
HAL Id: hal-04541758
https://hal.inrae.fr/hal-04541758

Submitted on 11 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Adapting Prediction Models to Bare Soil Fractional
Cover for Extending Topsoil Clay Content Mapping

Based on AVIRIS-NG Hyperspectral Data
Elizabeth Baby George, Cécile Gomez, Nagesh D Kumar

To cite this version:
Elizabeth Baby George, Cécile Gomez, Nagesh D Kumar. Adapting Prediction Models to Bare Soil
Fractional Cover for Extending Topsoil Clay Content Mapping Based on AVIRIS-NG Hyperspectral
Data. Remote Sensing, 2024, 16 (6), pp.1066. �10.3390/rs16061066�. �hal-04541758�

https://hal.inrae.fr/hal-04541758
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Citation: George, E.B.; Gomez, C.;

Kumar, N.D. Adapting Prediction

Models to Bare Soil Fractional Cover

for Extending Topsoil Clay Content

Mapping Based on AVIRIS-NG

Hyperspectral Data. Remote Sens.

2024, 16, 1066. https://doi.org/

10.3390/rs16061066

Academic Editors: Nikolaos L.

Tsakiridis, Uta Heiden and

Nikolaos Tziolas

Received: 26 January 2024

Revised: 7 March 2024

Accepted: 13 March 2024

Published: 18 March 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Adapting Prediction Models to Bare Soil Fractional Cover for
Extending Topsoil Clay Content Mapping Based on AVIRIS-NG
Hyperspectral Data
Elizabeth Baby George 1, Cécile Gomez 2,3,* and Nagesh D. Kumar 4

1 Department of Civil Engineering, Indian Institute of Science, Bengaluru 560012, India; elizabethg@iisc.ac.in
2 LISAH, University of Montpellier, IRD, INRAE, Institut Agro, AgroParisTech, 34060 Montpellier, France
3 Indo-French Cell for Water Sciences, IRD, Indian Institute of Science, Bengaluru 560012, India
4 Department of Civil Engineering and Divecha Centre for Climate Change, Indian Institute of Science,

Bengaluru 560012, India; nagesh@iisc.ac.in
* Correspondence: cecile.gomez@ird.fr

Abstract: The deployment of remote sensing platforms has facilitated the mapping of soil properties to
a great extent. However, the accuracy of these soil property estimates is compromised by the presence
of non-soil cover, which introduces interference with the acquired reflectance spectra over pixels.
Therefore, current soil property estimation by remote sensing is limited to bare soil pixels, which are
identified based on spectral indices of vegetation. Our study proposes a composite mapping approach
to extend the soil properties mapping beyond bare soil pixels, associated with an uncertainty map.
The proposed approach first classified the pixels based on their bare soil fractional cover by spectral
unmixing. Then, a specific regression model was built and applied to each bare soil fractional cover
class to estimate clay content. Finally, the clay content maps created for each bare soil fractional cover
class were mosaicked to create a composite map of clay content estimations. A bootstrap procedure
was used to estimate the standard deviation of clay content predictions per bare soil fractional cover
dataset, which represented the uncertainty of estimations. This study used a hyperspectral image
acquired by the Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG)
sensor over cultivated fields in South India. The proposed approach provided modest performances
in prediction (R2

val ranging from 0.53 to 0.63) depending on the bare soil fractional cover class and
showed a correct spatial pattern, regardless of the bare soil fraction classes. The model’s performance
was observed to increase with the adoption of higher bare soil fractional cover thresholds. The
mapped area ranged from 10.4% for pixels with bare soil fractional cover >0.7 to 52.7% for pixels
with bare soil fractional cover >0.3. The approach thus extended the mapped surface by 42.4%, while
maintaining acceptable prediction performances. Finally, the proposed approach could be adopted to
extend the mapping capability of planned and current hyperspectral satellite missions.

Keywords: composite map; clay content; digital soil mapping; uncertainty; regression model

1. Introduction

The achievement of sustainable land management requires a comprehensive under-
standing of earth’s soil at high spatio-temporal resolutions. The information on several soil
properties such as moisture content, nutrient availability, soil organic carbon (SOC) content
and water holding capacity are crucial for policymaking and land resource management
for ensuring global food security [1]. Soil texture, which refers to the relative proportions
of sand, silt, and clay particles in a soil mass, is widely considered as a significant soil
characteristic. Soil texture impacts on plant growth, crop yield, soil water infiltration and
retention capacities, and absorption of nutrients by plants [2] and its mapping is crucial
over large areas for cropland management. However, conventional methods of soil analysis
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are expensive and time consuming and are consequently characterized by low spatial
resolutions that fail to adapt the spatial variation exhibited by soil texture in a landscape.

To address this limitation, visible–near-infrared and short-wave infrared (VNIR–SWIR,
400 nm to 2500 nm) imaging spectroscopy has been extensively used for mapping several
soil properties, including soil texture [3]. Several studies have estimated the clay content of
the soil from its VNIR–SWIR reflectance spectra based on a diagnostic absorption signature
near 2200 nm to 2300 nm induced by the vibrations associated with the OH bond and
the OH-Al-OH bonds of kaolinite, montmorillonite, and illite minerals [4]. These studies
typically employ continuum removal methods [5–7], multivariate regression models [8–10],
or machine learning techniques [11–13] for estimating the clay content from VNIR–SWIR
reflectance spectra.

A major limitation of soil spectroscopy from remote sensing platforms is that the
mapping of soil properties, including clay content mapping, is limited to bare soil surfaces.
The presence of non-soil cover affects the reflectance spectra acquired over the pixels and
introduces a spectral mixing effect, which further affects the soil property estimated from
the spectra [14–16]. This limitation is often encountered, particularly over cultivated areas
that are typically covered by photosynthetic or non-photosynthetic vegetation during most
of the year.

Some studies have attempted to address this issue by employing spectral unmixing to
produce new spectra that are reasonably well representative of the pixel components. This
approach, which takes advantage of data with high spectral resolution, was developed
on hyperspectral VNIR–SWIR airborne imagery. Bartholomeus et al. [16] used a resid-
ual spectral unmixing approach on Airborne Hyperspectral Scanner-160 data to extract
pure soil spectra over partially vegetated pixels and predict SOC content. Ouerghemmi
et al. [17,18] used a blind source separation technique to extract pure soil spectra over
partially vegetated pixels in a Hymap image and estimate their clay contents. Franceschini
et al. [19] used a progressive spectral dataset selection based on unmixed soil fractions for
soil property estimation using airborne AisaDUAL data.

With the availability of multi-temporal data from multispectral sensors such as
Sentinel-2 and Landsat, several recent studies extracted bare soil pixels from multiple
images over a common study site and combined them to generate a new composite image
with a larger number of bare soil pixels [20–24]. These multi-temporal images could either
be from the same sensor or from different sensors, over which an empirical selection of a
spectral index threshold is applied to differentiate bare soil cover from non-soil cover [23].
Some spectral indices are commonly used to this extent, such as the Normalized Difference
Vegetation Index (NDVI) for identifying green vegetation [21,22,25], Normalized Burn
Ratio 2 (NBR2) for identifying dry vegetation [21,26,27], and the Bare Soil Index (BSI) for
identifying bare soil [20,23]. Dematte et al. [21] proposed to use a multi temporal data min-
ing approach to generate a Synthetic Soil Image (SYSI) by using the median of the spectral
reflectance of bare soil pixels based on the Geospatial Soil Sensing System (GEOS3). This
image provides a synthetic spectral reflectance of soils, and the approach has been adopted
in several similar studies [13,28–31]. These approaches, creating bare soil composite images
and synthetic imagery, enabled extended soil property mapping, including clay content,
SOC, and cation exchange capacity [24,30,31]. Some studies have also explored the effect
of factors such as the index used in bare soil selection [32], the length of the compositing
period [33], and the pixelwise mosaicking approach used for generating the composite [34]
on the prediction accuracy of estimated soil properties.

In this context, while the recent literature uses a temporal perspective to extend the
soil properties mapping, our study proposes a new approach from a spatial perspective to
(i) extend the soil properties mapping beyond bare soil pixels based on one hyperspectral
VNIR–SWIR airborne image and (ii) provide an uncertainty map of the soil property
estimations. This approach first classifies the pixels based on their bare soil fractional
cover from the spectral unmixing process and then applies a specific regression model
to each bare soil fractional cover class to estimate clay content along with the associated
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uncertainty in prediction. The selected study area is in the southern part of the Indian
subcontinent, where the crop fields are typically small-sized, scattered, and farmed with
diverse crop varieties.

2. Materials
2.1. Study Area

The study area covers 300 km2 in Gundlupet Taluk of the Indian state of Karnataka
(Figure 1a). A large part of the Berambadi catchment which belongs to the Kabini Critical
Zone Observatory (Assimilation of Multi-satellite data at Berambadi watershed for Hydrol-
ogy And land Surface (AMBHAS), Service d’Observation—Bassins Versants Expérimentaux
Tropicaux (SO-BVET), Tomer et al. [35]; Sekhar et al. [36]) and is a part of the Critical Zone
Observatories: Research and Application network (OZCAR; Gaillardet et al. [37]), falls
within the study area. The climate of the region is tropical sub-humid, and it receives
rainfall of 800 mm annually. The study area is covered by both cultivated fields (where
multi-cropping and intercropping are practiced) and forested lands. The size of the crop
fields over the cultivated part varies from 0.01 to 9.3 hectares, with an average size of
1.2 hectares [38]. These are farmed with a large variety of seasonal crops, and farmers
opt for irrigation using drip techniques, sprinklers, or furrow channels, depending on the
availability of water and type of crop [38]. The cropping system in the region is regulated
by three seasons: (1) kharif or the south-western monsoon season, from June to September,
when the majority of the fields are cultivated; (2) rabi or the north-eastern monsoon, from
October to January, when most of the fields are irrigated; and (3) the hot and dry summer
season, from February to May, when only a few of the fields are cultivated where irrigation
is viable [38].

The terrain of the study area comprises uplands with gentle slopes and lowlands that
are nearly level, in addition to hills and hillslopes. The soils of the study area are mostly
developed on granitic gneiss bedrock [39]. The region is characterized by red soil over
uplands and hillslopes (Ferralsols and Chromic Luvisols), black soil over valley bottoms
(Vertisols and Vertic intergrades), and rocky/weathered soil [39].

2.2. Soil Sample Collection and Clay Content Measurements

A total of 272 soil samples were collected over the study area during the rabi cropping
season, with 180 samples in November 2019 and 92 in January 2020 (Figure 1c). As clay
content is a perennial property in topsoil horizons, it was assumed that the clay content
analyzed from soil samples collected in 2019 and 2020 and the clay content over the field
in 2016 (during the AVIRIS-NG campaign) remained unchanged as previously assumed
in many studies [5]. During the period of data collection, some of the crop fields in the
study area were cultivated, harvested, or left bare. The strategy adopted for soil sampling
was to characterize the heterogeneity of soils, crops, and landforms within the study area
using stratified sampling based on both soils, landuse and geological maps, and human
expertise. Since red soils located over uplands and hillslopes make up the majority of
the study area [40], more samples (195 samples) were taken over them than over black
soils, which are located over valley bottoms (77 samples). In order to represent the main
landforms of the region, the sampling locations were dispersed throughout nearly level
lowlands, moderately sloping uplands, and valley bottoms. The soil samples were collected
from a depth of 0 to 15 cm. The samples thus collected were perceived to characterize the
cultivated soil horizon as the process of tilling the fields prior to planting homogenizes the
topsoil [41]. Each sample was a mixture of five sub-samples collected at the center and the
four vertices, respectively, of a 10 m × 10 m square. These samples were assumed to be
representative of an area of 5 m × 5 m, as the variation in clay content remains low within
small areas [42,43]. A Garmin GPS instrument was used to record the location of each of
the sampled plots.
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Figure 1. Location of the study area in (a) the state of Karnataka in India (pink polygon) and
(b) Chamarajanagar district (bleu polygon) and (c) locations of the 272 topsoil samples (yellow dots)
over the AVIRIS-NG False Colo r Composite (R-G-B as 782 nm, 662 nm, and 552 nm) with a zoom
area near Berambadi lake (blue rectangle).

The clay content of the soil samples, i.e., the percentage of particles with diameter
<0.002 mm as per the USDA textural classification, was measured using Robinson’s pipette
method [44,45]. The samples were found to have clay contents that ranged from 5.8% to
62.2%, with a mean of 26.6%, a standard deviation of 13%, and a coefficient of variation of
48.8%. This soil dataset was previously used by George et al. [46].
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2.3. AVIRIS-NG Hyperspectral Data

This work used a hyperspectral image acquired by the Airborne Visible/Infrared
Imaging Spectrometer—Next Generation (AVIRIS-NG) imaging sensor over the study area
on 10th of January 2016 from IST 12:00 to 13:45 h (Figure 1c). This acquisition was a part
of the joint Indian Space Research Organization (ISRO)—National Aeronautics and Space
Administration (NASA) hyperspectral science campaign [47] and corresponds to the image
over the site ID 99, Muddur, Karnataka. The image was acquired under clear sky conditions.
Since the study area had received rain 20 days prior to the date of image acquisition, the
land surface can be considered dry at the time. The AVIRIS-NG data used in this study was
obtained from the ISRO VEDAS portal (https://vedas.sac.gov.in/, accessed on 1 July 2021).

The AVIRIS-NG imaging spectrometer measures the reflected radiance in wavelengths
in the 380–2510 nm range, at every 5 nm interval, thus resulting in a total of 425 spectral
bands, with a ground sampling distance of 3.8 m for a flight altitude of 4.6 km and a high
signal-to-noise ratio (SNR) > 2000 at 600 nm and > 1000 at 2200 nm [47]. The sensor had
a field-of-view (FOV) of 34◦ and an instantaneous FOV (IFOV) of 1 milliradian [48,49].
The data had been ortho-rectified and atmospherically corrected using the ATmosphere
REMoval algorithm (ATREM, Gao et al. [50]) to produce level 2 surface reflectance output,
with values from 0 to 1 [47]. After eliminating water absorption bands and noisy bands,
260 spectral bands were retained for the modeling.

The images corresponding to nine flight lines were mosaicked to encompass the
study area (Figure 1c). Water bodies in the study area were masked using an expert-
calibrated threshold: pixels with a reflectance of less than 8% at 1663.67 nm (Band 258)
were removed [43]. In addition, urban areas, forested areas towards the western end of the
study area, and uncultivated hills were identified by visual inspection and field knowledge
and were masked, and only the cultivated areas were kept for this work. This AVIRIS-NG
data was previously described and used in George et al. [46].

3. Methods

The study proposed an approach to extend the soil properties mapping over non-soil
pixels and provide an associated uncertainty map. The proposed approach first estimated
the bare soil fractional cover of each pixel by spectral unmixing and then classified the pixels
according to their bare soil fractional cover (Figure 2a). Specific regression models were
then built for datasets with varying bare soil fractional cover thresholds to estimate the clay
content associated with each pixel in the dataset (Figure 2b). A bootstrap procedure was
used to estimate the standard deviation of clay content predictions per bare soil fractional
cover dataset, which represented the uncertainty of estimations. Each regression model
was then applied to the pixels belonging to the corresponding bare soil fractional cover
class, providing a clay content map for the class (Figure 2c). Finally, the clay content maps
created for each bare soil fractional cover class were mosaicked to create a composite map
of clay content estimations, and the standard deviation of clay content predictions obtained
through bootstrapping was used to create the associated uncertainty map (Figure 2d).

3.1. Spectral Unmixing for Bare Soil Fractional Cover Estimation

The spectral unmixing of this AVIRIS-NG image has been previously conducted by
George et al. [46] (Figure 2a). Spectral unmixing is a process of deconvoluting the reflectance
spectrum of a mixed pixel into its constituent pure component (also called ‘endmember’)
spectra and the corresponding fractional covers of fractions (also called ‘abundances’) [51].
Based on the assumption that reflectance spectra of endmembers are linearly independent,
the fully constrained least squares unmixing (FCLS) algorithm [52] was used to estimate
the abundance of each endmember within each pixel [53]. The linear mixture model for a
pixel with n spectral bands and p endmembers can be represented as:

yi = Mα + ϵ (1)

https://vedas.sac.gov.in/
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where yi is n × 1 spectral signature of the pixel i, M =
[
M1, . . . , Mp

]
is an n × p matrix of

endmember spectral reflectances, α is the p × 1 abundance vector, and ϵ is the measurement
error [52]. The endmember abundances are then estimated by adopting the least squares
technique to minimize the error ∥y − Mα∥ as follows:

α =
(

MT M
)−1

MTy (2)
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Figure 2. The workflow of the methodology with (a) generation of SFClassMap, (b) building the
regression models Mp and Mall_p, (c) application of the models on the AVIRIS-NG image, and
(d) creation of the CompositeClayMap and UncertaintyMap (“SD” stands for standard deviation).

Further, constraints were imposed for the estimated endmember abundances within a
pixel to add up to unity and to be non-negative [52]:

αj ≥ 0 : ∀ p (3)

∑p
1 αj = 1 (4)

Since the study area consisted of crop fields with actively growing vegetation or
harvested fields that were left bare or had dry crop residue cover, George et al. [46]
assumed that the AVIRIS-NG spectra could be modeled based on the three following
endmembers: soil, photosynthetic vegetation (PV), and non-photosynthetic vegetation
(NPV). The endmembers were derived directly from the AVIRIS-NG image as proposed
by Plaza et al. [54], based on visual examination of the image, ground truth knowledge,
and examining the reflectance spectra. Eight pure pixels belonging to each of the three
classes (soil, PV, and NPV) were identified, and their respective average reflectances were
considered the endmember spectra for unmixing. Finally, the map of the bare soil fractional
cover, with values in pixels varying from 0 to 1, where 0 indicates no bare soil coverage and
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1 indicates full bare soil coverage within a pixel, was produced over the study area [46]. The
pixels in the bare soil fractional cover map were subsequently classified into nine classes
Cp ranging from 0.3 to 1 (with p ranging from 1 to 9, Figure 2a), providing a map called
SFClassMap (Supplementary Material Figure S1). The pixels with a bare soil fractional
cover below 0.3 were not considered for further analysis as they corresponded to the lowest
bare soil coverage, which implied the densest vegetation coverage (NPV or PV), and were
subsequently masked in the SFClassMap.

3.2. PLSR Model

The Partial Least Squares Regression (PLSR) model was the quantitative statistical
analysis technique used for estimating the clay content (response variable) from the AVIRIS-
NG spectra (predictor variable). PLSR extracts latent predictor variables, which account
for the maximum amount of variation in the response variables [55]. This technique is
commonly used for soil property estimation through spectroscopy because of its ability to
analyze data with noisy and collinear variables [56–58].

Before establishing the PLSR models, the AVIRIS-NG reflectance spectra were con-
verted to “pseudo-absorbance” (log [1/reflectance]) to reduce nonlinearities [56], and noise
reduction was achieved using the standard pretreatments: a second-degree Savitzky–Golay
filter with a span of five was applied across the discontinued AVIRIS-NG spectra [59]
and a mean centering and variance scaling were applied. Spectra with a Mahalanobis
distance [60] greater than 3.5 were considered outliers and removed from the calibration
set. The selection of the number of latent variables (LVs) was done such that the root mean
squared error of prediction for the calibration dataset estimated through leave-one-out
cross validation was minimized.

3.3. Dataset Preparation for PLSR Training and Validation

For estimating clay content from the AVIRIS-NG image, nine datasets, denoted as DBp
(with p ranging from 1 to 9), were created. Each dataset DBp consisted of AVIRIS-NG pixels
meeting two criteria:

(1) The corresponding clay contents measured in the laboratory were available;
(2) The bare soil fractional cover in the pixel was up to a specified threshold Tp. This

threshold Tp ranged from >0.3 to >0.7 in increments of 0.05 (Figure 2b).
A first set of PLSR models, denoted as Mp, was trained from subsets of DBp using

an equal number of samples (Ncal) in all calibration datasets. These PLSR models Mp
were then validated from subsets of DBp using an equal number of samples (Nval) in
all validation datasets (where Ncal and Nval are different). Ncal and Nval were limited by
the most restrictive DBp dataset, i.e., DB9, which corresponded to the bare soil fractional
cover greater than 0.7 and consisted of 46 samples. By adopting an 80–20% split for
calibration–validation datasets [61,62], each Mp model was calibrated on 36 samples (Ncal)
and validated on 10 samples (Nval), belonging to the corresponding dataset DBp. This equal
number of samples in both the calibration (Ncal = 36) and validation (Nval = 10) datasets
among the models allowed a robust comparison of the effect of bare soil fractional cover on
the model performance.

A second set of PLSR models, denoted as Mall_p, were trained using the maximum
number of available samples in the DBp dataset, keeping aside Nval samples for validation.
Similarly, we maintained consistent sample sizes Nval (where Nval = 10) in validation
datasets across all Mall_p models to facilitate performance comparisons.

3.4. Bootstrap Process

To provide a robust performance evaluation and standard deviation of predictions, a
bootstrap procedure was adopted [63] (Figure 2b). Following previous soil spectroscopic
studies that had adopted bootstrapping procedures [64,65], 100 Mp models were built, each
one denoted Mp_i (with i ranging from 1 to 100) (Figure 2b). For each of the Mp_i models, the
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selection of 36 samples (Ncal) for calibration and 10 samples (Nval) for validation followed
stratified random sampling based on the clay contents from the corresponding DBp dataset.

Similarly, 100 Mall_p models were built, each one denoted by Mall_p_i (with i ranging
from 1 to 100) (Figure 2b). For each of the Mall_p_i models, the selection of 10 samples
(Nval) for validation followed stratified random sampling based on the clay contents from
the corresponding DBp dataset. The remaining samples in the DBp dataset were used for
calibrating the Mall_p_i models.

It is to be noted that in both configurations, the models Mall_9 and M9 are the same, as
they are calibrated and validated on the same number of samples.

3.5. Performance Evaluation

The performances of each of the PLSR models were evaluated using the coefficient of
determination of validation (R2

val) and the root mean square error in prediction (RMSEP)
(Figure 2b), which were calculated as follows:

R2
val = 1 −

∑n
j=1

(∼
y j − yj

)2

∑n
j=1

(
yj − ŷ

)2 (5)

RMSEP =

√√√√∑n
1

(∼
y j − yj

)2

n
(6)

where
∼
y j is the jth estimated clay content, yj is the jth measured clay content, ŷ is the

average value of measured clay contents, and n is the number of samples. Further, the
mean and standard deviation of the R2

val and RMSEP of the 100 Mp_i models from the
bootstrap procedure were calculated. Similarly, the mean and standard deviation of the
R2

val and RMSEP from the 100 Mall_p_i models from the bootstrap procedure were also
calculated (Figure 2b).

3.6. Clay Content Composite Mapping

The model Mall_p_i trained using pixels with bare soil fractional cover greater than a
threshold Tp, was applied to all pixels belonging to class Cp in the SFClassMap for estimating
the corresponding clay contents (Figure 2c). Thus, 100 regression models Mall_p_i were
applied to each pixel belonging to class Cp, resulting in 100 clay content estimations, whose
mean value represented the final clay content estimated at the pixel (Figure 2c). A final clay
content composite map named CompositeClayMap was then created by mosaicking the clay
content estimations obtained per bare soil fractional cover class Cp (Figure 2d).

Likewise, the standard deviation of the 100 clay content estimations obtained from
bootstrapping (Mall_p_i) was calculated, which represented the prediction uncertainty. The
mosaicking of these standard deviation values generated the associated uncertainty map,
named UncertaintyMap (Figure 2d).

4. Results
4.1. Bare Soil Fractional Cover Class Map

The SFClassMap generated from the bare soil fractional cover values estimated through
FCLS unmixing covered 52.7% of the study area (Figure 3a; Supplementary Material Figure S1).
The percentage of the study area covered by the bare soil fractional cover classes varied
from 2.8% for class C8 to 10.4% for class C9 (Table 1). The number of soil samples available
for model ing per bare soil fractional cover class varied from 8 for C7 (bare soil fractional
cover from 0.6 to 0.65) to 46 for C9 (bare soil fractional cover from 0.7 to 1) (Table 1). The
number of soil samples NDBp available for model ing per bare soil fractional cover threshold
(Tp) varied from 46 for T9 (threshold > 0.7) to 167 for T1 (threshold > 0.3) (Table 2). So while
272 soil samples were initially available (Section 2.2), only 167 were finally used, as the
remaining 107 samples were collected over surfaces associated with bare soil fractional
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cover less than 0.3. Finally, the nine datasets DBp (with p ranging from 1 to 9) had similar
ranges and distributions of measured clay contents, regardless of the number of samples
associated with them (Table 2).

Remote Sens. 2024, 16, x FOR PEER REVIEW  10 of 21 
 

 

Table 2. Details of the available soil samples associated with each bare soil fractional cover threshold 

Tp. 

Dataset 

(DBp) 

Bare Soil Fractional 

Cover Threshold 

(Tp) 

Number of Available 

Samples (NDBp) 

Minimum Clay 

Content (%) 

Maximum Clay

Content (%) 

Mean Clay 

Content (%) 

Standard Deviation 

of Clay Content (%) 

DB1  T1  >0.30  167  5.81  59.61  26.21  12.72 

DB2  T2  >0.35  150  5.83  59.61  25.70  12.53 

DB3  T3  >0.40  132  5.83  59.61  26.10  12.61 

DB4  T4  >0.45  112  5.83  59.61  26.70  12.50 

DB5  T5  >0.50  98  5.83  59.61  27.12  12.43 

DB6  T6  >0.55  85  6.96  58.91  26.60  11.47 

DB7  T7  >0.60  71  6.96  49.04  26.01  11.16 

DB8  T8  >0.65  63  6.96  49.04  25.48  10.99 

DB9  T9  >0.70  46  6.96  47.30  24.91  9.88 

 

Figure 3. (a) Bare soil fractional cover classes map (SFClassMap), (b) composite clay content map
(CompositeClayMap; mean clay content from 100 iterations), and (c) the associated map of uncertainties
(UncertaintyMap; standard deviation from 100 iterations) of a sub-part of the study area (blue rectangle
in Figure 1c). The pink and black ellipses highlight areas characterized by red and black soils,
respectively. The purple ellipse highlights an area with high uncertainty.
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Table 1. Area covered by each of the bare soil fractional cover classes obtained by the FCLS unmixing.

Bare Soil Fractional Cover Class (Cp) Number of Available Soil Samples Area (%)

0.30–0.35 C1 17 7.3
0.35–0.40 C2 18 7.4
0.40–0.45 C3 20 6.9
0.45–0.50 C4 14 5.9
0.50–0.55 C5 13 4.9
0.55–0.60 C6 14 3.9
0.60–0.65 C7 8 3.2
0.65–0.70 C8 17 2.8
0.70–1.00 C9 46 10.4

0.30–1.00 167 52.7

Table 2. Details of the available soil samples associated with each bare soil fractional cover thresh-
old Tp.

Dataset
(DBp)

Bare Soil
Fractional Cover
Threshold (Tp)

Number of
Available Samples

(NDBp)

Minimum Clay
Content (%)

Maximum Clay
Content (%)

Mean Clay
Content (%)

Standard
Deviation of Clay

Content (%)

DB1 T1 >0.30 167 5.81 59.61 26.21 12.72
DB2 T2 >0.35 150 5.83 59.61 25.70 12.53
DB3 T3 >0.40 132 5.83 59.61 26.10 12.61
DB4 T4 >0.45 112 5.83 59.61 26.70 12.50
DB5 T5 >0.50 98 5.83 59.61 27.12 12.43
DB6 T6 >0.55 85 6.96 58.91 26.60 11.47
DB7 T7 >0.60 71 6.96 49.04 26.01 11.16
DB8 T8 >0.65 63 6.96 49.04 25.48 10.99
DB9 T9 >0.70 46 6.96 47.30 24.91 9.88

4.2. Effect of Bare Soil Fractional Cover on Clay Content Estimation

The first set of regression models Mp built from the bootstrap procedure with the same
number of calibration data (Ncal = 36) yielded modest to good performances (Table 3). The
best performance was obtained for the model M9, which considered the higher bare soil
fractional cover (>0.7) (an R2

val of 0.63 and an RMSEP of 6.13% as the mean of 100 iterations),
while the worst performance was obtained for the model M1, which considered the lowest
bare soil fractional cover (>0.3) (an R2

val of 0.46 and an RMSEP of 9.27% as the mean of
100 iterations) (Table 3). As expected, an increase in bare soil fractional cover in the data
used for training the PLSR models involved an improvement in clay content estimation
accuracy (Table 3). This increase in performance may be attributed to a better selection of
bare soil pixels by the stricter threshold, which implies a better selection of soil spectra
unaffected by vegetation.

Table 3. Performances of Mp models for clay content estimation.

Bare Soil
Fractional Cover

Dataset
(DBp)

PLSR
Model (Mp) Ncal Nval

Validation (Mean ± Standard
Deviation over 100 Iterations)

R2
val RMSEP (%)

>0.30 DB1 M1 36 10 0.46 ± 0.22 9.27 ± 2.00
>0.35 DB2 M2 36 10 0.47 ± 0.20 9.16 ± 2.23
>0.40 DB3 M3 36 10 0.49 ± 0.20 9.01 ± 1.90
>0.45 DB4 M4 36 10 0.49 ± 0.19 9.04 ± 1.95
>0.50 DB5 M5 36 10 0.50 ± 0.19 8.63 ± 1.69
>0.55 DB6 M6 36 10 0.50 ± 0.19 8.04 ± 1.90
>0.60 DB7 M7 36 10 0.52 ± 0.18 7.53 ± 1.51
>0.65 DB8 M8 36 10 0.59 ± 0.17 7.00 ± 1.41
>0.70 DB9 M9 * 36 10 0.63 ± 0.13 6.13 ± 1.09

* M9 = Mall_9.
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The standard deviation of R2
val from the 100 iterations ranged from 0.13 for a bare

soil fractional cover higher than 0.7 to 0.22 for a bare soil fractional cover higher than 0.3
(Table 3). The standard deviation of RMSEP from the 100 iterations ranged from 1.09% for
a bare soil fractional cover exceeding 0.7 to 2.23% for a bare soil fractional cover higher
than 0.35 (Table 3). Finally, an increase in the bare soil fractional cover threshold involved a
decrease in the standard deviation of clay content predictions (Table 3).

The second set of regression models Mall_p was trained from the maximum number
of available samples (Ncal_all_p) per bare soil fractional cover threshold, keeping aside Nval
samples for validation (where Nval = 10). Therefore, the number of calibration samples
(Ncal_all_p) ranged from 36 to 157 (Table 4). These models also yielded modest to good
performances, with R2

val (as the mean of 100 iterations) from 0.53 (obtained for bare soil
fractional cover >0.3, >0.45, and >0.5), to 0.63 (for bare soil fractional cover > 0.7) and
RMSEP (as the mean of 100 iterations) from 6.13% (for bare soil fractional cover > 0.7) to
8.30% (for bare soil fractional cover > 0.3) (Table 4). As observed with the Mp models, the
performance of Mall_p in clay content estimation improved with an increase in bare soil
fractional cover.

Table 4. Performances of Mall_p models for clay content estimation.

Bare Soil
Fractional Cover

Dataset
(DBp)

PLSR Model
(Mall_p)

Ncal_all_p Nval

Validation (Mean ± Standard
Deviation over 100 Iterations)

R2
val RMSEP (%)

>0.30 DB1 Mall_1 157 10 0.53 ± 0.20 8.30 ± 1.96
>0.35 DB2 Mall_2 140 10 0.54 ± 0.21 8.20 ± 2.00
>0.40 DB3 Mall_3 122 10 0.54 ± 0.18 8.19 ± 1.78
>0.45 DB4 Mall_4 102 10 0.53 ± 0.19 8.19 ± 1.72
>0.50 DB5 Mall_5 88 10 0.53 ± 0.21 7.90 ± 1.86
>0.55 DB6 Mall_6 75 10 0.55 ± 0.17 7.26 ± 1.72
>0.60 DB7 Mall_7 61 10 0.59 ± 0.14 6.97 ± 1.29
>0.65 DB8 Mall_8 53 10 0.61 ± 0.16 6.50 ± 1.37
>0.70 DB9 Mall_9 * 36 10 0.63 ± 0.13 6.13 ± 1.09

* Mall_9 = M9.

For the Mall_p models, the standard deviation of R2
val from the 100 iterations ranged

from 0.13 for bare soil fractional cover > 0.7 to 0.21 for bare soil fractional cover >0.35 and
>0.5 (Table 4). The standard deviation RMSEP for the Mall_p models from the 100 iterations
ranged from 1.09% for bare soil fractional cover > 0.7 to 2.00% for bare soil fractional
cover > 0.35 (Table 4). Finally, an increase in bare soil fractional cover involved a de-
crease in the standard deviation of clay content estimation, as observed for the Mp models
(Tables 3 and 4).

The Mall_p models thus exhibited a similar trend in PLSR model performance for clay
content estimation as the Mp models, i.e., an increase in R2

val and a decrease in RMSEP
as the bare soil fractional cover increased. It was also observed that the Mall_p models
exhibited better performances than the Mp models for the same p (Tables 3 and 4). Thus,
using a greater number of samples for training a PLSR model improved its performance in
clay content estimation.

4.3. Clay Content Composite Map and Associated Uncertainties Map

To take advantage of the maximum number of soil samples in regression models
and benefit from the best model performances, the Mall_p_i regression models were used
for clay content mapping. The 100 regression models Mall_p_i were applied to generate
100 clay content estimations for each pixel in the AVIRIS-NG image, based on their bare
soil fractional cover class Cp (Figure 2c). The mean of these 100 values was reported as the
clay content at the pixel, and the mosaicking of these estimations produced the clay content
composite map, CompositeClayMap (Supplementary Material Figure S2). This approach
allowed mapping over 52.7% of the study area, whereas a single model Mall_9 would have
allowed mapping over only 10.4% of the study area (Table 1).
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The spatial pattern of the CompositeClayMap was coherent with the soilscape trend of
the region. High clay content values were estimated over the black soils corresponding to
Vertisol and Vertic intergrades, found in the valley bottom around the riverbeds (with a
mean clay content of around 40%), while lower clay contents were estimated over the red
soils corresponding to Ferralsol and Chromic Luvisols, found in the uplands and hillslopes
(with a mean clay content < 40%). The region towards the east of the Berambadi lake that
is characterized by red soils was rightly identified with 10 to 30% of the estimated clay
content (Figure 3b, pink ellipse). Similarly, the black soils present to the south of the lake
were identified with higher clay contents of around 40 to 60% in the CompositeClayMap
(Figure 3b, black ellipse). These observations were consistent with the pedological map
and knowledge of the study area. The clay content composite map also compared well
with the soil texture classification by Gomez et al. [66] and clay content mapping by George
et al. [46] over the study area using Sentinel-2 and AVIRIS-NG images, respectively.

This coherent spatial pattern for clay content was observed from CompositeClayMap,
regardless of the bare soil fractional cover classes (Figure 3a,b). Even the lower bare soil
fractional cover classes (C1 to C6) with relatively higher RMSEP and lower R2

val were able
to discriminate between the red and black soil in the study area. This implied that even
over low bare soil fractional cover, the PLSR models were able to provide the correct spatial
pattern of predicted clay values, which can be useful for supplementing the pedological
knowledge at the regional scale.

The standard deviation of the predicted clay contents over 100 iterations, which
represents the uncertainty of prediction in a pixel over the entire area, had a mean of
4.62% (Supplementary Material Figure S3). In these, 0.01% of the pixels spread across the
study area without exhibiting any spatial pattern were associated with high uncertainties
(>30%) and considered outliers and excluded from the analysis. Over the study area, pixels
associated with high uncertainties (standard deviation from 15 to 30%) were located over
the forested region to the north-west (Supplementary Material Figure S1), where bare
soil fractional cover was estimated to vary from 0.3 to 0.45, which could possibly be an
overestimation of the bare soil fraction in this area. Over the cultivated area, both red and
black soils (Figure 3b, pink and black ellipses, respectively) were associated with lower
uncertainties (standard deviation < 10%), except over some specific agricultural fields that
had high uncertainties (e.g., Figure 3c, purple ellipse), which indicated that clay estimations
over these specific fields must be considered with caution.

The mean values of the uncertainty in prediction associated with each bare soil frac-
tional cover class varied from 2.81% for C9 to 5.78% for C3, while the median varied from
2.54% for C9 to 4.6% for C3 and C4 (Figure 4). Violin plots for each bare soil fractional
cover class Cp were generated to compare the distribution of the uncertainties associated
with the class (Figure 4). The higher bare soil fractional cover class C9 was associated
with a lower range of uncertainty as compared to the lower bare soil fractional cover
classes (Figure 4). Finally, though there was a statistically significant difference between
the uncertainties of bare soil fractional cover classes as determined by one-way ANOVA
(F(8, 1.1 × 107) = 188,787.14, p < 0.0001), there was no correlation between the bare soil
fraction classes (Figure 3a) and the standard deviations (Figure 3c) of predictions over the
entire mapped study area (R2 of 0.08, p < 0.0001).
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5. Discussion
5.1. Bare Soil Fractional Cover Estimation from Spectral Unmixing

The choice of a suitable collection of endmembers may have a significant impact on
the result of spectral unmixing [54]. The endmembers used for unmixing can be selected
either from a spectral library of known materials (acquired from a laboratory or field) or
directly from the image [67]. In this study, the three endmembers (soil, PV, and NPV) were
derived from the AVIRIS-NG image since the spectra of these image endmembers would
have the same spatial and spectral resolutions and similar acquisition conditions as the
unmixing input image [54].

Estimating the number of endmembers to be used for unmixing is an application de-
pendent and subjective task [68]. Incorporating any of the available endmember variability
reduction techniques, such as iterative mixture analysis, spectral feature selection, spectral
transformations, etc., could account for the temporal and spatial variability between and
among endmembers [69]. While the study area encompasses cultivated lands featuring
a variety of crops at different growth stages, leading to intra-class spectral variability for
vegetation endmembers (PV and NPV), we have simplified their representation by assign-
ing each a single spectral signature. Similarly, despite the Berambadi catchment being
characterized by both red and black soil, a singular soil endmember was chosen. It would
be worth exploring the inclusion of two soil endmembers (black soil and red soil) and
multiple PV and NPV endmembers in the unmixing process to better capture the intra-class
spectral variability across this complex and heterogeneous study area.

5.2. Model Performance over the Highest Bare Soil Fractional Cover

The PLSR models M9, calibrated using samples corresponding to the highest bare
soil fractional cover class (>0.7), provided accurate predictions for topsoil clay content
(Tables 3 and 4). These model performances fell within the range reported in the literature
dedicated to bare soil pixels (R2 from 0.53 to 0.75). It slightly surpassed the performance
for clay content estimation (R2

val of 0.55) achieved by Casa et al. [8] using PLSR modeling
based on airborne hyperspectral MIVIS data. It also surpassed the performance for clay
content estimation (R2

val from 0.39 to 0.57) achieved by Castaldi et al. [9] using PLSR
modeling and resampled spectra from various hyperspectral satellite sensors, including
EO-1 Hyperion, PRISMA, HyspIRI, and EnMAP, with the addition of noise and atmospheric
effects. However, this performance was slightly lower compared to some studies employing
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the PLSR model and concentrating on bare soil pixels, such as Selige et al. [70] reporting
an R2

cv of 0.71 from HyMap, Gomez et al. [43] reporting an R2
val of 0.75 from AisaDual

data, and Nouri et al. [10] reporting an R2
test of 0.72 from HyMap data. Finally, it was in

accordance with the performance obtained by Gomez et al. [5], reporting an R2
cv of 0.64

using HyMap hyperspectral data for clay content estimation.
The large range of performances of topsoil clay content prediction using hyperspectral

airborne sensors reported in the literature could be attributed to several factors, such as
the difference in the number of soil samples used to train the regression models [11], the
soil surface roughness and moisture [23], the pedological context and soil diversity in
each study area, the residual PV or NPV cover on the selected bare soil pixels [3], and the
variability in spatial resolution [43].

5.3. Model Performances Depending on Bare Soil Fractional Cover

The performance in clay content estimations decreased slightly in terms of R2
val

and RMSEP as the bare soil fractional cover decreased for both Mp and Mall_p models
(Tables 3 and 4). This result is consistent with the literature, as a better selection of bare
soil pixels by the stricter threshold would ensure lesser spectral influence from non-soil
components [23].

The Mall_p models exhibited satisfactory performances even at lower bare soil fractional
cover, with R2

val consistently exceeding 0.5. This could be attributed to the utilization of
the maximum number of soil samples by these models in their calibration. These results
were consistent with those of Dvorakova et al. [71], where models predicting SOC showed
only slight variations across a Cellulose Absorption Index (CAI) threshold ranging from
0.00 to 3.00. In that study, the R2 values increased from a CAI threshold of 0.00 to reach the
maximum at 0.75 (R2 = 0.59), then decreased until a threshold of 1.25, and finally remained
relatively stable for CAI thresholds between 1.50 and 3.00 (R2 around 0.47) [71]. However,
this stability in performance contrasts with the observations by Bartholomeus et al. [16],
who conducted simulations on the impact of PV on SOC estimation over maize fields and
reported significant inaccuracies beyond 5% of PV cover. Similarly, Ouerghemmi et al. [17]
reported similar results for clay content estimation over vineyards, noting a significant
decrease in accuracy beyond 15% of PV cover.

Finally, following the work of Dutta et al. [11] analyzing the impact of the number of
samples in the calibration dataset on model performance or the work of Vaudour et al. [23]
analyzing the impact of soil roughness and moisture on soil property predictions, future
research could evaluate the impact of these factors in the proposed approach. It is also to
be noted that while each model Mall_p was built using pixels of classes Cp to C9 to obtain
the best possible performance for clay content mode ling, it was applied only to pixels of
the unique class Cp. Increasing the spatial sampling density to have more soil samples per
bare soil fractional cover class would allow extensive studies on the proposed composite
mapping approach by building and testing regression models on each of the bare soil
fractional cover class Cp.

5.4. Clay Content Composite Mapping Approach

The accuracy of the spatialized clay predictions in this study with R2
val , ranging from

0.53 to 0.63 depending on the bare soil fractional cover classes (Table 4), fell within the
range of accuracy obtained from bare soil composite maps in the literature. For example,
Gasmi et al. [72] obtained R2

val of 0.64 for clay prediction using a bare soil composite map
based on reflectance median along multispectral Landsat-TM time-series images, while
Sorenson et al. [31] obtained R2

val of 0.44 for clay prediction using a bare soil composite
map based on Landsat-5 time-series images combined with legacy data.

Despite our modest prediction accuracies, the proposed clay content composite map
showed a correct soil pattern, regardless of the bare soil fractional cover classes, where
clay-rich areas were identified over black soils found in the valley bottoms around the
riverbeds and low clay content areas were identified over red soils found in the uplands
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and hillslopes. While exercising caution in the interpretation of clay predictions at the
local scale, such as the field level, our model demonstrates its utility in providing detailed
and nuanced soil pattern recognition at the regional scale. This is particularly evident in
its ability to discriminate between black and red soils, offering valuable insights into the
heterogeneity of the soil landscape.

The standard deviation of clay predictions along the bootstrap process was consid-
ered an indicator of the prediction uncertainty (Figure 3c). The bootstrap, as proposed by
Breiman [73], measures the uncertainty of predictions by generating several models based
on different subsets that are simulated from a single dataset. Our approach to estimating
and mapping the uncertainties of prediction follows the work of Brodský et al. [74], Gomez
et al. [43], and more recently, Castaldi et al. [34]. Brodský et al. [74] proposed a stochastic
simulation (100 realizations) to assess the uncertainty as the standard deviation of pre-
dictions, Gomez et al. [43] proposed a bootstrap procedure (999 iterations) to obtain the
pixel-wise variance of predictions. Castaldi et al. [34] proposed to estimate the pixel-wise
uncertainty as the ratio between the standard deviation and the mean of predictions. While
both standard deviation and variance reflect the variability in a distribution, the standard
deviation is expressed in the same unit as the original data (% of clay content, in this case),
which can be useful for evaluating both the prediction and uncertainty maps. As these
prediction uncertainties were uncorrelated to the bare soil fractional cover (Figure 3a,c),
they cannot be attributed to the bare soil fractional cover. The prediction uncertainties
could also be related to soil roughness and soil moisture, which may impact the reflectance
spectra and, in turn, the predictions, as shown by Ben-Dor et al. [75], Wu et al. [76], and
Denis et al. [77]. In the context of this study, the soil surface roughness and soil moisture
might be highly variable as they depend on the type and intensity of the irrigation and
tillage operations, respectively, and the study area is characterized by small sized crop
fields and frequent crop rotation throughout the year [38]. So, as demonstrated by Vaudour
et al. [23] and Urbina-Salazar et al. [33], future studies would have to consider the influence
of several spectral perturbing factors and environmental parameters that would affect the
soil property to be estimated, including soil surface characteristics such as soil moisture
and roughness.

5.5. Comparison with Other Approaches to Extend Predictions

To overcome the issue of spectral mixing in imaging soil spectroscopy, several ap-
proaches have been proposed to extend the mapping capability over bare soil pixels. A first
approach consists of (i) extracting the spectrum of “pure soils” from a mixed spectrum of
soil and vegetation and then (ii) using it to predict the targeted soil properties [16–18]. A
second approach consists of (i) creating a bare soil composite map from multi-temporal
data, acquired from a single sensor such as Sentinel-2 [23,33] or Landsat [20,78] or multiple
sensors [24,30] and then (ii) using it to predict the targeted soil properties [23,24]. These
studies synthesize bare soil composites using the median or mean spectral reflectance of
bare soil pixels identified using spectral indices like NDVI, BSI, and NBR2 [20–22,33,72].
While most of these studies used multispectral satellite data to create a bare soil composite
map from multi-temporal data, Diek et al. [79] produced a bare soil composite map from
multi-temporal hyperspectral data acquired from the Airborne Prism EXperiment (APEX)
imaging sensor.

In contrast, our study used a single AVIRIS-NG image and thus benefit ed from the
relatively finer spatial and spectral resolution inherent in airborne hyperspectral data. This
finer spatial resolution of AVIRIS-NG data (4 m) is useful for mapping soil properties over
small-sized fields with highly diverse vegetation types, whereas the spatial resolution of
Sentinel-2 or Landsat data (10–30 m) might present limitations in capturing soil pixels in
such fragmented landscapes. Additionally, the finer spectral resolution of the hyperspectral
AVIRIS-NG data (5 nm) is useful in identifying dry vegetation (which is often a major com-
ponent covering crop fields, especially after harvest), while the limited number of spectral
bands and coarse spectral resolution of Sentinel-2 or Landsat may be insufficient [80].
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Finally, airborne hyperspectral data have limited availability due to the expenses asso-
ciated with the flight and the requirement of clear sky conditions for airborne platforms. The
availability of data from new generation spaceborne hyperspectral sensors like the Italian
PRecursore IperSpettrale della Missione Applicativa (PRISMA) [81], American Hyperspec-
tral InfraRed Imager (HyspIRI) [82], Japanese Hyperspectral Imager Suite (HISUI) [83],
and German Environmental Mapping and Analysis Program (EnMAP) [84] could pro-
vide multi-temporal hyperspectral observations. Combining our proposed approach with
the ones based on bare soil composite images using multi-temporal data [23,71,79] could
significantly increase soil property estimation coverage and help provide associated predic-
tion uncertainties.

6. Conclusions

This study proposed a novel clay content composite mapping approach for extending
topsoil clay content from an airborne AVIRIS-NG hyperspectral image over a heterogeneous
agricultural study area. The approach classified the image pixels according to their bare
soil fractional cover determined by spectral unmixing and assigned specific regression
models to each bare soil fractional cover class to estimate the clay content along with the
uncertainty in prediction. It was observed that the model performance increases with the
adoption of higher bare soil fractional cover thresholds in terms of an increase in R2 and
a decrease in RMSEP values. Despite the modest prediction accuracy, the clay content
composite map showed a correct spatial pattern regardless of the bare soil fractional cover
classes. The potential mapped area in terms of clay content in this study ranged from
10.4% to 52.7% with a bare soil fraction threshold of >0.7 and >0.3, respectively, and
the compositing approach allowed an extension of the mapped surface by 42.42%. The
proposed approach could be adopted to extend the mapping capability of planned and
current hyperspectral satellite missions that have relatively coarser spatial resolutions,
which amplifies the spectral mixing problem. In such cases, a combination of the proposed
approach and multi-temporal images could significantly increase both the extent of the
mapped area and associated prediction performances. Further, additional research will be
needed to mitigate the influence of factors that affect the spectral reflectance of soils, such
as moisture and surface roughness, so as to improve the prediction performance.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/rs16061066/s1, Figure S1: The map of bare soil fractional cover classes
using spectral unmixing (SFClassMap) for the entire study area. Figure S2: The clay content composite
map CompositeClayMap (mean clay content from 100 iterations) for the entire study area. Figure
S3: The map of uncertainties associated with the clay content estimation UncertaintyMap (standard
deviation from 100 iterations) for the entire study area.
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