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ABSTRACT The gut microbiota plays a crucial role in health and is significantly 
modulated by human diets. In addition to Western diets which are rich in proteins, 
high-protein diets are used for specific populations or indications, mainly weight loss. 
In this study, we investigated the effect of protein supplementation on Bacteroides 
caccae, a Gram-negative gut symbiont. The supplementation with whey proteins led to 
a significant increase in growth rate, final biomass, and short-chain fatty acids produc
tion. A comprehensive genomic analysis revealed that B. caccae possesses a set of 
156 proteases with putative intracellular and extracellular localization and allowed to 
identify amino acid transporters and metabolic pathways. We developed a fully curated 
genome-scale metabolic model of B. caccae that incorporated its proteolytic activity and 
simulated its growth and production of fermentation-related metabolites in response 
to the different growth media. We validated the model by comparing the predicted 
phenotype to experimental data. The model accurately predicted B. caccae’s growth and 
metabolite production (R2 = 0.92 for the training set and R2 = 0.89 for the validation set). 
We found that accounting for both ATP consumption related to proteolysis, and whey 
protein accessibility is necessary for accurate predictions of metabolites production. 
These results provide insights into B. caccae’s adaptation to a high-protein diet and its 
ability to utilize proteins as a source of nutrition. The proposed model provides a useful 
tool for understanding the feeding mechanism of B. caccae in the gut microbiome.

IMPORTANCE Microbial proteolysis is understudied despite the availability of dietary 
proteins for the gut microbiota. Here, the proteolytic potential of the gut symbiont 
Bacteroides caccae was analyzed for the first time using pan-genomics. This sketches 
a well-equipped bacteria for protein breakdown, capable of producing 156 different 
proteases with a broad spectrum of cleavage targets. This functional potential was 
confirmed by the enhancement of growth and metabolic activities at high protein levels. 
Proteolysis was included in a B. caccae metabolic model which was fitted with the 
experiments and validated on external data. This model pinpoints the links between 
protein availability and short-chain fatty acids production, and the importance for B. 
caccae to gain access to glutamate and asparagine to promote growth. This integrated 
approach can be generalized to other symbionts and upscaled to complex microbiota to 
get insights into the ecological impact of proteins on the gut microbiota.

KEYWORDS microbiota, flux balance analysis, proteolysis, proteases, metabolic 
modeling, holobiont

T he gut microbiota, i.e., the complex microbial community living within the intestinal 
tract in symbiosis with its host, is now recognized as an essential contributor to 

human health and well-being. High throughput omics data have increasingly revealed 
mechanisms of interaction between the human host and its commensal microbes (1). 
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The microbiota degrades food residues and produces many metabolites and compounds 
that are uptaken by the host, such as short-chain fatty acids (SCFAs), amino acids, 
and essential vitamins (2). The microbiota is also involved in regulation mechanisms at 
the whole-body scale, such as immune system maturation, intestinal mucosa turnover, 
or the production of neurotransmitters (3, 4). It is well established that the host diet is 
one of the important factors that shape the microbiota composition and function, which 
impacts the interactions with the host (5, 6).

In Western countries, the last decades have been characterized by an increase in 
dietary protein consumption. Compared to current dietary recommendations (7), the 
Western diet contains higher levels of fat and proteins and a lower level of fiber (8). 
It is associated with metabolic disorders such as obesity, type 2 diabetes, and liver 
diseases (9). Dietary proteins undergo processing in the upper gastrointestinal (GI) tract 
through the action of proteases and peptidases that are secreted by the human stomach 
and small intestine. This process leads to the formation of peptides and amino acids, 
which are primarily absorbed in the small intestine. Nevertheless, in a normal diet, up 
to 10% of the dietary proteins reach the large intestine, where the microbiota can break 
them down (10). Nowadays, some diets tend to increase the proportion of proteins 
in the colon. High-protein diets (HPDs) are recommended for athletes to favor muscle 
regeneration, for elderly people in an attempt to limit sarcopenia (11, 12)and for obese 
patients and the general population, as an alternative to calorie restriction for weight 
loss (13). In addition, as plant proteins are less digestible than animal proteins (14), 
the trend to re-vegetate diets to limit the drawbacks and environmental impact of 
Western diets could also result in higher protein levels in the colon. This leads to an 
expansion of the nutritional niche for proteolytic microorganisms, such as the Bacteroides 
species (5). Of note, increased fecal proteolytic activity is associated with several diseases 
such as inflammatory bowel diseases (15, 16). Bacterial protein degradation through 
proteolysis ultimately results in amino acids that can be used to synthesize new proteins 
or various metabolites such as short-chain fatty acids (SCFAs) or branched-chain fatty 
acids (BCFAs) which can be energy sources for enterocytes (17) but which are also 
considered as mediators targeting the host. A number of other amino acid -derived 
microbial metabolites were also identified as mediators of the microbiota-host cross-talk 
with positive or detrimental effects (18).

In the last decade, several mathematical methods were developed to study 
the bacterial metabolism in various environments (19). Among them, genome-scale 
metabolic reconstructions (GENREs) were based on the core metabolism of whole 
genomes and generated using the annotated genome of given microorganisms (20–
22). Semi-automatic reconstruction allowed the generation of hundreds of GENREs (23), 
especially among the gut microbiota species (24). On top of GENREs, metabolic fluxes 
can be predicted across the metabolic network using constraint-based models; the most 
used one being flux balance analysis (FBA). FBA estimates a flux distribution giving the 
maximum possible growth rate achievable by a microorganism on defined media usually 
composed of simple sugars, amino acids, and minerals. However, protein breakdown is 
not included in constraint-based models, in which dietary proteins are represented by 
free amino acids.

In this work, we investigated whether proteolysis affected both the growth and 
metabolism of Bacteroides caccae ATCC 43185, a Gram-negative gut symbiont from the 
abundant Bacteroidaceae family, and how to plug this enzymatic process in a curated 
genome-scale metabolic model that integrated a comprehensive analysis of the species 
genomes and experimental results. For these purposes, we performed growth experi
ments with and without whey protein supplementation, analyzed in silico the proteolytic 
potential of 47 B. caccae strains, and designed proteolytic modules that were plugged 
in a B. caccae curated metabolic model. We finally used a dynamic flux balance analysis 
(dFBA) algorithm including several metabolite intake regulations, fitted, and validated 
on independent data sets, to investigate the dynamic effects of extracellular protein 
availability on B. caccae metabolism.
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RESULTS

Whey protein supplementation enhanced B. caccae metabolism

To investigate the ability of B. caccae ATCC 43185 to metabolize proteins, we used a 
semi-defined medium called Glucose-Limited Medium (GLM) developed by Jaoui et al. 
(25), which was supplemented by 2 or 20 g L−1 of whey protein leading to the P2 and 
P20 media, respectively. Note that for technical reasons, we filtered the media leading to 
a slight decrease of protein concentrations (M&M). The growth kinetics of B. caccae, the 
consumption of carbon sources and proteins, and the production of acetate, propionate, 
and succinate were monitored in the three media at different time points during 24 h of 
incubation at 37°C in anaerobiosis (Fig. 1).

Whey proteins increased the bacterial growth rate by 23.2% (±3.9%) both in P2 and 
P20 compared to the GLM (Fig. 1A). The final biomass also increased but differently in 
P2 and P20 with significant differences between the three growth conditions after 7 h of 
incubation and beyond (P value < 0.05, one-way ANOVA on ranks). The final biomass was 
higher in P2 and P20 compared to GLM (P value = 3·10−5, t test) and significantly higher in 
P20 than in P2 (P value = 1·10−3, t test).

The concentrations of several metabolites were measured during the 24 h of growth 
to investigate the impact of the protein supplementation on the strain metabolism. As 
expected, the initial glucose concentration was similar in the three media, while the 
lactose concentration slightly varied with the whey protein supplementation (M&M). 
However, glucose remained the main sugar in the media (5.13 ± 0.5 g L−1 of glucose vs 
0.36 ± 0.005 g L−1 of lactose in P20 medium). At 24 h, the glucose was not limiting in GLM 
and P2, while it was fully consumed in P20 (Fig. 1C). The consumption rate of proteins 
was similar in the three media although slightly increased in P20 compared to GLM (Fig. 
1B). The measures of free amino acids at 0, 6, and 12 h of growth revealed an increase in 
glutamate, glycine, alanine, proline, and valine overtime in P2 and P20 compared to GLM 
and an upward trend for alanine, arginine, histidine, isoleucine, leucine, and lysine (Table 
S1). These observations corroborated that whey proteins were indeed catabolized and 
contributed to the changes in amino acids concentrations. The aspartate and cysteine 
were slightly more consumed in P2 and P20 than in GLM and cysteine was almost fully 
consumed in P20 (96.4% consumed compared to 87.5% in P2 and 71.4% in GLM).

In P20, the production of acetate, propionate, and succinate increased: 57.9% for 
acetate, 62% for succinate (P value < 10−3 for each, t test) and 55.9% for propionate (P 
value < 10−5, t test) compared to the values in GLM. In P2, the acetate and succinate 
productions also increased by 17.5% and 17.3% (P value ≤ 3·10−4, t test), respectively, 
while the amount of propionate decreased by 32.2% compared to GLM (P value < 0.05, t 
test) (Fig. 1D).

We evaluated the production and consumption fluxes (M&M) for each metabolite 
between two consecutive time points (Fig. 2). Overall, unlike final concentrations, the 
computed fluxes for production and consumption were mostly similar in the P2, P20, 
and GLM cultures with few differences concerning sugars consumption and lactate 
and propionate productions. No significant changes in protein consumption rates were 
observed in P2 and P20 compared to GLM despite enhanced protein availability (Fig. 
2F), unlike biomass production which was significantly increased in P20 (Fig. 2A). Lactose 
consumption flux was higher in P20 but not in P2 (P value = 2.6·10−4, t test, BH correction 
Fig. 2C), while glucose flux (Fig. 2B) was reduced in P2 (P value = 4·10−3, t test, BH 
correction) compared to GLM. Of note, the lactate fluxes in P2 and P20 were slightly 
lower than in GLM (P value ≤ 4·10−2, t test, BH correction). Finally, the flux of propionate 
production is significantly decreased in P2 compared to GLM (Fig. 2D, P value = 1.89·10−3, 
t test, BH correction), while acetate production fluxes are similar in all three media 
(Fig. 2E). Altogether, these observations suggested that the differences observed in final 
metabolites concentrations between GLM, P2, and P20 (Fig. 1) were mostly due to an 
increased growth rate on protein-enriched media, rather than important changes in 
per-capita fluxes.
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Genome analysis for protein and amino acids metabolism

Proteases

We retrieved 156 putative non-redundant proteases from a thorough analysis of the 
B. caccae ATCC 43185 reference genome (Table S2). Fifty-one of these putative protea
ses presented a signal peptide suggesting an extracellular localization either in the 
periplasm or outside the bacterial cell. The proteases can be classified in clans accord
ing to their catalytic sites and each clan can be subdivided into families based on 

FIG 1 B. caccae growth in GLM without and with whey protein supplementation. (A) Growth curve of B. caccae ATCC 43185 in the GLM, P2 and P20 during 24 h of 

incubation at 37°C in anaerobiosis. (B) Total protein concentrations in culture supernatants at the time of inoculation (T0) and after 6, 12, and 24 h of incubation. 

(C) The percentage of D-glucose and D-lactose remaining in each medium at 24 h after inoculation relative to the initial value at T0. (D) The concentrations of 

acetate, propionate, and succinate at 0, 6, 12, and 24 h. Each value is the mean ± SD from three independent experiments. For each time point, a Kruskal-Wallis 

test was performed to compare the concentrations of each metabolite across the three media. *, P value < 0.05.
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the similarity of amino acid sequences (26). The ATCC 43185 proteases were mainly 
serine-proteases (54 proteases belonging to 15 families), metalloproteases (51 proteases 
distributed in 20 families), and cysteine proteases (44 proteases grouped in 11 families) 
(Fig. 3A). The four aspartate proteases grouped in a unique family, only one threonine 
protease was found and two putative proteases belonged to the unknown category. 
Among these 156 putative proteases, 48.7% (77) were unassigned meaning that no 

FIG 2 Flux differences between GLM, P2, and P20. (A) Biomass. (B) Glucose flux. (C) Lactate flux. (D) Propionate flux. The mean fluxes (plain lines) between two 

time points (0–6, 6–12, and 12–24 h) were calculated from the metabolite concentrations measured in three independent experiments for each medium. The 

estimated fluxes (dotted lines) were produced using a mixed model (M&M). Significant differences after multiple test corrections correspond to an FDR < 0.05. 

Positive and negative fluxes indicated metabolite production and consumption, respectively. Blue, GLM; orange, P2; and green, P20. The error bars represent the 

SD.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00153-24 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

9 
A

pr
il 

20
24

 b
y 

14
7.

10
0.

17
9.

23
3.

https://doi.org/10.1128/msystems.00153-24


holotype was identified and 16% (25) were considered as non-peptidase homologs as 
one or more of the expected catalytic residues were lacking.

To elucidate the functional implications of proteases identified in the B. caccae 
genome, we devised a classification scheme based on the well-established MEROPS 
protease database (27) (Fig. 3B). Each identified protease was linked to its corresponding 
family within the database. From this approach, we distilled seven broad functional 
categories that provided a framework for understanding protease roles within the 
bacterium. The categories included Nutrition, Protein Turnover, Bacteriocin, Cell Wall, 
Protein Activation, Metabolism, and Antibiotic Resistance, and an “Unknown” category 
for proteases with unclear function. Besides the group of proteases of unknown function, 
the most represented categories in B. caccae were (i) the protein turnover possibly 
involved in quality control through the degradation of intracellular, misfolded, and 
regulated proteins with 30 proteins and (ii) the nutrition which included 31 proteins 
likely to be involved in bacterial feeding. Then four functional categories were less 
represented with 16 cysteine proteases grouped in the bacteriocin and bacteriocin-
processing category grouping proteases that inhibit the growth or the extracellular 
bacteriocins from other bacteria, 13 were in the cell wall category comprising proteases 
involved in the metabolism of cell walls, 10 belonged to the protein activation category 
which remove the initiating methionine of proteins, and 8 assigned to the general 
metabolism group composed of various metabolic proteases. The antibiotic resistance 
cluster was the least represented with only two metalloproteases that may degrade 
antibiotics.

Thirty-one proteases were assigned to the nutrition category: 16 are metalloprotea
ses, 13 serine proteases and 2 cysteine proteases, respectively. A signal peptide was 
detected in 13 proteases and only one in the remaining 18 presented a transmembrane 

FIG 3 Features of the B. caccae ATCC 43185 proteases. (A) Distribution of the 156 predicted proteases within five clans: A, aspartate protease; C, cysteine 

protease; M, metalloprotease; S, serine protease; T, threonine protease; and U, unknown protease. (B) Functional categories for the 156 predicted proteases with 

clans displayed according to the figure color code. (C) Number of amino acid transporters, biosynthetic and degradative pathways identified with GAPSEQ and 

manually confirmed. P., protein and Ab. R, antibiotic resistance.
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domain. Altogether, these proteases present a diversity of substrates confirming that B. 
caccae is well-equipped for proteolysis (Table 1).

Amino acids

The amino acids transporters, biosynthesis, and degradation pathways were also 
searched in the B. caccae ATCC 11458 genome. At least one transporter was identified 
for 12 amino acids (Ala, Arg, Asp, Asn, Cys, Glu, Gln, Gly, His, Lys, Met, and Pro) (Fig. 3C). 
Biosynthesis pathways were detected for all amino acids except tyrosine. It is noteworthy 
that five and four biosynthesis pathways were identified for glutamate and glycine, 
respectively. The absence of transporter and biosynthesis pathway for tyrosine suggests 
that B. caccae obtains its supply via intracellular degradation of peptides.

The proteolytic activity of B. caccae is conserved within the species

In order to assess the conservation of genes coding for proteases between strains of this 
species, we established a species pan-genome using 47 B. caccae genomes downloa
ded from the NCBI database (28) (Table S3). These genomes represented 13,661 gene 
families. Based on our analysis, the core genome included 2636 (19.3%) gene families 
(present in at least 99% of the genomes), while the soft-core contained 135 genes 
(common to 95–99% of the genomes). The rest of the pan-genome is composed of 20.6% 
of shell genes (shared by 15–95% of the genomes), and 59.1% of cloud genes (shared 
by less than 15% of the genomes). According to our analysis, the pan-genome is open 

TABLE 1 Features of the proteases belonging to the nutrition category

Sub family Homolog Homolog origin Putative peptide substrates Localisation Pan-genome

M03.005 Peptidyl-dipeptidase Dcp Chitinophaga pinensis Tripeptides and longer EC Core
S46.002 Dipeptidyl-peptidase 11 Emericella nidulans Dipeptidyl-peptidase EC Core
S46.002 Dipeptidyl-peptidase 11 B. thetaiotaomicron Dipeptidyl-peptidase EC Core
S46.001 Dipeptidyl-peptidase 7 B. thetaiotaomicron Dipeptidyl-peptidase EC Core
C11.006 NaN B. thetaiotaomicron Unknown EC Cloud
C11.005 Thetapain Bacteroides fragilis Unknown EC Shell
S08.UPA Unassigned B. thetaiotaomicron Gly-Gly endopeptidase EC Cloud
S08.UPA Unassigned B. thetaiotaomicron Gly-Gly endopeptidase EC Core
S33.UPW Unassigned B. thetaiotaomicron Prolyl aminopeptidase EC Shell
M13.UPW Unassigned E. faecium Unknown EC Core
M23.UPB Unassigned B. thetaiotaomicron Unknown EC Cloud
M23.UPB Unassigned B. thetaiotaomicron Unknown EC Cloud
M20.UNB Non-peptidase homolog B. thetaiotaomicron Tripeptides EC Cloud
M23.UPB Unassigned Polaromonas sp. JS666 Unknown M Shell
M03.005 Peptidyl-dipeptidase Dcp B. thetaiotaomicron Tripeptides and longer IC Core
M20.003 Peptidase T B. thetaiotaomicron Tripeptides IC Core
M20.012 Pep581 peptidase B. thetaiotaomicron Dipeptides and longer IC Core
M20.012 Pep581 peptidase B. thetaiotaomicron Dipeptides and longer IC Core
S33.990 Haloalkane dehalogenase B. thetaiotaomicron Prolyl aminopeptidase IC Core
M20.016 Putative peptidase E. faecium Dipeptides IC Core
S33.UNE Non-peptidase homolog S. viridis Prolyl aminopeptidase IC Core
S15.UPW Unassigned B. thetaiotaomicron X-Pro dipeptidyl-peptidases IC Core
S15.UPW Unassigned B. thetaiotaomicron X-Pro dipeptidyl-peptidases IC Core
S33.UPW Unassigned Emericella nidulans Prolyl aminopeptidase IC Core
S33.UPW Unassigned Salinibacter ruber Prolyl aminopeptidase IC Core
S33.UPW Unassigned T. erythraeum Prolyl aminopeptidase IC Core
M20.UPD Unassigned O. anthropi Unknown IC Shell
M20.UPD Unassigned S. viridis Unknown IC Core
M20.UPF Unassigned S. viridis Unknown IC Core
M23.UPB Unassigned B. thetaiotaomicron Unknown IC Cloud
M23.UPB Unassigned B. thetaiotaomicron Unknown IC Core
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and the total gene repertoire could increase by adding newly sequenced genomes (Fig. 
S1). This pan-genome characterization allowed the assessment of the conservation of 
proteases: 56% (88) of the proteases belonged to the core genome (Table S2, column T) 
including 21 out of 31 proteases with a predicted role in nutrition (Table 1). Considering 
the conservation within the species strains of the proteases with a nutritional function, 
the design of a proteolytic reaction to be added in the B. caccae metabolic model was 
rational.

Refinement of B. caccae metabolic model

The B. caccae metabolic model retrieved from the AGORA database (23) included 730 
genes, 952 metabolites, and 1,225 reactions. We refined this model with the amino acids 
pathways and transporters detected in the ATCC 11453 genome; overall 35 reactions 
were added (Table S4). Briefly, the presence of uptake reaction for every amino acid 
present in the media was ensured and transporter types that were not considered in the 
AGORA model were added (M&M for details).

Standard FBA metabolic models consider the intracellular core metabolic network 
(29), i.e., well-characterized metabolic reactions involving well-annotated enzymes. 
Typical FBA frameworks do not consider proteins that are directly described as free 
amino acids (Fig. 4). The complexity and variability of proteolysis explain why it is 
not included in FBA. First, the proteases and peptidases are barely characterized for 
numerous microorganisms and the prediction of their functions and cleavage specifici-
ties are challenging. Second, modeling proteolysis as a succession of unitary reactions 
is arduous due to the diversity of protein substrates and of their degradation products. 
Third it is challenging to model the multiplicity of proteins in a diet.

FIG 4 Schematic diagram of the core metabolism included in the FBA metabolic model (right panels) and the upstream metabolism of complex compounds 

such as proteins which are most often not included (left panels). During proteolysis, the proteins are broken down into peptides and amino acids which are 

transported in the bacteria and become available for the core metabolism. In this work, proteolysis was modeled with two reactions (lower left panel), one 

degrading the whey proteins in amino acids and the other one degrading the other type of proteins present in the medium. The production of proteases is taken 

into account via ATP consumption. The resulting amino acids are entering the FBA core metabolism (right lower panel).
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We designed two proteolytic modules based on a pseudo chemical reaction (M&M, 
equation 3) summarizing the breakdown of proteins into extracellular amino acids, that 
we included in the B. caccae FBA model (Fig. 4), one modeling the degradation of whey 
proteins for the P2 and P20 media, and the second one for general proteins included in 
GLM, hence present in the three media. The stoichiometric coefficients of the reaction 
accounted for the amino acid composition of the proteins, and for the energetic cost of 
protease synthesis, sum up as an ATP cost (M&M).

To capture the dynamics of the metabolism in proteolytic conditions, we included the 
FBA model in a dFBA model, which allows for the simulation of time-dependent changes 
in the extracellular environment and in the metabolism of microorganisms (30, 31). The 
experimental results suggested that some metabolites were under specific regulation. 
We therefore added Monod or Comtois kinetics on glucose, protein, and lactose uptake 
in the dFBA simulation (M&M, equations 4 and 5): with these regulations, the simulations 
were consistent with the experiments.

The experimental data did not allow the identification of the phenomenon respon
sible for the entry in the stationary phase. We then added a multiplicative carrying 
capacity that depended on the whey protein level in the media at T0 (M&M, equation 
4), and that progressively took over the FBA biomass prediction when the population 
levels rose towards the carrying capacity. However, the dFBA model kept predicting the 
metabolite inputs and outputs independently to this carrying capacity. We limited the 
number of inferred parameters to 5 to avoid over-fitting (list in M&M). GLM and P20 
experimental data were used as training sets to calibrate the model through parameter 
inference, while P2 was used as a validating data set.

The experimental data did not allow the identification of the phenomenon respon
sible for the entry in the stationary phase. We then added a multiplicative carrying 
capacity that depended on the whey protein level in the media at T0 (M&M, equation 
4), and that progressively took over the FBA biomass prediction when the population 
levels rose towards the carrying capacity. However, the dFBA model kept predicting the 
metabolite inputs and outputs independently to this carrying capacity. We limited the 
number of inferred parameters to 5 to avoid over-fitting (list in M&M). GLM and P20 
experimental data were used as training sets to calibrate the model through parameter 
inference, while P2 was used as a validating data set. To guarantee the highest level of 
accuracy and reliability in our metabolic modeling, we employed MEMOTE, a compre
hensive and standardized tool for metabolic model validation (32).

In the area of metabolite annotations, our model demonstrated a complete presence 
of annotations, achieving a 100% score. However, scores varied across different 
databases, culminating in a cumulative score of 55% (Fig. S5). This variation underscores 
the diverse nature of the databases and the challenges in aligning them. Regarding 
reaction annotations, our model continued to show its robustness, displaying a 100% 
presence of reaction annotations. The aggregate score across all databases reached 
57%. In addition, our model achieved a 100% in System Biology Ontology (SBO) Terms 
Annotation.Collectively, these metrics from the MEMOTE analysis resulted in an overall 
score of 84% for our model, which is in the range of the MEMOTE score of the AGORA2 
ATCC 43185 (83%), and outperforms the AGORA1 version (45%) (Fig. S5)

B. caccae model can accurately predict biomass production and metabolites 
dynamics

In the three media, the model predicted that glucose, lactose, proteins, and vari
ous amino acids were consumed, while propionate, acetate, succinate, formate, and 
putrescine were produced, thus correctly reproducing the global functioning of B. 
caccae.

To quantitatively assess the goodness of fit, we displayed the model prediction 
against their corresponding experimental values in the training and validation sets (Fig. 
5). In the training set, a good correspondence between model prediction and data were 
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observed (R2 = 0.93), validating the parameter inference. In the validation set, a similar 
accuracy was kept (R2 = 0.89), which validated the prediction capability of the model.

We next compared the simulated and experimental biomass production curves (Fig. 
6A). The model is able to properly predict B. caccae growth over 24 h in the three media 
as the predicted biomass is within biological variation for most time points (relative error 
of 4%, 8.7%, and 14% for the P20, GLM, and P2 media). Biomass prediction accuracy is 
slightly decreased at 24 h compared to 12 h. For the main produced metabolites (i.e., 
acetate and propionate), the concentrations are also better predicted at 12 h than at 
24 h (Fig. 6B and C). Acetate prediction is also more accurate than propionate for the 
P20 medium, while propionate is better predicted in GLM and P2. Overall, glucose and 
lactose consumption are well reflected in GLM and P20 (R2 > 0.92; 0.82) as well as the 
production of acetate and propionate (R2 > 0.93; 0.80). In P2, produced metabolites are 
also well predicted (acetate: R2 > 0.79 and propionate: R2 > 0.70) (Fig. S2).

Effect of the proteolytic modules and amino acids uptake

To assess the effect of the two proteolytic modules, we used dFBA simulation to compare 
the growth of B. caccae in four conditions with two (GLM and whey protein proteolytic 
modules), only one, or no proteolytic module in the P20 media. Note that the simula
tion with the two proteolytic modules corresponds to the P20 simulation, while the 
simulation with only GLM protein module corresponds to the GLM simulation. In the four 
conditions, the growth curves were similar, but the presence of the whey protein module 
was necessary to achieve the correct prediction of acetate and propionate production 

FIG 5 Goodness of fit of the model. Goodness of fit for the GLM and P20 media (left panel) and P2 medium (right panel), pooling six observed concentrations, 

i.e., biomass, glucose, lactose, propionate, acetate, and succinate. Each panel includes two subplots. The top subplot displays the experimental values versus 

the corresponding predicted values computed with the model in log-log scale, together with the bisector (red line). The whole data set is pooled in this graph 

(time point and data fields). The corresponding coefficient of determination R2 is indicated (top). The bottom subplot displays for each model prediction the 

corresponding relative residual error, and the horizontal red dotted lines represent a 10% error: a large majority of points are kept in the range of ±10% error.
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(Fig. S3), indicating that the whey protein amino acid content is key to activate these 
metabolic pathways.

To dig into the impact of amino acids on the growth, an in silico experiment was also 
conducted by limiting the uptake of individual or pairs of amino acids in the P20 model. 
Glutamate and asparagine were found to have the greatest impact on growth when 
access to these compounds was reduced, resulting in limited growth of B. caccae (Fig. S4).

DISCUSSION

High-protein diets have become more frequent over the last 50 years in industrialized 
countries with recourse to the Western diet and the use of protein-enriched diets for 
specific indications or populations such as athletes or elderlies. Few studies showed a 
significant impact of high amounts of dietary proteins on the gut microbiota of adults 
(5, 33), but most of the reports on the effect of high amounts of whey proteins con
cerned infants showing that these proteins favored the development of Bifidobacterium 
and Lactobacillus genera (34–36). An in vitro study using stools from healthy 1–3 years 
old infants reported a significant increase in Bacteroides, Proteobacteria, and Streptococ
cus relative abundances and a rise in SCFA production (37). Using stools from normal-
weight and obese individuals, Sanchez-Moya et al. (38) observed in vitro stimulation 
of Bifidobacterium and Lactobacillus growth and an enhanced SCFA production which 
could suggest an improvement of intestinal health. In adult mice, a protein supplemen
tation resulted in an increased abundance of Akkermansia muciniphila and Bacteroides 
uniformis, two bacteria from the intestinal microbiota (39). Our experiments showed that 
the growth B. caccae, another intestinal microbiota member, increased with whey protein 
supplementation (i.e., in the P2 and P20 media compared to GLM). This in turn increased 
the metabolites consumption and production but had a limited impact on the per-capita 
metabolic fluxes.

The genome analysis revealed that B. caccae has an arsenal of 156 proteases including 
31 potentially involved in nutrient purposes. Among these 31 proteases, 21 belonged 
to the core genome and are likely to be conserved in this species. In terms of protease 
content, Bacteroides thetaioatomicron genome was the closest to B. caccae with 98% of 
shared proteases while on average, other Bacteroides species genomes shared 81% of 
their protease content with B. caccae. We noted that the proteases involved in nutri
tion appeared to be the most variable within this genus, possibly reflecting different 
specificities and limiting competition for substrates. The proteases of the intestinal 
microbiota are still poorly characterized and the substrates and functional role of a 
protease are hardly predictable in silico. In B. caccae, 53% (16) of the proteases assigned 

FIG 6 B. caccae dynamic flux balance analysis simulation in GLM, P2, and P20 in silico media. (A) B. caccae growth curve over 24 h in g·L−1. (B) Acetate 

concentration fate over 24 h (mM). (C) Propionate concentration fate over 24 h (mM). Values represented are mean ± SD from three independent experiments per 

medium (scatter plot) and model outputs (lines). Biomass concentration was converted from OD to g·L−1 to be compared to simulation results. Simulations were 

performed using the dFBA function of the CobraToolBox package.
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to the protein turnover and 42% (13) of the proteases involved in bacterial feeding 
exhibited a signal peptide confirming that this bacterium actively degrades extracellu
lar and periplasmic proteins prior to the internalization and subsequent catabolism of 
peptides or amino acids. This is consistent with the need to include a Contois kinetics in 
the model. This kinetic is indeed known to model the need for bacteria to be close or 
even attached to the substrate as well as the intracellular degradation (40).

We modeled the use of dietary proteins through proteolytic modules mimicking the 
degradation of proteins into free amino acids and the ATP cost associated with the 
biosynthesis of proteases. For the purpose of this study, we used two modules, the first 
one reflecting the proteolysis of proteins present in the three media (bactopeptone 
and meat extract) and the second one accounting for the proteolysis of whey protein. 
These modules were added to a metabolic model of B. caccae together with the amino 
acid transporters identified through genome mining. The model was inserted in a dFBA 
framework supplemented by dynamical regulations of the uptake of certain metabo
lites identified after an analysis of the flux dynamics. Finally, the model was calibrated 
and validated on independent data sets. Despite the simplified representation of the 
proteolytic activity, the resulting metabolic model accurately predicted the growth and 
the metabolites fate in the P2 validation set, unseen during fitting. Knocking out one 
or two proteolytic modules led to a less accurate prediction of acetate and propionate 
production while not affecting the growth prediction.

This study shows that ATP consumption associated with protease production is an 
important feature of the proteolytic model as it allowed a better fit with the experimen
tal protein consumption and acetate, propionate and biomass productions. Without 
ATP consumption, the acetate and propionate productions exceeded the quantities 
measured experimentally by 30% (R2, 0.84–0.89) and 20% (R2, 0.8 to −0.24) in P20 and 
50% for propionate in P2. Protein consumption was also too high without this ATP 
cost and a slight increase in predicted biomass production was observed during the 
exponential phase, suggesting the logistic regulation applied to the biomass reaction 
marginally affected the growth at low biomass levels. Overall, protease production (and 
therefore proteolysis) being inherently associated with ATP consumption, we established 
here that including this energy cost was necessary in the modeling of proteolysis to 
obtain an accurate metabolic prediction.

Regarding amino acids, glutamate and asparagine have been identified as having 
the largest impact on the growth model of B. caccae in P20. Glutamate is involved in 
the tricarboxylic acid (TCA) cycle, a central metabolic pathway for energy production 
(41). It can be converted to α-ketoglutarate, an intermediate in the TCA cycle. Limiting 
glutamate availability may affect the TCA cycle and the overall energy metabolism, 
thereby reducing the growth rate. Although asparagine is not directly involved in the 
TCA cycle, it can be converted to aspartate through the action of asparaginase. Aspartate 
can then be converted to oxaloacetate, another TCA cycle intermediate, by the aspartate 
aminotransferase enzyme. This reaction connects asparagine metabolism to the TCA 
cycle through the production of oxaloacetate, an essential TCA cycle component. In 
addition, asparagine and glutamate are precursors for the biosynthesis of other amino 
acids and secondary metabolites (18): asparagine can be converted to aspartate while 
glutamate is involved in the synthesis of glutamine, proline, and arginine. It is also 
possible that the glutamate catabolism leading into a variety of other amino acids and 
metabolites may make it particularly advantageous for the bacteria. Interestingly, the 
majority of amino acids can be either biosynthesized or catabolized by B. caccae (Fig. 
4). Thus, it is rational that most amino acids can be readily substituted for one another. 
These findings, based on our model, provide valuable insights into the importance of 
specific amino acids for the growth and metabolism of B. caccae.

Our understanding of the interactions between diets and the microbiota has greatly 
advanced in recent years. However, a knowledge gap still exists in characterizing the 
proteolytic mechanisms of a number of gut bacteria, including the prevalent Bacteroides 
species. Specifically, the exact roles of proteases, including their substrate preferences 
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and functional contributions, remain largely elusive. Interestingly, a contrasting degree 
of knowledge can be observed when we look at dietary fiber degradation in the human 
gut microbiota, where the function of glycoside hydrolases (GH) has been extensively 
studied and characterized (42). The substrate specificity and roles of these GH enzymes 
in fiber degradation are well-defined, providing a solid baseline to generate predictive 
models for understanding bacterial interactions with dietary fibers (43, 44). The lack 
of knowledge about proteases is a major obstacle to the development of accurate 
predictive models of bacterial proteolytic activity.

Our study took a step toward addressing this need, offering new insights into B. 
caccae’s proteolytic activity by demonstrating the growth and metabolite production 
prediction ability of our proteolytic model. The pan-genome analysis highlights the 
conservation of proteases across different strains of B. caccae and suggests the potential 
for our model to be generalized across this species. In addition, the conservation of 
proteases in other Bacteroides such as Bacteroides thetaiotaomicron opens the possibility 
of extending our model to other Bacteroides species. In the future, this proteolytic model 
could be applied to predict proteolytic activity in a range of bacterial species ultimately 
contributing to the development of more complete community models accurately 
representing the proteolytic functions within complex microbial ecosystems.

Conclusion

Our study showed that the presence of whey protein improved the growth and 
production of fatty acids of B. caccae, a gut commensal bacterium. Coupling experi
ments, genome mining, and modeling provided valuable insights into the proteolysis 
pathway and nutritional requirements of B. caccae, which can deepen our understanding 
of the role of proteolysis in bacterial physiology and ecology. The mathematical model 
developed to predict B. caccae growth on whey proteins demonstrated good agreement 
with experimental data and can be easily generalized to other gut bacteria. Overall, this 
study highlights the importance of considering dietary proteins as a potential driver of 
the microbial populations in the gut.

MATERIALS AND METHODS

Strain and culture conditions

B. caccae ATCC 43185 also known as DSM 19024 was grown in Glucose Limited Medium 
[GLM; (25)] containing: D-glucose 5 g L−1, bactopeptone 5 g L−1, meat extract 5 g L−1, 
sodium pyruvate 1 g L−1, sodium succinate 1 g L−1, CaCl2 0.01 g L−1, KH2PO4 0.04 g L−1, 
K2HPO4 0.04 g L−1, NaCl 0.08 g L−1, tween 80 0.1% (vol/vol), ZnSO4 7H2O, 0.02 g L−1, 
NaHCO3 0.4 g L−1, L-cysteine HCl 0.5 g L−1, phylloquinone 1·10−6 g L−1, thiamine 5·10−5 g 
L−1, riboflavin 5·10−5 g L−1, biotine 2·10−5 g L−1, and hemin 0.005 g L−1. The P2 and P20 
media were GLM supplemented with 2 and 20 g L−1 of Prolacta 95, respectively (Lactalis 
ingredients, Bourgbarré, Fr). Although glucose remained the main sugar in all media, a 
small amount of lactose was detected in GLM and slightly increased with Prolacta 95 
supplementation as follows: GLM 0.16 ± 0.006 g L−1, P2 0.19 ± 0 g L−1, and P20 0.36 
± 0.006 g L−1. To avoid the opaque white medium obtained after autoclaving P20, the 
three media were filtered (0.22 µM). This step modified the final protein concentration 
as follows: GLM: 7.28 ± 0.2 g L−1, P2: 8.51 ± 0.38 g L−1, and P20: 21.87 ± 0.9 g L−1. After 
inoculation, the cultures were incubated at 37°C in a cabinet (Jacomex, Dagneux, Fr) 
under anaerobiosis (BIO300: CO2 5%, H2 5% N2 90%, Air Liquide, Les-Loges-en-Josas, Fr). 
Precultures in either GLM, P2 or P20, were inoculated from a fresh colony, incubated 
overnight and used to inoculate the cultures used for the growth kinetics. The bacterial 
growth was monitored over time through optical density measured at 600 nanometers 
(nm). Culture samples were harvested at different time points, centrifuged at 8,000 rpm 
for 11 min at room temperature, the supernatants were then collected and stored at 
−20°C prior to metabolites quantification.
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Quantification of substrates and fermentation products

Glucose, lactose, SCFAs, BCFAs, and succinate concentrations were measured in culture 
supernatants (500 µL) using reverse-phase high-performance chromatography (HPLC) 
instrument (Alliance HPLC Waters, e2695W, Guyancourt, France). Acquisition of spectra 
and data analysis were performed using Empower 3 (Waters, Guyancourt, France). 
The amounts of whey proteins were measured using the Pierce BCA protein assay kit 
(Thermo Scientific, Rockford, IL, USA). Amino acids were quantified from filtered samples 
(0.22 µm) and diluted when required in Formic acid 1% for analysis by UHPLC-MS (UHPLC 
Ultimate 3000 and HR-MS-Q exactive, Thermo Scientific). UHPLC conditions: metabolites 
were separated on Hypersil Gold phenyl (Length = 15 mm, Internal diameter = 2.1 mm, 
and Particles size = 3 µm, Thermo Scientific). The pressure at the beginning of the 
gradient was 130 bar and the column temperature was 25°C. The flow was 0.25 mL min−1 

and the solvent was A, acetonitrile quality HPLC MS and B, water ultra-pure quality HPLC 
MS with nonafluoropentanoic acid (3 mM). The elution gradient was as follows: 4 min 
at 98% B + 2% A, then 98% to 2% B in A for 6 min, level at 2% B and 98% A for 3 min. 
The injection volume was 5 µL and the injector temperature was 7°C. The duration of 
one analysis was 14 min. Mass spectrometric detection was performed with a Hybrid 
Quadrupole-Orbitrap with a heated electrospray source HESI operated in the positive 
ionization mode. Full scans were acquired with a scan range of 3.7 scan/s and a mass 
range from 60 to 850 u.m.a. (unified atomic mass unit) or Dalton (Da) with a resolution of 
70,000. Data were identified and quantified using Trace Finder software according to the 
calibration solution.

Statistical analysis

A non-parametric Kruskal–Wallis test by ranks was used to assess the statistical 
significance of differences between measures. P value ≤ 0.05 was set up as the threshold 
of significant change.

Mixed models for metabolite flux prediction

To approximate metabolite flux in the data, for a metabolite m, a bacterial load b and 
two consecutive times t0 and t1, we computed the production rate r normalized by the 
bacterial load between t0 and t1 (defined as the mean of the bacterial loads at time t0 
and t1), with equation (1).

(1)rt0t1m = m t1 −m t0t1 − t0 b t0 + b t1
2

Bacterial OD measures were converted into biomass using a conversion coefficient of 
0.43, a value derived and validated through assessments involving the measurement of 
dry weight in triplicate.

Next, for each metabolite, we modeled the production rate in a mixed model 
framework as follows:

(2)rt, s, im ∼ Rtm + Dsm + εt, s, rm
where rmt, s, r is the observed production rate for metabolite m, time interval t ∈ `t0t6`, `t6t12`, `t12t24` , substrates s ∈ GLM, P2, P20  and replicate i ∈ 1,2, 3 . The 

terms Rmt and Dms are the fixed effects for the time intervals t and substrate s. 

The random term εmt, s, r represents normal zero-mean independent errors. To avoid 

identifiability issues, the fixed effect Dms was set to 0 for s = GLM. Next, we selected the 
metabolites with a significant estimate (fdr <0.05, t test, Benjamini Hochberg correction 
for multiple tests) of a fixed effect for substrate P2 and P20, indicating significant 
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difference between production rates in different substrates. The mixed model was 
inferred using the Python package statsmodels with the mixedlm function.

Genome analysis

B. caccae ATCC 43185 reference genome was downloaded from the NCBI database (28). 
The MEROPS database (27) and a tblastn following NCBI recommendations (45) using 
the default parameters were used on the B. caccae reference genome to identify putative 
proteases. Proteases with a percentage of identity >30%, an e-value <0.05, a bitscore >50, 
and a query coverage >75% were conserved in the data set. Enzymes corresponding 
to protease inhibitors were eliminated from the data set. SignalP V6 (46) and Phobius 
(47) were used to detect the presence of signal peptides; the obtained results with 
the methods were consistent. DeepTM HMM (48) as used to predict transmembrane 
proteins. All three prediction tools were used using default parameters. Transporters 
were identified using the metabolic pathway prediction tool box GAPSEQ (49) with 
default parameters. Further manual curation was performed using KEGG.

Pan-genomes

Forty-seven B. caccae genomes with less than 50 scaffolds allowing a coverage above 
50-fold were retrieved from the NCBI database (28) (Table S3). Genome assemblies were 
improved in order to reduce the number of contigs using Ragtag (50) and the reference 
genome ASM222261v2. All the genomes were annotated using Prokka (51) with the 
default setting. B. caccae pan-genome was created using the Roary pipeline (52) with 
the default setting. The level of conservation between the various B. caccae genomes of 
the ATCC 43185 protease genes was determined using tblastn (45) on the pan-genome 
sequences.

Modeling approach

Manual curation of the Seed model

The metabolic model for B. caccae [version AGORA 1.03 (23)] was sourced from the 
Virtual Human database (https://www.vmh.life/). The AGORA2 model was considered 
for performing the in silico experiments. However, certain aspects of its design proved 
incompatible with our experimental setup. A critical factor in this decision was the 
inclusion of a specific metabolite, KDO(2)-lipid IV(A), in the biomass reaction of AGORA2 
(53). This metabolite is a component of the endotoxin synthesis pathway and depends 
on the presence of the metabolite acgam[c] (N-acetyl-D-glucosamine), which is derived 
from mucin degradation. This makes mucin or acgam[c] availability mandatory for 
AGORA2 model’s growth. Conversely, the AGORA1 model, despite containing acgam[c] 
and pathways for mucin degradation, does not require these components for growth. As 
mucin or acgam[c] was not present in our experimental media, we chose the AGORA1 
model for our study.

In its initial form, the model incorporated 730 genes, 952 metabolites, and 1225 
reactions. For subsequent analyses, the model was exported in MAT format, enabling its 
compatibility with the COBRA toolbox (31). To improve model completeness, a rigorous 
manual curation process was performed. This curation primarily centered on amino acid 
metabolism. First, the model was assessed to ascertain the presence of uptake reactions 
for each amino acid and other nutrients available in our specified experimental media. 
Absent import reactions were supplemented accordingly. Second, both biosynthesis and 
degradation pathways of amino acids were rigorously checked using gapseq (49) for the 
identification of potential pathway gaps. Verification was subsequently performed using 
KEGG maps (54). Finally, additional transporters identified with gapseq were verified 
with literature-based evidence to make informed decisions on the types of transporters 
utilized for specific amino acids. All the missing transporters identified through this 
process were integrated into the model.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00153-2415

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 0

9 
A

pr
il 

20
24

 b
y 

14
7.

10
0.

17
9.

23
3.

https://www.zotero.org/google-docs/?DfnKOX
https://www.zotero.org/google-docs/?Q0lqoC
https://www.vmh.life/
https://doi.org/10.1128/msystems.00153-24


Calibration and validation of carbon source utilization predicted by the model were 
performed with experimental data. We ensured the model could generate the secreted 
products that had been detected during the biological experiments. The media used 
as input to perform flux balance analysis growth simulations were defined based on 
the media characteristics (Table S5). Manual curation comprised the addition of several 
exchange reactions and transporters (Table S4). Upper and lower bounds on exchange 
reactions were assigned based on experimental data retrieved from the lab experiments.

Proteolytic module design

Two proteolytic modules were developed for this study, according to the following 
generic equation:

(3)Protein + χATP→ i = 1

n Ri . AAi
In this equation (3), Ri is the amount of the ith amino acids (AA) in the list of the 

different amino acids present in the protein and χ corresponds to the equivalent-ATP 
energy cost of protease biosynthesis needed for proteolysis. The Ri were computed from 
the mean amino acids content of the proteins present in the media. The first module was 
designed to degrade whey protein, and the second module was designed to degrade the 
other proteins present in the culture medium.

The whey protein module was developed by considering the two main proteins 
present in whey protein, beta-lactoglobulin (β-LG) and alpha-lactalbumin (α-LA). Our 
hypothesis was that one unit of whey protein would produce a number of amino acids 
corresponding to the mean of the stoichiometric composition of β-LG and α-LA. To 
account for other proteins in the medium that were not part of the whey protein, a 
second proteolytic module was designed. The number of amino acids produced from the 
degradation of these proteins was determined based on the amino acid composition of 
the protein-containing elements in the medium, such as bactopeptone and meat extract.

To estimate the energy cost associated with the proteolytic reactions, we used the 
method described by Smith and Chapman (55) to calculate the ATP cost of synthesizing 
an enzyme based on its amino acid composition. We determined the average ATP cost 
for producing the 31 proteases involved in nutrition present in B. caccae by taking into 
account the amino acid composition of these enzymes and found 23 moles of ATP for 
one mole of protease.

MEMOTE analysis

To ensure the robustness and accuracy of our metabolic model, we employed MEMOTE, a 
comprehensive tool for metabolic model validation (32). This systematic analysis allowed 
us to identify areas for improvement and validate our model integrity.

We integrated metabolite and reaction annotations from all relevant databases 
used in the AGORA2 model into our model. This process was crucial for enhancing 
the annotation coverage and depth of our model. Additionally, we undertook manual 
corrections of certain annotations, guided by insights and recommendations derived 
from MEMOTE’s analysis.

Kinetic regulations

Kinetic regulations were added on glucose, protein, and lactose, based on the rough 
evaluation of metabolic fluxes made during the experiments (Fig. 2). First, we assumed a 
Monod kinetic for the glucose consumption which led to the following regulation:

(4)lowerboundi, t + 1 = max
metabolite i, t

biomass ∗ timeStep , lint ∗ metabolite i, tK + metabolite i, t
In equation (4), the lower bound of the metabolite i (here glucose) at a time point 

t + 1 is recalculated at each time point, [metabolite]i,t being the concentration of the 
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observed metabolite i at time point t and Κ is an estimated constant specific to the 
metabolite. The first factor in this formula is the classical lower bound for metabolic 
uptake in dFBA, the second one is the Monod kinetic.

A Contois kinetic was chosen for proteins and lactose consumption. This regulation is 
classical to model hydrolysis (56).

(5)lowerboundi, t + 1 = max
metabolite i, t

biomass ∗ timeStep , lint ∗ metabolite i, tK biomass t  +   metabolite i, t
This equation (5) is similar to the Monod’s equation (4), in which the estimated 

constant Κ is further modulated by the biomass concentration at the time point t.

Carrying capacities

A carrying capacity has been added to the growth model that represents the spe
cies population size limitation depending on environmental factors (here the initial 
concentration in whey protein) in the dFBA biomass (equation (7)) and used GLM as a 
growth baseline. Namely, we defined the carrying capacity as follows:

(6)carryingcapacity = TGLM + WP initial
HillCoefK + WP initial

HillCoef

(7)d Biomass tdt =  λ 1 − Biomass t
carrying capacity μFBA Biomass t

The carrying capacity is described by the sum of TGLM, the maximum GLM 
biomass concentration during the plateau phase, and a Hill equation on [WP], 
the initial concentration in whey protein, with Hill exponent Hillcoef and a param
eter K. Equation (7) models the biomass evolution with the global growth rate λ 1 − Biomass t

carrying capacity μFBA that can be decomposed as the FBA growth rate μFBA
computed according to the current nutritional environment, modulated by the logistic 

regulation λ 1 − Biomass t
carrying capacity  with parameters λ and carryingcapacity. This 

modulation allows for the dFBA to predict both the exponential and stationary phases.

In silico growth simulations

The COBRA Toolbox (31) (https://github.com/opencobra/cobratoolbox.git) was run on 
MATLAB 2018b (The MathWorks Inc., Natick, MA, USA) and used for FBA and dynami
cFBA simulation. A homemade MATLAB script was used for the dynamicFBA simulation 
to allow for the added regulations (i.e., Monod and Contois regulations) which are 
available on GitHub (https://github.com/apaulay/ProteolyticModule). This script is an 
adaptation of the dynamicFBA.m function from the CobraToolBox, augmented with a 
logistic regulation term linked to the biomass growth component.

Our approach integrated a semi-explicit Euler scheme for computing the evolution 
of biomass. Namely, the logistic regulation was made explicit, and an exact integration 
of the resultant linear ODE was applied to deduce the biomass at the subsequent time 
step. For the evolution of metabolite concentrations, we used a semi-implicit scheme. 
Here, metabolites with negative fluxes (indicative of consumption) were resolved using 
an implicit Euler scheme, while those with positive fluxes (indicating production) were 
calculated via an explicit Euler scheme. This semi-implicit approach ensures numeric 
positivity throughout the integration process, enabling the maintenance of a con
stant time step without instigating positivity issues. The biomass production rate was 
calculated using the exponential phase growth curve, and metabolite production rates 
were calculated on the first 12 h of growth.
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Model optimization

The model was calibrated from data following two independent steps. First the 
parameters of equations 4–6 were fitted with non-linear regression on the flux time-ser
ies for glucose, lactose and proteins (Fig. 2 and M&M section on flux prediction). Then, 
upper and lower bounds of the FBA model were fitted using least square inference 
with the dFBA simulations. Namely, setting θ the set of five parameters to be fitted 
(glycine upper bound, asparagine lower bound, a parameter common to the remaining 
amino acid upper and lower bounds, the logistic parameter λ in GLM and λ in P20), 
the parameters were inferred using the Matlab function fmincon, using the least-square 
observation function (equation 8).

(8)f θ = j ∈ optim
m θ j −mexp, j 2

σ exp, j2

where m(θ)j is the dFBA model output for the j-th time series for the parameter 
values θ, mexp, j is the corresponding observed time-serie in the data, and σexp, j its 
standard deviation for three replicates. The set optim is the set of observables on which 
the optimisation is made. We took:

(9)optim = biomass, acetate, propionate, glucose, lactose
a maximal number of 100,000 evaluations was set in fmincom parameters.
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