in model calibration due to the lack
of site observations (Xu et al., 2021). Fan et al. (2019) reconciled a
canopy interception scheme of oil palm into the Community Land
Model. They found 18%–27% higher transpiration and 15%–20%
higher evapotranspiration in oil palm plantations than in tropical
forests. By monitoring oil palm plantations at higher spatial
resolution (e.g., 10 m), it is possible to improve the simulation
results by distinguishing industrial and small-holder oil palm
plantations with different biophysical impacts (Meijide et al.,
2017). The availability of high-resolution remote sensing
products will thus improve our scientific understanding and
modeling capability of tropical moist forest disturbances.

However, applying medium- and high-resolution (e.g., 30 m)
remote sensing data for applications in coarse-resolution (typically
0.5°) DGVMs is challenging due to the mismatch in spatial
resolutions and lack of sub-grid processes. Representing physical
processes of small-scale disturbances in these models may lose
substantial spatial details. One common solution is to resample

the remote sensing data to the resolution of DGVMs. Yet, a lot of
information from remote sensing data is lost. Another potential
reason is the lack of sub-grid processes like forest demography
representation in these models (Yue et al., 2018). Have proposed
adding sub-grid variables and processes for estimating forest age
cohorts to simulate net and gross land use change in a DGVM
(ORCHIDEE). Therefore, it is necessary to address how to upscale
variables and mechanisms derived from remote sensing data for
applications in DGVMs. More work is needed to integrate sub-grid
information in modeling small-scale forest disturbances such as
degradation from forest fragmentation.

4 Perspectives of future research

Forest disturbance monitoring in the tropics can be improved in
several aspects with the development of remote sensing. Near real-
time monitoring can speed up the detection of forest disturbances
and is now promising through the integration of multi-source time
series data or VHR imagery. For example, the fusion of optical and
SAR data from Landsat, Sentinel-2, and Sentinel-1 data has been
found to be fast and effective in capturing tree losses in Amazon
Basin (Tang et al., 2023). With a revisited time of 1-day, the VHR
imagery (3 m resolution) from the PlanetScope nano-satellite
constellation shows its capability to quickly identify forest
disturbance activites (Francini et al., 2020). Active fire detections
from the Visible Infrared Imaging Radiometer Suite (VIIRS) also
support near real-time tracking and attribution of fire activities in
the Amazon forests (Andela et al., 2022). Additionally, compared to
abrupt forest loss, monitoring gradual forest changes due to
degradation and recovery is still challenging due to their weak

FIGURE 2
Remote sensing data that support the development of major forest disturbance modules in DGVMs. Here PFT, GPP, and LAI refer to plant functional
type, gross primary productivity, and leaf area index, respectively. Each line represents a forest disturbance module developed in existing DGVMs. Each
square represents a certain variable with satellite-based products that have been adopted in disturbance modeling.
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spectral signals (Gao et al., 2020). Spectral unmixing analysis with
dense time series Landsat data has the capability to detect subtle
forest changes from degradation in tropical rainforests in Rondonia,
Brazil (Bullock et al., 2020b). More efforts should be made to
develop suitable methods to accurately quantifying degradation
extent at a large spatial scale. Monitoring forest disturbances with
state-of-the-art datasets and methods can support the development
of early warning systems for future research and decision-making.

Future work on developing satellite data products and
physical processes is also critical to improve the modeling
capability of tropical forest disturbances and enhance our
understanding of the related mechanisms. Classification of
forest disturbance agents at a large spatiotemporal scale is a
prerequisite for developing disturbance models and quantifying
ecological impacts. Though existing work has elaborated on
classifying drivers of tree cover loss across the pantropical
regions (Curtis et al., 2018; Laso Bayas et al., 2022), types and
distributions of degradation drivers remain unknown.
Continuous development of additional forcing data for
contemporary and historical periods will also benefit
disturbance modeling in DGVMs. Integrating NSC-related
processes in DGVMs, such as species-based carbon allocation
strategies and interactions between NSC, mortality and drought,
may help address whether plants die of carbon starvation or
hydraulic failure and support future projection of forest
resilience under disturbances (Fatichi et al., 2019).
Development of these processes also requires more field
observations to understand their seasonal variations and
unravel the underlying mechanisms of NSC. Moreover,
although the compound disturbances may become more
prevalent under climate change, explicit modeling of
compound disturbances and forest degradation processes are
still lacking in existing DGVMs.

Climate change has significantly altered the spatiotemporal
patterns of extreme climatic events, affecting forest disturbances
in the tropics. In recent decades, increasing frequency, severity, and
duration of fire weather and drought have led to substantial carbon
emissions in tropical moist forests (Dai, 2013; Jones et al., 2022). On
the other hand, increasing atmospheric CO2 may promote
vegetation regrowth and forest recovery in the tropics
(i.e., fertilization effects) via increases in water-use efficiency or
biomass production, and contribute to carbon uptakes (Walker
et al., 2021). Forests also respond divergently to extreme climatic
events and fertilization effects as they differ in tree functional traits
and species compositions (Anderegg et al., 2020). Tropical forest
degradation has induced non-negligible biogeochemical and
biophysical feedbacks on climate (Li et al., 2015; Liu et al., 2019;
Zhu et al., 2023). Thus, future impacts of climate change and natural
disturbances on tropical moist forests are still uncertain and should
be further explored.

Moreover, anthropogenic disturbances in tropical moist
forests are mainly driven by socioeconomic conditions and
forest management policies (Rudel, 2013; Archibald, 2016;
Zubkova et al., 2019). Combined with climate warming,
human-induced deforestation (e.g., intensive agriculture,
industrial logging) will severely degrade the tropical moist
forests and reduce the resilience of vegetation and biodiversity
in the future (Gardner et al., 2009; Asner et al., 2010b; Lewis et al.,

2015). Over 2001–2018, such disturbances have led to more
fragmented landscapes in tropical moist forests, with higher
accessibility for further resource extraction (Hansen et al.,
2020). Additional deforestation will severely increase the total
number of forest fragments by 2050 (Taubert et al., 2018). Under
a low mitigation scenario, burned area in Amazon forests is also
likely to increase by 4–28 times by 2,100 (Le Page et al., 2017).
Preventing new deforestation in Amazonia could reduce fire
emissions by 36%–58% and avoid escaped fires into protected
forests (Brando et al., 2020). Nevertheless, forest restoration and
protection have the capability to mitigate these consequences and
accelerate the carbon recovery in the tropics (Philipson et al.,
2020; Koch and Kaplan, 2022). Social-economic development
scenarios should also be incorporated in future research to
understand human-climate interactions and their impacts on
forest disturbances.
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