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LiDaR-based reference 
aboveground biomass maps  
for tropical forests of South asia 
and Central africa
Suraj Reddy Rodda et al.#

accurate mapping and monitoring of tropical forests aboveground biomass (aGB) is crucial 
to design effective carbon emission reduction strategies and improving our understanding 
of Earth’s carbon cycle. However, existing large-scale maps of tropical forest aGB generated 
through combinations of Earth Observation (EO) and forest inventory data show markedly 
divergent estimates, even after accounting for reported uncertainties. to address this, 
a network of high-quality reference data is needed to calibrate and validate mapping 
algorithms. This study aims to generate reference AGB datasets using field inventory plots 
and airborne LiDAR data for eight sites in Central Africa and five sites in South Asia, two 
regions largely underrepresented in global reference aGB datasets. the study provides 
access to these reference AGB maps, including uncertainty maps, at 100 m and 40 m spatial 
resolutions covering a total LiDAR footprint of 1,11,650 ha [ranging from 150 to 40,000 ha at 
site level]. these maps serve as calibration/validation datasets to improve the accuracy and 
reliability of aGB mapping for current and upcoming EO missions (viz., GEDI, BIOMaSS, and 
NISaR).

Background & Summary
Tropical forests play a vital role in the Earth’s carbon cycle and contribute largely to uncertainties in the global 
carbon budget1. Methods to accurately map and monitor tropical forest carbon – or aboveground biomass 
(AGB) – are thus urgently needed to improve Earth system models and to help design carbon emission mitiga-
tion strategies in the context of Reducing Emissions from Deforestation and forest Degradation (REDD+)2,3. In 
the last decade, spaceborne Earth Observation (EO) data in combination with forest inventory measurements 
have been extensively used to generate spatially continuous AGB maps at pan-tropical scale using different mod-
elling strategies3–6. However, existing broad-scale maps show divergent estimates among themselves and differ 
from field-derived forest AGB stocks at different spatial scales1,4,5,7, indicating the presence of high uncertainties 
in prediction maps. To improve the accuracy and reliability of AGB maps over the tropics, several ongoing and 
upcoming EO missions (NASA’s GEDI, ESA’s BIOMASS, NASA-ISRO’s NISAR and JAXA’s ALOS-4 missions, 
notably) have been specifically designed to collect satellite data sensitive to forest structure, hence to forest 
AGB6,8–10. While these new spaceborne datasets will undoubtedly revolutionise broad-scale forest AGB map-
ping, a network of high-quality reference data is needed to calibrate and validate the mapping algorithms11,12. 
Besides, using the same sets of reference data across different EO missions would vastly improve the compara-
bility and confidence in the derived AGB maps, enabling their use in a wide range of science, policy, and man-
agement applications13.

Generating reference AGB observations over a given area is challenging since forest AGB is not directly 
measured through destructive sampling, but instead estimated from tree inventories and a series of statisti-
cal models propagating substantial uncertainties5. It is therefore required to reduce as far as possible and 
quantify the uncertainty on reference AGB predictions. In this context, the Committee on Earth Observation 
Satellite (CEOS) has established a good practice protocol for generating reference AGB dataset, to facilitate the 
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production and warrant the consistency of next-generation biomass products14. The protocol suggests devel-
oping reference AGB maps over sizable areas using local forest sample plots and LiDAR data acquired using 
aerial platforms (hereafter airborne LiDAR). Airborne LiDAR data is currently the most informative data type 
for characterizing forest structure and deriving AGB maps at the landscape scale, provided they are adequately 
calibrated with respect to local environmental gradients and forest structural and species variability15. Besides, 
the high spatial resolution of airborne LiDAR data (or of derived AGB predictions) can easily be aggregated to 
coarser resolutions, thus bridging the scale gap between field data and the resolution of upcoming EO sensors 
(e.g. 100 m for NISAR, 200 m for BIOMASS).

The establishment and long-term maintenance of a network of reference forest AGB observatories across 
the tropics entails a myriad of challenges, particularly concerning the representativeness of the network12. 
Ideally, the network should be relatively evenly distributed in space and cover the main environmental gradi-
ents. While scientific discussions on site selection are on-going12, the Global Ecosystem Dynamics Investigation 
(GEDI) sensor on-board the International Space Station has already acquired data for a longer period than 
its initially projected lifetime. Data users would benefit from open-access reference AGB data, particularly in 
Asia where large geographic regions are not represented in the calibration/validation dataset of GEDI biomass 
mapping algorithm16,17. Besides the notion of spatial representativeness, hurdles related to the temporal mis-
match between reference AGB and EO data should not be neglected. Rapid growth in regenerating forests or 
forest clearing/degradation – which notably characterise rural landscapes around central African cities, where 
slash-and-burn agriculture induces relatively fast dynamics – could rapidly make tens of thousands of GEDI 
data shots unusable. We argue that airborne LiDAR data acquired during GEDI lifetime over rapidly changing 
landscapes are invaluable and should be utilized to improve GEDI biomass mapping algorithms, notably on the 
lower-end of the forest biomass gradient to best capture forest degradation and regeneration gradients.

In this context, we aim to generate reference biomass datasets over the tropics for eight sites in Central Africa 
and five sites in South Asia (Fig. 1) by calibrating airborne LiDAR data with locally established field plots. This 
paper briefly describes (1) the details of the study sites and the datasets used, (2) the methodology used to gener-
ate the reference AGB maps (Fig. 2), and (3) the Monte Carlo simulation workflow used to generate uncertainty 
maps along with each reference AGB map. Finally, this paper provides access to these reference AGB datasets 
generated at 100 m and 40 m spatial resolutions over airborne LiDAR footprints ranging from 100 to 40,000 ha.

Methods
Sampling sites and associated inventory and LiDaR datasets. We compiled co-located forest inven-
tory and LiDAR datasets from 13 sampling sites in Central Africa and South Asia encompassing an array of 
abiotic conditions, forest types and structures (Fig. 1; Tables 1 and 2). Forest inventories were carried out at each 
site, and LiDAR datasets were obtained with an absolute temporal difference of 2.2 ± 1.9 years (range: 0–6.2 years) 
from the field measurements.

Forest inventories were conducted by different teams but followed similar protocols. In each plot, the diam-
eter at breast height (DBH or referred to as D in this study, with D ≥ 10 cm) and the taxonomic identification of 
each tree were recorded. Tree relative coordinates within the plots were measured either at the individual or at 
the 20 × 20 m quadrat level. For a subsample of trees within the plots, tree height (H) was measured using a laser 

Fig. 1 (A) Overview map showing the locations of sampling sites (n = 13) used in the current study. Outlined 
regions are expanded in (B): South Asian region and in (C): Central African region). Sampling site names and 
descriptions associated with site numbers are provided in Table 1.
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rangefinder device. Finally, plot geographic coordinates were determined using points measured every 20 m 
along the plot borders using a combination of differential GPS measurement system and electronic total station 
(in Asia) or a regular GPS system (in Africa), to warrant an accurate link between ground and remote-sensing 
data. The complete inventory dataset includes information on D and H measurements for respectively 97,251 
and 13,303 trees, and identification rates of 89% at the species level and 92% at the genus level (8% of the trees 
were left unidentified). The number, size and layout of the inventory plots are uneven across sampling sites 
with, e.g., a single large 25-ha plot in the Forest-Geo “Rabi” site, a large 30-ha plot and smaller plots of 1-ha and 
0.48-ha in the “Khao Yai” site, or a varying number of scattered 1-ha plots (ranging from 2 to 16 in the “Atout” 
and “Achanakmar” site, respectively). In general, the inventoried extent per site is smaller in Africa (9 ± 8 hec-
tares) than in Asia (27 ± 13 hectares). For a breakdown of plot number, size, tree measurements and identifica-
tion rates per sampling site, please refer to Table 3.

The LiDAR data at each sampling site were acquired between 2012 and 2022 using either aircraft or 
unmanned aerial vehicles (UAV, Table 1).

Inventory data processing: computation of reference aGB predictions. Forest inventories were 
first split into 1-ha (i.e. 100 × 100 m) and 0.16-ha (i.e. 40 × 40 m) plots, using information on tree location 
recorded in the field (i.e. either individual tree location or quadrat number). The two plot sizes correspond to the 
two mapping resolutions considered in this study. The 40-m resolution was chosen to account for plots where 
individual tree locations were only recorded at 20 × 20 m quadrat-level. In cases where the original plot size was 
not a multiple of the desired output size (typically when splitting 100 × 100 m plots into 40 × 40 m plots), subplots 
of the desired outputs size were selected at the edges of the original plot, thus leaving-out parts of the original 
inventory dataset (20 m wide bands in the center as per the previous example). The resulting number of 1-ha and 
0.16-ha plots compiled at each sampling site is provided in Table 3.

Subsequently, the BIOMASS R package18 (version 2.1.8) within the R statistical platform (version 4.1.3) was 
used to compute reference AGB predictions for forest inventory plots at the two spatial resolutions (1-ha and 
0.16-ha). To that end, we differentiated sites with a cumulated forest inventory area of 10 ha or more (i.e., 8 out 
of 13 sites, Tables 1 and 3) from those with less than 10 ha of cumulated forest inventory area (i.e., 5 sites). In the 
former case, we developed site-specific tree height-diameter (H-D) allometric models using second-order polyno-
mials on log-transformed data (modelHD function in the BIOMASS package) and these models were used to pre-
dict the height of trees without H measurements in each respective site. In the latter case, which pertained to sites 
located in moist dense forests of Cameroon (SiteIDs 7 to 11 in Table 1), all inventory data from that country and 
biome were pooled into a single training dataset and the same H-D modelling procedure was applied. The result-
ing country- and biome-specific model was then used for predicting tree height at those sites. The H-D model 
coefficients for these site-level and Cameroon level model are presented in Table 4. Next, a wood density (WD) 
estimate was attributed to each tree based on its taxonomic identification using the getWoodDensity function.

Fig. 2 Flow chart depicting workflow of the data analysis procedure to generate reference AGB datasets.
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Considering that tree AGB prediction is associated with various sources of uncertainty (including measure-
ment errors of the independent variables such as tree diameter, height, and wood density, as well as prediction 
errors of the H-D models and the AGB allometric model)5,14, we used a Monte Carlo approach for uncertainty 
propagation. Specifically, we employed the AGBmonteCarlo function of the BIOMASS package18, which allows 
propagating the above-mentioned sources of uncertainty and outputs 1000 tree-level and subsequently plot-level 
AGB predictions. Tree AGB predictions were made using the pantropical AGB allometric model (i.e., Equation-4 
in Chave et al.19). For each plot, the 1000 AGB predictions were (i) averaged to obtain a reference plot-level AGB 
density (hereafter AGBREF) for the development of LiDAR-AGB models and (ii) used for the propagation of 
uncertainties to the final AGB maps (see section “mapping forest AGB and prediction uncertainty”).

LiDaR data processing: computation of canopy height metrics. LiDAR data from African and 
Asian sites were processed using LAStools (version 201124) and the lidR R package (version 4.0.1), respectively. 
The same processing chain was applied to generate the canopy metrics in both cases. First, a digital surface model 
(DSM) free of pits and spikes was generated at a 1-m resolution by interpolating the highest points on a 1-m grid. 
Second, a ground point classification was performed on the point cloud and a digital terrain model (DTM) was 
interpolated from ground-points. The canopy height model (CHM) was then derived by subtracting the DTM 
from the DSM. Finally, the 1-m CHM was used to compute 15 canopy metrics for each plot (Table 5) as candidate 
predictors of forest AGB.

Sno Site name Region PFT INVDate AreaINV Nrange BArange LiDARDate LiDARArea Platform

1 Betul S-As DBT, GSW 02-2016 to 03-2016 46 150–437 7.2–20.2 04-2014 10000 Aircraft

2 Achanakmar S-As EBT, DBT 12-2017 to 01-2018 16 186–509 10.0–31.3 10-2015 11000 Aircraft

3 Yellapur S-As EBT, DBT, GSW 01-2015 & 01-2016 15 140–749 20.3–43.6 11-2017 40000 Aircraft

4 Uppangala S-As EBT 03-2013 & 03-2014 23 370–838 10.3–62.4 11-2013 900 Aircraft

5 Khaoyai S-As EBT 11-2015 to 04-2018 34.84 394–1015 20.8–38.1 04-2017 4500 Aircraft

6 Nachtigal C-Af DBT, GSW 02-2018 to 05-2018 13.16 216–538 23.4–35.0 01/2012 25000 Aircraft

7 Mbalmayo C-Af EBT 04-2021 to 07-2021 9 442–596 20.1–32.5 02-2023 400 UAV

8 Atout C-Af EBT 07-2017 2 475–574 30.8–32.0 11-2021 150 UAV

9 Kompia C-Af EBT 12-2018 2 423–519 29.0–32.3 12-2019 400 UAV

10 Somalomo C-Af EBT 09-2022 8 325–508 25.4–33.6 04-2022 800 UAV

11 Bouamir C-Af EBT 12-2018 4 362–552 24.9–35.8 12/2018 1000 UAV

12 Mabounié C-Af EBT 04-2012 to 10-2012 11 222–492 17.7–31.4 11/2007 16000 Aircraft

13 Rabi C-Af EBT 2015 25 392–532 20.5–36.6 10/2012 1000 Aircraft

Table 1. Sampling site details on forest types, inventory statistics and characteristics of the LiDAR acquisitions. 
AreaINV indicates the total area of field inventories, LiDARDate indicates the month and year of acquisition 
of LiDAR data and LiDARArea indicates the total area covered by LiDAR data over the site. Nrange and BArange 
indicate the range in number of trees and basal area per hectare across the inventoried area, respectively. The 
associated plant functional types (PFT’s) for each site are derived from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) Land Cover Type product (MCD12Q1) which follows Land Cover Type 5 
Classification Scheme; a similar strategy is adopted by GEDI Mission.

Site No. Site name Region Elevation Slope MAT MAP

1 Betul S-As 487 ± 48 7.8 ± 5.7 25.6 ± 0.3 1266 ± 27

2 Achanakmar S-As 813 ± 165 8.8 ± 6.8 23.3 ± 0.7 1328 ± 42

3 Yellapur S-As 459 ± 110 8.7 ± 7.8 24.4 ± 0.5 2383 ± 421

4 Uppangala S-As 377 ± 122 18.6 ± 8.5 25.1 ± 0.5 3789 ± 63

5 Khaoyai S-As 757 ± 34 6.8 ± 4.2 23.3 ± 0.1 1127 ± 7

6 Nachtigal C-Af 527 ± 50 4.5 ± 3.4 24.4 ± 0.5 1588 ± 17

7 Mbalmayo C-Af 662 ± 11 5.2 ± 3.3 23.6 ± 0.1 1706 ± 1

8 Atout C-Af 715 ± 11 5.2 ± 3.0 23.7 ± 0.1 1572 ± 1

9 Kompia C-Af 705 ± 20 5.7 ± 3.3 23.5 ± 0.1 1606 ± 2

10 Somalomo C-Af 656 ± 13 4.7 ± 3.0 23.7 ± 0.1 1602 ± 3

11 Bouamir C-Af 696 ± 14 5.3 ± 3.1 23.5 ± 0.1 1616 ± 2

12 Mabounié C-Af 88 ± 31 7.3 ± 4.6 26.1 ± 0.1 2034 ± 16

13 Rabi C-Af 68 ± 15 6.3 ± 3.8 25.6 ± 0.1 1826 ± 4

Table 2. Environmental conditions across sampling sites. Over the LiDAR acquisition area, the statistics 
(mean ± standard deviation) of elevation and slope are computed using SRTM at 30-m spatial resolution  
(V3 product), Mean Annual Temperature (MAT) and Mean Annual Precipitation (MAP) are computed  
using WorldClim Version 2.1 data.
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Specification of a general AGB model form. While LiDAR-based AGB mapping models were trained 
at the site or regional level (for some Cameroon sites), to minimise local bias in model predictions14,20, we privi-
leged the use of (i) a single AGB model form across all sites to facilitate sites inter-comparison and the subsequent 
use of AGB predictions for spaceborne products calibration/validation and (ii) a simple, parametric modelling 
approach, keeping the number of predictors to a minimum to avoid overfitting and multicollinearity issues. To 
specify the AGB model form, we used linear mixed-effects models to identify the most predictive LiDAR-derived 
canopy height metrics (LCMs) on AGBREF variation while accounting for the hierarchical spatial structure of the 
data. In practice, we built 15 linear mixed-effects models (one for each LCM) on the log-transformed variables of 
AGBREF and LCM (Eq. 1):

AGB a b LCM RElog( ) log( ) (1)REF site ε= + × + +

where a and b are the model’s coefficients, LCM represents the Lidar-derived Canopy Metric, AGBREF corre-
sponds to the field-derived AGB prediction at a given spatial resolution (i.e. 0.16- or 1-ha), REsite denotes the 
random site effect used in linear mixed-effects modelling and ε is the error term, assumed to follow a normally 
distribution with a mean of zero and a standard error σ. Based on the AIC criterion, the meanTCH metric (i.e. 
the mean of all CHM values in the plot area) emerged as the best predictor of AGBREF variation at both 1-ha and 
0.16-ha spatial resolutions (Table 6).

A similar procedure was run on AGBREF prediction models combining each pair of LCMs rather than a single 
predictor. At both spatial resolutions, the best two-predictor model resulted in a modest improvement in relative 
RMSE (i.e., <0.2%, Table 7) compared to the model based on meanTCH only. The latter model form was thus 
selected for biomass mapping. In line with the H:D modelling procedure, LiDAR-based AGB mapping models 
were either trained at the site-level (for sites with a cumulated forest inventory area of 10 ha more) or on a pooled 
training dataset containing all inventory data from Cameroonian moist dense forests (for sites with a cumulated 

Sno Site Field Plots description N1ha N0.16ha NTrees NTree_hts Species [%] Genus [%] Family [%]

1 Betul Single plot of 34-ha and 12 distributed plots of 1-ha 34 227 15672 677 95% 96% 96%

2 Achanakmar 16 distributed plots of 1-ha 16 64 5750 1546 88% 88% 88%

3 Yellapur 15 distributed plots of 1-ha 15 60 8519 4932 97% 97% 97%

4 Uppangala Single plot of 10-ha and 13 distributed plots of 1-ha 23 112 14967 1729 61% 61% 61%

5 Khaoyai Single plot of 30-ha, 1 plot of 1-ha and 8 distributed plots of 0.48 ha 31 192 19461 517 100% 100% 100%

6 Nachtigal 11 distributed plots of 1-ha & 18 distributed plots of 0.16 ha 11 62 4315 703 86% 96% 97%

7 Mbalmayo 9 distributed plots of 1-ha 9 36 4378 532 74% 97% 99%

8 Atout 2 distributed plots of 1-ha 2 8 1049 96% 99% 100%

9 Kompia 2 distributed plots of 1-ha 2 8 942 49 95% 98% 98%

10 Somalomo 8 distributed plots of 1-ha 8 32 4564 215 93% 99% 99%

11 Bouamir 4 distributed plots of 1-ha 4 16 1784 171 92% 98% 98%

12 Mabounié 11 distributed plots of 1-ha 11 44 4425 570 93% 100% 100%

13 Rabi Single plot of 25-ha 25 144 11425 1662 94% 100% 100%

Table 3. Site-level details on field plot layout description, the number of compiled plots at 1-ha (N1ha) and 0.16-
ha (N0.16ha), number of total trees across all plots (NTrees), number of trees measured for height (NTree_hts). Species, 
Genus and Family (%) stands for the identification rate (in %) at the given taxomonic level.

Sno Site a b c sigma [ε] R2 RMSE [m]

1 Betul −1.163 1.857 −0.194 0.148 0.71 2.37

2 Achanakmar −1.314 1.770 −0.159 0.250 0.63 4.06

3 Yellapur 0.563 0.851 −0.050 0.231 0.60 3.75

4 Uppangala 0.164 1.123 −0.077 0.249 0.67 4.33

5 Khaoyai 1.094 0.479 0.025 0.329 0.66 4.90

6 Nachtigal −0.446 1.457 −0.127 0.223 0.72 5.06

7 Mbalmayo

−0.081 1.286 −0.104 0.243 0.71 4.61

8 Atout

9 Kompia

10 Somalomo

11 Bouamir

12 Mabounié 0.283 1.102 −0.083 0.236 0.66 5.47

13 Rabi 1.234 0.614 −0.022 0.224 0.58 4.46

Table 4. H-D Model coefficients (a, b, c) of the 2nd order log-log polynomial model form 
( H a b D c Dln( ) (ln( )) ln( )2 ε= + × + × + ), where H is the height of the tree and D is the tree diameter. ε 
is the normally distributed error to be used during back-transformation for Baskerville correction.
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forest inventory area smaller than 10 ha), henceforth referred to as the “regional” AGB model. It is noteworthy 
that including sites as an additional fixed-effect covariate in the regional model did not yield significant effects 
for this variable at a 5% risk (neither in terms of site-level intercepts nor in terms of interactions between sites 
and the meanTCH predictor), suggesting a minimal site effect on the regional model’s predictions, if any.

The coefficients and calibration statistics of LiDAR-based AGB mapping models are provided in Table 8, 
while Fig. 3 shows scatterplots of ‘reference’ against predicted AGB values.

Mapping forest aGB and prediction uncertainty. We mapped forest AGB and prediction uncertainty 
over the extent of airborne LiDAR data at each site using a Monte Carlo approach similar to that used to compute 
plot-level AGBREF. More specifically, we used the 1000 plot-level AGB predictions generated at the first modelling 
level (i.e., from tree to plot) to build 1000 LiDAR-based models per site (or at “regional” level for Cameroonian 
sites with less than 10 ha of cumulated forest inventory area). At the second modelling level (i.e., from plot to 
landscape), pixel AGB predictions derived from LiDAR-based models suffer from additional uncertainty asso-
ciated to the LiDAR-based models themselves. To propagate this additional uncertainty, we mimicked the pro-
cedure used in BIOMASS to propagate the uncertainty associated to the tree-level AGB allometric model (see 
Appendix S1 of Réjou-Méchain et al.18 for codes and details), which entailed using a Markov chain Monte Carlo 
algorithm to infer the uncertainty on Lidar-based models’ parameters (i.e., models’ coefficients and associated 
RSE). The Markov chain outputted 1000 sets of model parameters per model. For each of the 1000 LiDAR-based 
model at each site, we then (1) randomly selected a set of parameters among the 1000 available sets, (2) used the 

LiDAR Canopy Metric (LCM) Description

H40

Percentile of CHM values (ex. H98 for the 98th percentile, in m)

H50

H60

H70

H80

H90

H98

meanTCH or meanH Mean of CHM values (in m)

sdH Standard deviation of CHM values (in m)

CV Coefficient of variation of CHM values (meanTCH divided by sdH)

QMCH Quadratic mean of CHM values

CCF2

Percentage of CHM values above 2, 5 and 10 m (in %)CCF5

CCF10

rumple Roughness of CHM surface (rumple_index function in lidR R package)

Table 5. List of canopy metrics derived from LiDAR-derived CHMs over forest plots extent.

Plot Size (1-ha) Plot Size (0.16-ha)

LCM AIC R2 RMSE [Mg ha−1] RMSE [%] LCM AIC R2 RMSE [Mg ha−1] RMSE [%]

meanH −180.42 0.89 43.62 15.2 meanH 149.94 0.71 88.55 32.4

RH60 −169.22 0.88 44.75 15.6 QMCH_chm 194.11 0.70 89.31 32.7

RH50 −167.22 0.88 45.27 15.8 RH90 379.89 0.65 96.81 35.4

RH70 −151.53 0.87 45.83 16.0 RH98 642.43 0.59 105.29 38.5

QMCH_chm −148.49 0.88 45.30 15.8 RH40 869.25 0.60 106.49 39.0

RH80 −133.52 0.87 47.14 16.5 RH50 889.42 0.59 106.84 39.1

RH40 −114.58 0.86 48.46 16.9 CCF10 928.45 0.50 116.11 42.5

RH90 −102.74 0.85 50.54 17.7 RH60 975.37 0.59 106.68 39.0

RH98 −23.33 0.79 59.26 20.7 RH80 1033.34 0.62 103.08 37.7

CCF10 15.74 0.72 70.11 24.5 RH70 1036.05 0.59 106.41 38.9

CCF5 66.87 0.63 79.56 27.8 CCF5 1101.04 0.46 120.43 44.1

CV 85.22 0.61 81.18 28.4 CCF2 1105.63 0.45 121.80 44.6

CCF2 90.21 0.60 82.20 28.7 CV 1265.00 0.41 132.29 48.4

sdH 114.75 0.62 79.52 27.8 sdH 1365.98 0.41 128.62 47.1

rumple 131.76 0.58 83.77 29.3 rumple 1473.62 0.39 130.34 47.7

Table 6. LiDAR-AGB Linear Mixed Effects Model performance statistics at 1-ha and 0.16-ha plot sizes. 
The table is sorted in ascending order based on the column “AIC” (Akaike information criterion) when the 
respective LiDAR Canopy Metric (LCM) is used for Eq. 1. R2 and RMSEs (in Mg ha-1 and in %) are computed 
on back-transformed predictions.
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model coefficient selected in (1) to predict pixels AGB and (3) added to all pixels an error term randomly drawn 
from a normal distribution N(0, RSEi) where RSEi is the model RSE selected in (1). This procedure led to 1000 
predictions of pixels AGB embedding the prediction uncertainty from both the first and second modelling levels. 
Finally, reference AGB maps and associated spatial uncertainty maps were generated as the mean and standard 
deviation of the 1000 pixel AGB predictions, respectively. Hereafter, we refer to pixels mean AGB prediction as 
AGBPRED.

additional metadata for the aGB maps. LiDAR-based AGB maps produced in the present study are 
intended to support calibration and validation efforts of spaceborne data. To maximise their usefulness, we pro-
vide additional information that users may require – depending on their study’s objective and methodological 
choices – to facilitate their integration with spaceborne data and/or develop comprehensive uncertainty propaga-
tion schemes up to the final, spaceborne-derived AGB map.

A first challenge users may face relates to the computation of the uncertainty associated with the mean AGB 
of arbitrary subregions of LiDAR AGB maps. Such subregions could for instance correspond to the footprints 
of spaceborne data unit pixels. Estimating the total mean squared error associated with a map (sub) population 
mean requires access to the matrix of pairwise population unit covariances, which is rarely communicated by 
map makers to users because of its large size. Yet, McRoberts et al.21 recently showed that pairwise population 
unit covariances could largely contribute to total mean squared error, and proposed an averaging and binning 
approach to drastically reduce the matrix size, thus facilitating its publication along with AGB maps. While we 
refer interested readers to McRoberts et al.21 for methodological details, we provide in Supplementary data all 
information recommended by the authors to allow map users to comply with IPCC good practice guidelines for 

Plot Size (1-ha) Plot Size (0.16-ha)

LCMs AIC R2 RMSE [Mg ha−1] RMSE [%] LCMs AIC R2 RMSE [Mg ha−1] RMSE [%]

RH50, RH90 −192.69 0.89 43.75 15.3 meanH, CCF2 114.03 0.71 88.00 32.2

RH50, RH80 −191.69 0.88 43.84 15.3 RH40, meanH 131.70 0.71 88.09 32.2

RH50, QMCH_chm −188.18 0.88 43.87 15.3 RH98, QMCH_chm 134.13 0.71 87.66 32.1

RH50, RH70 −188.15 0.88 44.18 15.4 meanH, CCF10 136.58 0.71 88.07 32.2

RH50, meanH −186.09 0.89 43.67 15.3 RH50, meanH 137.09 0.71 88.22 32.3

RH40, RH80 −185.00 0.88 43.96 15.4 meanH, QMCH_chm 139.23 0.71 88.29 32.3

RH40, RH50 −183.00 0.88 44.67 15.6 RH70, meanH 139.36 0.71 88.44 32.4

RH50, RH60 −182.72 0.88 44.37 15.5 RH60, meanH 139.42 0.71 88.36 32.3

RH40, RH90 −182.32 0.88 44.15 15.4 meanH, CCF5 141.40 0.71 88.14 32.3

RH40, RH70 −181.96 0.88 44.26 15.5 RH90, meanH 147.02 0.71 88.54 32.4

Table 7. LiDAR-AGB Linear Mixed Effects Model performance statistics at 1-ha and 0.16-ha plot sizes using 
two LCMs as predictive variables. The table is sorted in ascending order based on the column “AIC” (Akaike 
information criterion) when the respective LiDAR Canopy Metrics (LCM) are used in Eq. 1. R2 and RMSEs (in 
Mg ha−1 and in %) are computed on back-transformed predictions.

Sno Site

Plot Size (1-ha) Plot Size (0.16-ha)

a (se) b (se) sigma R2
RMSE  
[Mg ha−1] RMSE [%] a (se) b (se) sigma R2

RMSE  
[Mg ha−1] RMSE [%]

1 Betul 2.043 (0.191) 1.247 (0.087) 0.095 0.87 12.04 9.9 2.605 (0.107) 0.988 (0.049) 0.162 0.65 21.08 17.3

2 Achanakmar 2.046 (0.219) 1.173 (0.080) 0.113 0.94 23.51 11.7 2.058 (0.175) 1.165 (0.064) 0.185 0.84 36.58 18.3

3 Yellapur 0.500 (0.478) 1.691 (0.158) 0.111 0.90 31.07 11.0 0.684 (0.380) 1.632 (0.126) 0.188 0.74 66.65 23.1

4 Uppangala 0.969 (0.442) 1.523 (0.134) 0.192 0.86 82.16 18.9 1.087 (0.335) 1.464 (0.100) 0.328 0.66 145.85 32.6

5 Khaoyai 1.934 (0.445) 1.236 (0.144) 0.109 0.72 32.27 9.9 1.360 (0.189) 1.411 (0.061) 0.219 0.74 74.08 23.1

6 Nachtigal 2.009 (1.004) 1.037 (0.314) 0.233 0.55 43.21 18.6 1.902 (0.081) 1.083 (0.029) 0.284 0.82 48.28 27.9

7 Mbalmayo

1.721 (0.517) 1.253 (0.155) 0.135 0.74 52.62 14.1 1.230 (0.396) 1.39 (0.119) 0.282 0.59 108.54 29.1

8 Atout

9 Kompia

10 Somalomo

11 Bouamir

12 Mabounié 2.471 (0.447) 1.015 (0.136) 0.100 0.86 32.26 9.4 2.159 (0.498) 1.098 (0.152) 0.265 0.55 94.23 28.0

13 Rabi 1.267 (0.671) 1.397 (0.213) 0.123 0.65 38.78 13.1 1.386 (0.407) 1.344 (0.130) 0.312 0.43 99.63 33.8

Table 8. Model coefficients along with standard errors (in brackets) for site-wise level models at 1-ha and 
0.16-ha resolution. For Cameroon sites listed from 7-11 in column “Sno”, a single regional model is employed. 
Sigma is the model residual standard error in log-transformed units. R2 and RMSEs (in Mg ha-1 and in %) are 
computed on back-transformed predictions.
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greenhouse gas inventories. We note that for each pixel of the LiDAR-based AGB maps provided in this study, a 
bin number is available in the third map layer.

Another challenge lies in the propagation of uncertainties in multi-level hierarchical modelling, which is a 
likely use-case of the LiDAR-based maps we produced. These maps were generated by applying two hierarchi-
cally nested models: a tree allometric model linking field measurements to tree AGB, and a mapping model link-
ing plot AGB to LiDAR data. LiDAR-based AGB maps users may employ a three-steps hierarchical modelling 
approach and add as a third step a model linking high resolution AGB predictions from the LiDAR-based maps 
to the coarser resolution of spaceborne data. An example of such an approach is presented in detail in Saarela  
et al.22 and referred to as “three-phase hierarchical model-based inference”. The uncertainty assessment in such a 
nested modelling approach requires information at the two first modelling steps that goes beyond the results of 
the Monte Carlo simulation we used to produce pixel-level uncertainty estimates. While we refer interested read-
ers to Saarela et al.22 for methodological details, we provide in Supplementary data all information allowing users 

Fig. 3 LiDAR-AGB models of Asian and African sites at 1-ha and 0.16-ha resolutions. The numbers for each 
site refer to Table 1. (7–11)* refers to the regional model established over moist dense forests of Cameroon.
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to assess uncertainty as described in Saarela et al.22. This information notably includes the variance-covariance 
matrix of model parameters for each sampling site as well as statistics on parameters (DBH, AGB, pixels’ height 
from CHM, etc.,) used at various levels in the chain of hierarchical models.

Data Records
For each site, AGB and uncertainty maps are distributed as a single GeoTiff file at the two spatial resolutions 
(1- and 0.16-ha) through Dataverse23. Each file comprises three individual layers. The two first layers named 
meanAGB and sdAGB correspond to the mean and standard deviation of AGB predictions over the 1000 Monte 
Carlo simulations, respectively. The file projection system is Universal Transverse Mercator. The third layer 

Fig. 4 Reference AGB maps of Asian and African sites at 1-ha spatial resolution.
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named Nbin corresponds to the bin number each map pixel is associated with in the binning approach proposed 
by McRoberts et al.21 to allow users reconstituting a matrix of pairwise population unit covariances estimates.

Besides data access through Rodda et al.23, data from Asian sites can be access and visualized through the 
Bhuvan Portal (https://bhuvan-app3.nrsc.gov.in/data/download/index.php). To access the visualisation/down-
load through Bhuvan Portal, select the ISRO Geosphere-Biosphere Programme under the Program option and 
then choose the group Above Ground Biomass (AGB) Data.

In addition, we provide two supplementary data files (in excel format) that provide additional metadata 
details on site-level binned covariance matrices and variance-covariance matrices and summary of all the 
parameters used in the present study.

technical Validation
Reference AGB maps at 1-ha resolution are shown in Fig. 4 and the density distributions of 1-ha AGB maps are 
represented in Fig. 5-A along with uncertainty levels in Fig. 5B expressed as a coefficient of variation (CV, in % 
of mean AGB) (see Fig. 6 and Fig. 7 for AGB maps and respective density distributions at 0.16-ha resolution). 
Figure 5-B shows that the mean uncertainty across sites is 15.4%, with site-level mean uncertainty ranging from 
10.8 to 31%. It can be observed that Nachtigal and Uppangala sites have larger mean uncertainties than other 
sites, with 31% and 20.1%, respectively. This can be explained by larger LiDAR-AGB model uncertainties at these 
sites and mapping resolution (see models’ “sigma” in Table 8).

In addition to the per pixel estimates of uncertainty accompanying AGB maps, we hereafter provide (i) 
an assessment of mapping model predictive performances using a spatial model cross-validation technique24, 
to provide additional insights into the reliability of AGB predictions on each map and (ii) an assessment of 
mapping models extrapolation at each sampling site, which may be useful to help users for filtering-out pixels 
where extrapolation occurred and only retaining the highest quality AGB predictions for spaceborne products 
calibration/validation.

Model spatial cross-validation. Model calibration statistics in Table 8 likely overestimate model predic-
tive performance on pixels that are not used for model training, that is, on most maps’ pixels. We performed a 
cross-validation (CV) of each model to provide more reliable insights into model predictive performance. Field 
plots at each site are iteratively split into training and test data and model CV statistics are built on the set of 
test data predictions. Regarding CV design, we selected a buffered leave-one-out cross-validation (LOO-CV25) 
where a spatial buffer around test data is used to exclude from model training dataset observations located at 
the neighbourhood of test data, thus avoiding inflation in CV statistics due to spatial autocorrelation in forest 
AGB24. As a compromise between the diversity in terms of number and spatial arrangement of field data across 
sites (e.g. multiple individual 1-ha plots vs. single large plot), the consistency of the CV approach across sites, as 
well as our expectation for a relatively weak spatial autocorrelation in forest AGB at the high resolution of the 
maps (<100 m2)26, we selected a LOO-CV with a 100 m buffer radius for all sites and mapping resolutions (i.e. 
100 × 100 m and 40 × 40 m). This CV design notably implies that (i) when a test observation came from a large 
field plot (i.e. >1-ha, e.g. the 25-ha plot at Rabi), subplots at its direct neighbourhood were not used for model 
training (i.e., all subplots intersecting a 100 m circular buffer around the center of a test subplot were excluded 
from the training set, regardless of the mapping resolution), and (ii) at the 40 × 40 m mapping resolution, when 
a test observation came from a 1-ha field plot, the remaining three subplots of that 1-ha plot were not used for 
model training. The results of the buffered LOO-CV are presented in Table 9. They show that the predictive 

Fig. 5 Density distributions of (A) mean pixel AGB and (B) AGB uncertainty, expressed as a coefficient of 
variation (CV, in %), at 1-ha mapping resolution across sites.
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performances of mapping models developed in this study are comparable to those found in the literature (i.e. 
15–20% on average for the tropical forest biome15) with relative RMSEs ranging from 10.6 to 20.1% (mean across 
sites: 14.1%) at 1-ha and 17.7 to 33.7% (mean across sites: 25.7%) at 0.16-ha.

Model extrapolation in the predictor space. Uncertainty maps, AGB maps, and model CV results 
provide insights into the reliability of AGB predictions within the calibration domain of mapping models. It 
is however likely that the entire gradient of forest structure sampled by LiDAR data was not fully sampled in 
the model’s training set, thus leading to situations of predictive extrapolation where prediction uncertainty is 
unknown. To investigate this issue, we compared the range of vegetation height (i.e., meanTCH) sampled by 

Fig. 6 Reference AGB maps of Asian and African sites at 0.16-ha spatial resolution.
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the training set of each mapping model to the full range found in the LiDAR data, restricting the analysis to 
pixels considered as vegetated, i.e., with meanTCH ≥ 2 m. We found that the proportion of pixels affected by 
predictive extrapolation strongly varied across sites and at the two mapping resolutions. Generally, the upper 
range of meanTCH (and thus of AGBPRED) found at a landscape scale in the LiDAR data were sampled in the 
training set (Fig. 8A,B), which probably is a reflection of the “majestic forest bias”27 – that is, the tendency for 
researchers to preferentially establish sample plots where forest stands appear the less disturbed (e.g. tallest 
canopy height, the highest abundance of large trees, etc.). However, a varying and often substantial proportion 
of maps on the lower end of the meanTCH gradient was outside the model’s calibration domain. For instance, in 
the Nachtigal site predictive extrapolation occurred on about 83% of the vegetated pixels on the 1-ha AGB map. 
This can be explained by the nature of this site, a forest-savanna mosaic, where the meanTCH of all herbaceous 
and shrubby savannas is lower than the height of the smallest 1-ha forest stand (ie., 16.4 m) found in model 
training set (Fig. 8A). However, this proportion dropped to 0% at the 0.16-ha mapping resolution thanks to the 
inclusion into the model training set of 18 additional 0.16-ha plots established in savannas-dominated areas 
(Fig. 8B, Table 3).

We thus advise potential users of the AGB maps published here to carefully consider the bounds of the map-
ping model calibration domain at each site (for which we provided corresponding AGBPRED values in Fig. 8) 
when using these maps as reference data for larger-scale product calibration/validation.

Fig. 7 Density distributions of (A) mean pixel AGB and (B) AGB uncertainty, expressed as a coefficient of 
variation (CV, in %), at 0.16-ha mapping resolution across sites.

Sno Site

Plot Size (1-ha) Plot Size (0.16-ha)

R2 LOOCV-RMSE [Mg ha−1] LOOCV-RMSE [%] R2 LOOCV-RMSE [Mg ha−1] LOOCV-RMSE [%]

1 Betul 0.76 12.85 10.5 0.55 21.47 17.6

2 Achanakmar 0.90 27.05 13.5 0.81 39.00 19.5

3 Yellapur 0.85 36.27 12.9 0.62 74.21 25.8

4 Uppangala 0.64 100.44 23.2 0.37 171.68 38.4

5 Khaoyai 0.65 37.40 11.5 0.62 75.05 23.4

6 Nachtigal 0.22 60.49 26.1 0.81 49.85 28.8

7 Mbalmayo

0.66 56.36 15.1 0.46 110.39 29.6

8 Atout

9 Kompia

10 Somalomo

11 Bouamir

12 Mabounié 0.79 37.47 11.0 0.46 96.32 28.7

13 Rabi 0.54 46.11 15.5 0.39 101.74 34.5

Table 9. Error statistics of modified LOO-CV procedure at site-level for 1-ha and 0.16-ha plots.
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Usage Notes
Forest AGB maps released here constitute reference estimations for the community of remote-sensing scientists 
interested in forest carbon stocks. For instance, we expect these maps to be of utmost usefulness for the calibra-
tion and validation of next-generation broad-scale aboveground biomass mapping models based on data from 
ongoing or upcoming spaceborne missions (viz., NASA”s GEDI, NASA-ISRO’s NISAR and ESA’s BIOMASS mis-
sions). These data can also be useful when assessing the accuracy of existing maps or recalibrating them (as in 
eg.28,29), especially since study sites presented here are located on renowned data-poor regions16 and are marked 
by notable uncertainties in AGB estimates17. That said, we encourage users to account for the dates of LiDAR 
and ground data acquisitions underlying reference AGB estimates (cf. Table 1), as temporal discrepancies with 
spaceborne signals or products should ideally be accounted for in any calibration or validation exercise.

More broadly, our study highlights sites of potential interest to build a network of “super-sites” (sensu11) 
across the tropics, that is sites combining forest inventory data over sizable areas (≥10 ha) – ideally featuring 
multiple forest censuses – with airborne LiDAR data. Such data have been collected thanks to the long-term 
vision of few organisations, to dedicated experts and to the efforts of trained labour forces in the past decades. 
Ongoing global changes makes the sustained monitoring of permanent forest plots in long-term study sites 
critical, so as to allow measuring their impacts on forest ecosystems. In spite of this crucial stake, access to fund-
ing in the tropical world for replacement of expertise, training programs and to support field data acquisition 
campaigns is critically limited. We thus urge National and International research and space agencies to ensure 
long-term funding for on-ground forest research in the tropics.

Code availability
All statistical analyses were performed in R (v.4.1.3). The BIOMASS R-package is an open source library available 
from the CRAN R repository. The BIOMASS vignettes and individual function helps contain detailed notes on 
usage to derive plot level AGB estimates with uncertainty estimates through error propagation using Monte Carlo 
method. The codes associated with the error propagation from plot-scale AGB to LiDAR AGB maps, generating 
additional metadata and binned covariance matrices as described in Methods section are available on GitHub 
(https://github.com/surajreddyr/LIDAR_AGB/tree/main).
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