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Setup of a cost-efficient assignment panel for duck populations. An illustration with 
experimental data. 
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ABSTRACT 
The setup of a flexible and cost-effective 96-SNP assignment panel to be used in Pekin duck 
(Anas platyrhynchos), Muscovy duck (Cairina moschata) and their mule duck hybrid, is 
presented. SNP were selected on the available 600K array in ducks. This SNP array is made of 
two libraries (one for the Muscovy duck, the other for the common duck which encompasses 
the Pekin duck), the intersection of which, after a preliminary elimination on the primer 
length, contained only 399 SNP that were considered a starting point to obtain a final list. A 
first step was to obtain a list of 192 SNP, based on technical properties, using a reference set 
of 600K genotypes from commercial lines. In a second step, to obtain the final 96 markers, a 
subset of the previous reference set was combined with genotypes from 133 Pekin and 127 
Muscovy, which were the parents of the experimental populations to assign. Assignment rates 
were 99%, 96% and 88% in the mule, Pekin and Muscovy populations respectively. The lower-
than-expected assignment rate in the Muscovy population was due to the absence of 16 
parental samples. Availability of an effective and affordable assignment panel was deemed 
necessary after switching from a system where breeders are housed in individual cages to a 
system where females are housed and inseminated in groups. In the latter case, a factorial 
mating design replaced the hierarchical design, common in poultry. This new design impacted 
the population structure, creating more sire x dam combinations, offering possibilities for a 
better estimation of non-additive genetic effects, which could prove relevant in the foie gras 
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sector. Finally, a list of 135 markers resulted from this study that could be used to build an 
efficient 96 SNP panel for any local or commercial population.  
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Introduction 

In most poultry species, selection is carried out using individual cages in order to easily trace 
the pedigree of hatched chicks. Equipped with sloped floor allowing eggs to roll to the front of the 
cage where they are out of the hen’s reach and can be collected by the farmer, these cages gained 
popularity since their introduction in the early twentieth century (Arndt, 1931). Compared with a 
system where hens lay in a pen equipped with trap-nesting devices, broodiness and floor eggs are 
eliminated and eggs are cleaner. In addition, more birds can be housed in a given floor space. 

Yet, in 2021, the European Citizens' Initiative (ECI) “End the Cage Age” called on the European 
Commission to propose legislation to prohibit the use of cages for a wide range of farm animals. 
The Commission now assesses the feasibility of working towards the proposed legislation expected 
in 2027. The poultry breeding companies will then need alternative solution to safely establish 
pedigree of their stocks. Electronic nests relying on RFID can be used to establish a link between 
the egg and the layer (Marx et al., 2002) but they remain to be perfectioned in each concerned 
species to deliver reliable data. In addition, they can only help to build the maternal pedigree. By 
contrast, the use of molecular markers is susceptible to bring a complete solution to the issue.  

This study concerns various populations of ducks, encompassing distinct species with diverse 
characteristics. The common duck (Anas platyrhynchos), which includes the Pekin duck, is 
extensively utilized in Asia for meat and egg production. The Muscovy duck (Cairina moschata), 
indigenous to South America, is prized for its supposedly lean meat. According to Jiang et al (2021), 
the divergence between these two populations occured around 14 million years ago. Additionally, 
the mule duck, a hybrid derived from crossing a Muscovy drake with a Pekin female, accounts for 
over 90% of the production of foie gras, a flagship of French gastronomy. The duck is therefore a 
major poultry species, for which the development of genomic tools promises to be no easy task, as 
markers should exist in the two species, and show variability. 

Indeed, a microsatellite panel had been developed for duck populations in France (Chapuis et 
al., 2010), and was deemed usable in various purebred and crossbred populations. However, this 
panel exhibited assignment rates to a unique parental pair too low to be routinely used at a large 
scale, mainly because markers revealed to be poorly polymorphic within the Pekin and Muscovy 
populations (Chapuis et al., 2010). 

Here we present the setting of an efficient and affordable assignment panel that can be used 
to assign pedigree in populations of Muscovy and Pekin ducks, as well as their hybrids. To build a 
posteriori the pedigree in these populations, the KASPar technology was retained, as providing 
access to affordable small SNP arrays. We will present and discuss its performances to assign 
pedigree in a genetic experimental design. The possible use of the developed molecular tools in 
other populations, such as local breeds, will also be discussed.  

Material and methods 

Designing the Assignation Panel 

Development Strategy of a Cost-Efficient panel 

As an important preliminary note, it is crucial to emphasize that our objective was to develop 
an assignment panel, not a set of markers for linkage analyses. The desired properties of these 
markers differ significantly. Specifically, the SNPs in the assignment panel are preferentially 
situated in "neutral" loci—regions where allele frequencies are not expected to be strongly 
influenced by selection, as might occur if the SNP were located near a QTL. We seek SNPs with 
high minor allele frequency (MAF) that segregate independently to maximize the number of 



possible genotype combinations, thereby enhancing the ability to discriminate between parental 
pairs. Namely, our objective was to assign pedigree in an experimental population of hybrid mule 
ducks and their purebred half-sibs, namely Muscovy duck (Cairina moschata) for the sire line and 
Pekin duck (Anas platyrhynchos) for the dam line. Therefore, we aimed at organizing mating plans 
and building an affordable 96 SNP panel to retrieve the pedigree using molecular information. The 
two parental lines pertained to populations sampled to previously develop the ThermoFisher Axiom 
HD SNP duck array, hereinafter referred to as 600K array (Teissier et al., 2019). This collection of 
genotypes, already available (hereinafter labelled as “reference dataset”), was used as a starting 
point to build the desired panel. The 600K genotypes from Anas platyrhynchos (n=139), Cairina 
moschata (n=79) and some mule ducks (n=45) were used to assess allele frequencies. However, 
as among these genotypes only 15% originated from the same populations as our parental lines, 
a two-step strategy was adopted. In a first instance, a set of 192 SNPs eligible for the chosen 
technology was developed, based on both their frequencies in the three populations and their 
technical properties. This first set was used to obtain first genotypes in our parental lines and in 
some triplets of mule progeny and their parents, i.e. with known pedigree. In a second step, the 96 
SNPs with best technical outcomes and frequencies within and across parental lines were selected 
among these 192 to obtain an efficient panel. They were later used to establish pedigree of our 
offspring batches. Note that the mule duck is the hybrid obtained by crossing Muscovy drakes and 
Pekin females, while the common duck populations (Anas platyrhynchos) represented on the 600K 
reference dataset encompassed many other breeds than Pekin.  

Selection of 192 SNP eligible for KASPar technology 

The KASPar fluorescence genotyping technology was selected. In contrast to the AXIOM 
microarray-based technology, which is appropriate for genotyping a very large number of markers, 
KASPar is cost-effective for a smaller number of SNPs. Additionally, KASPar offers flexibility, 
allowing the genotyping panel to be adapted as needed. This adaptability will be particularly 
beneficial for easily switching from 192 to 96 SNPs. A diagram comparing the two technologies is 
provided in the supplementary figure S1. The 600K chip contained 334,950 SNPs segregating in 
the Muscovy duck library and 331,241 SNPs segregating in the common duck library. A preliminary 
step was to select only markers without polymorphism in the 50 bp before and after the SNP, as 
primer length is longer (50 bp) with the KASPar technology than with the Axiom technology (35bp). 
For that purpose, pool-sequenced DNA from 50 males, sampled from several French populations 
(wild mallard and commercial Pekin and Muscovy) were used (Teissier et al., 2019). Primers for 
markers found on the 600K chip were aligned on the reference genome (Anas platyrhynchos 
genome from (Huang et al., 2013), and Cairina moschata genome from (Thébault et al., 2019)). 
Only SNPs exhibiting an identical primer sequence in the Muscovy and common duck populations 
were kept. After this step, 229,138 SNP remained in the Muscovy library while the common duck 
library contained 198,091 markers. The intersection of both led to a list of 399 candidate SNPs, 
susceptible to be amplified in the mule duck population. Only 396 were awarded the recommended 
PolyHighResolution status from the Axiom Analysis Suite software distributed by ThermoFisher, 
meaning they were found high quality and polymorphic. The final list of 192 SNPs was to be built 
among these 396, applying filters to individuals and triplet genotypes available in the reference 
dataset. PLINK V2.0 (Purcell et al., 2007) was used to perform filtering operations on missingness, 
both for genotypes and SNPs, minor allele frequency (MAF), and Mendelian mismatches. The 
retained criteria were values of 0.95 for call rate (CR) and call frequency, and 0.10 for MAF within 
Pekin and Muscovy populations. About 100 trios representing various genetic types were available 
in the reference dataset and could, therefore, be used to track markers leading to Mendelian 
incompatibilities. Such incompatibilities disqualified the concerned markers. An ultimate filter was 
applied based on linkage disequilibrium (LD), aiming to choose independent markers. 

Setup of the final cost-efficient 96 SNP panel 

A mixture of two groups of animals was used to evaluate the properties of the 192 selected 
SNP. The first group was a subset of the reference dataset composed of 72 individuals: 44 Pekin, 
15 Muscovy and 13 mule ducks, in order to ensure consistency between KASPar and Axiom 
results. The second group encompassed most of the parents (133 Pekin and 127 Muscovy ducks) 
of the experimental batches to assign. To select the final 96 markers with desired properties, similar 



criteria as for the previous step were used: markers were kept when they had maximum call-rate 
of 5% missingness, a within line MAF of 0.15 and absence of Mendelian incompatibilities, the latter 
being assessed using samples with known kinship (nine offspring-sire-dam triplets in Pekin, four 
offspring-sire pairs and two offspring-dam pairs for mule ducks). The 96 selected markers were 
then combined on a single plate to genotype the offspring for reassignment. 

Assessment of the assignment power of the 96 SNP panel 

An evaluation of the assignment power of the marker set was carried out by computing the 
exclusion probability ((Vandeputte, 2012), which is the probability of a randomly chosen parent-pair 
being genetically excluded as parents of a randomly chosen offspring, when that parent pair did 
not produce that offspring (Dodds et al., 1996). It depends on the number of parents and the allele 
frequencies in the parental population. It provides a good quality criterion for the set of markers 
once the parental population is genotyped.  

Sample Collection and Genotyping 

Blood samples from offspring and their parents were collected after slaughtering and sent to 
the INRAE genotyping platform Gentyane (Clermont-Ferrand, France) for DNA extraction and 
genotyping. Genomic DNA extraction was performed using GenFind V2™ (Beckman Coulter) 
commercial kit. The offspring were genotyped for parentage assignment using 96 SNP in KASPar . 
Dynamic Array™ IFC 96 * 96 chips were used with Biomark™ HD Reader to perform the 
competitive PCR and chip reading. The Fluidigm® SNP Genotyping Analysis software was used to 
analyze the genotyping results.   

 
Parentage Assignment Validation in an Experimental Design  

Ethical statement 

The present study was conducted in agreement with the 2010/63/EU regulation for use of 
animals for research purposes. Animals were bred at the INRAE Duck farm (UEPFG, Benquet, 
France) which has been approved for animal experimentation (C40-037-1). Experiments were 
carried out following a protocol approved by the French Ministry of Higher Education, Research 
and Innovation, abiding by European regulations for animal care (APAFIS# 2018013116519672).  

Mating design 

The mating plan was designed with the double purpose of achieving pedigree assignment in a 
limited size population (our testing capacity did not exceed 280 ducklings in Pekin, 220 animals in 
Muscovy and mule ducks) with related breeders, while preserving enough genetic diversity in the 
offspring population to estimate genetic parameters. The retained strategy was i) to split related 
breeders in separate factorial designs and ii) to ensure that the largest possible number of maternal 
origins was represented among ducklings. Each female stock (N= 96 for Muscovy ducks and N=99 
for Pekin ducks) was split in three 35 m² cells with slatted floor. These cells were equipped with 
nests lined with wood shavings to limit the number of floor eggs. To respond to the species 
specificities, 15 partially closed nests were available in each cell for the Muscovy ducks, whereas 
for the Pekin ducks, cells were equipped with two large collective nests without roof. Drakes (N=48 
for Muscovy ducks and N=34 for Pekin ducks) were kept in individual cages, to avoid aggressive 
behaviors. A factorial design was implemented in which groups of females within a given cell were 
inseminated with pre-designed semen pools from four drakes in Muscovy. In Pekin, the number of 
drakes per semen pool varied between three and four. In the Muscovy population, females from 
each cell were divided into four groups of eight individuals, whereas in the Pekin population, they 
were divided into three groups of eleven or twelve individuals. Each group was identified using a 
colored leg ring. Thus, in the Muscovy population, the number of possible parental pairs of an egg 
reduced from 48 males*96 females = 4608 to 3 cells*4 groups*8 females*4 males = 384. In the 
Pekin population, on the basis of the mating plan. this number has been reduced from 3366 to 375. 
Based on preliminary genotyping results, the maximum number of parental pairs in both 
populations was deemed sufficient for accurately estimating genetic parameters. Subsequently, 



dams and sires were assigned to each cell and grouped according to their relatedness, ensuring 
that siblings were not placed in the same group to avoid complications arising from their similar 
genotypes, which could hinder the performance of relatedness assignment software. During the 
two-week reproduction period, each group of females was repeatedly inseminated with pooled 
semen from the same group of drakes. Following common practices, insemination doses were 
calibrated to provide 100 million spermatozoids for Muscovy females and 150 million 
spermatozoids for Pekin females. Contribution of each male was monitored prior to mixing based 
on optical density of ejaculates, to provide an equal number of spermatozoids from each drake 
within an insemination dose.  

Egg collection and hatching 

Eggs were harvested daily during the egg collection period. Day of lay and cell number were 
written on the shell. After candling prior to the hatcher transfer, eggs were put into hatching baskets 
(one hatching basket per day of lay and cell number) and then were ordered in the hatcher based 
on decreasing number of viable eggs. At hatch, ducklings were identified with a wing band until the 
desired number of ducks was reached, i.e. not all hatching baskets were collected. Given the 
above-mentioned limited testing capacity and assuming a female lays only one egg each day, the 
ranking of the baskets based on egg numbers was retained to maximize the number of dams 
contributing to the final retained population. The correspondence between the wing band and the 
cell number was recorded. 

 

A posteriori pedigree assignment 

The experimental population to assign was composed of three batches, each related to a 
genetic type: 157 male Muscovy ducks, 207 male mule ducks and 273 Pekin ducks of both sexes, 
all issued from the parents first genotyped with the 192 SNP panel. The APIS software (Griot et al., 
2020) was used for pedigree assignment. The two available methods were compared. One is based 
on the maximization of the average Mendelian transmission probability of the markers for a given 
offspring and all the possible parental pairs. The other one is based on the exclusion principle, 
where any Mendelian incompatibility eliminates a parental pair until only the true one remains. In 
order to account for genotyping errors, a user-tuned number of mismatches can be allowed and 
was set to two. Offspring exhibiting more than 5% missingness in genotypes were excluded from 
the assignment process, leading to the removal of 9 individuals (i.e. 3.3 % of the initial 273 offspring 
to be assigned) in the Pekin population only. Knowing the effective factorial design, we were able 
to produce a positive list of possible parental pairs and challenge the putative pedigree produced 
by the software with factual elements. 

 

Results and discussion 

First List of 192 Markers 

Among the birds with 600K genotypes available in the reference dataset, only those exhibiting 
a call rate over 0.95 (i.e. with less than 5% of missing information) were retained, leading to a 
subset of 139 Pekin, 79 Muscovy and 39 mule ducks with genotypes, and a final number of 94 
offspring sire dam triplets. Call-rate filtering for markers (maximum 5% missingness) led to a list of 
348 SNPs, among which twelve were discarded because of Mendelian mismatch occurrences. 
SNPs were kept when minor allele frequency exceeded 0.10 in each of the Anas platyrhynchos 
and Cairina moschata populations, which led to a list of 232 SNPs. Only SNPs showing some 
polymorphism in the 39 mule duck samples were kept, reducing the number to 210. This criterion 
was applied to make sure the retained markers were not monomorphic among mules, as 
assignment of mule ducks was of prime interest. Finally, the list of 192 primers was obtained after 
eliminating SNPs exhibiting a LD above 0.25 with other markers.  

Design of an Operational 96 SNP Panel 



Table 1 - Call-Rate and Minor Allele Frequency (MAF) observed for the 192 SNPs in the parental 
populations 

 Anas platyrynchos 
N=133 

Cairina moschata 
N=127 

 Call-rate MAF Call-rate MAF 

minimum 0.940 0.026 0.258 0.047 
1st quartile 0.993 0.222 0.984 0.236 
median 0.993 0.338 0.992 0.323 
3rd quartile 0.993 0.412 1.000 0.418 
maximum 1.00 0.500 1.000 0.500 

 

Elementary statistics about CR and MAF of the 192 SNP for our parental populations are 
displayed in table 1. These results were obtained for the parents of our experimental populations 
(133 Pekin and 127 Muscovy ducks), which explains why MAF were lower than 0.1 for some 
markers, as initial thresholds were set on a different population (our reference dataset). In our 
experimental Muscovy population call-rates were lower than expected. Fifty-seven SNPs exhibited 
missingness rate ranging from 0.42 to 0.75, while they were below 5% in the Muscovy samples 
previously genotyped with the 600K chip. Our hypothesis is that undetected polymorphisms in the 
primer sequences can be incriminated for these poor results. Such polymorphisms remained 
undetected in the few individuals sampled from the same line as our experimental populations. 
These 57 SNPs were discarded from the list. This endorses the strategy of starting with 192 SNPs 
to retain a final list of 96. Six additional markers exhibiting at least one Mendelian mismatch were 
deleted, reducing the list to 133. The minimal MAF criterion was set to 0.10 in each parental 
population, resulting in a list of 111 SNPs. Finally, to ensure desirable properties in the mule duck 
population, 7 SNPs with a call rate below 0.95 in the 39 mule samples were discarded. Eight 
additional markers were thrown away based on the clustering quality of their genotypes in the 
Fluidigm® SNP Genotyping Analysis software, resulting in the final list of 96 SNPs.  

Table 2 - Name and position of the 96 SNP retained in the final list. Position refers to the Anas 
platyrhynchos library. KB745320.1 is a scaffold. 

Chromoso
me 

Position 
(bp) 

Marker name Chromoso
me 

Position 
(bp) 

Marker name 

1 109061561 AX-247363485 7 639397 AX-247355830 
1 198136954 AX-247363213 7 6642882 AX-247355836 
2 9314971 AX-247354978 7 6784807 AX-247364551 
2 22038866 AX-247363748 7 7458603 AX-247364557 
2 25524298 AX-247355025 7 7903291 AX-247355848 
2 48224427 AX-247355091 7 17149047 AX-247364577 
2 57105300 AX-247363838 7 37659499 AX-223686578 
2 72878000 AX-247363840 8 5024747 AX-247355910 
2 95527796 AX-247355149 8 9828535 AX-247364640 
2 106227402 AX-247363883 8 18077068 AX-247355936 
2 125817433 AX-247355201 8 20064891 AX-247364660 
2 130944301 AX-247363942 8 23941232 AX-247364672 
2 133449691 AX-247363956 8 25365172 AX-247364675 
2 142558953 AX-247355235 8 26073249 AX-247364679 
2 148407413 AX-247355249 9 6446865 AX-247364711 
2 152370825 AX-247355261 9 10829712 AX-247356029 
2 152906965 AX-247355267 9 11668820 AX-247364749 
3 178108 AX-247364000 9 13906991 AX-247364763 
3 22898020 AX-247355316 9 14469818 AX-247364765 
3 34203102 AX-247364053 10 11096372 AX-247356148 
3 41332352 AX-247364072 11 15392465 AX-247364917 
3 49962556 AX-247364080 12 4812384 AX-247356238 



3 53539930 AX-247355356 14 6336270 AX-247356370 
3 66856580 AX-247364116 14 14544447 AX-247365129 
3 68837303 AX-247364118 14 14827130 AX-247365133 
3 74410901 AX-247364122 16 2984766 AX-247356455 
3 110150507 AX-247355450 16 3718731 AX-247356463 
3 110627101 AX-247355452 16 9044628 AX-247356481 
4 6220620 AX-247364191 16 9063242 AX-247356483 
4 14309946 AX-247355482 16 13744076 AX-247365233 
4 25865050 AX-247355506 16 14448873 AX-247356512 
4 60721998 AX-247364276 18 5084874 AX-247356525 
5 2505593 AX-247364303 19 10473301 AX-247365299 
5 6739459 AX-247364317 19 10494308 AX-247365301 
5 7253477 AX-247364320 20 2186582 AX-247365309 
5 26939905 AX-247364353 20 6341095 AX-247365329 
5 27529421 AX-247355645 20 8185628 AX-247356614 
5 36094216 AX-247364375 20 9156425 AX-247356617 
5 42690814 AX-247355671 20 11133474 AX-247365344 
5 45865637 AX-247355673 21 12160575 AX-247365370 
5 54586500 AX-247355693 22 2485025 AX-247365384 
5 54717023 AX-247364410 22 2576730 AX-247365386 
5 58368151 AX-247364419 24 2923576 AX-247365450 
5 58440894 AX-247364421 24 4729515 AX-247365466 
5 59563000 AX-247355708 24 5386920 AX-247356749 
5 62080514 AX-247355726 25 1070592 AX-247356762 
6 28171519 AX-247364508 25 1255481 AX-247356766 
6 31606612 AX-247364526 KB745320.1 252400 AX-247364465 

 

The final list of 96 SNP is displayed on table 2, while the list of 192 markers including the MAF 
in the three populations represented in the reference dataset) is given as supplementary material. 
The mean and median distances between SNPs were 2,238,171 bp and 4,433,066 bp, 
respectively, in the 192 SNP panel, and 3,919,876 bp and 7,545,704 bp, respectively, in the 96 
SNP panel. These data suggest that the SNPs are widely dispersed across the genome, a 
characteristic anticipated for markers used in an assignment panel.  



 

Figure 1 - Minor Allele Frequency distribution of the final 96 assignment markers in the experimental 
population 

The MAF distributions of these 96 SNP in our experimental populations are displayed on figure 
1. Figure 2 shows the location of the SNPs on the different chromosomes. The localization of the 
192 SNPs (upper panel) was somehow consistent with the size of chromosomes, with a larger 
number of SNPs on macro-chromosomes compared with micro-chromosomes. No SNP was 
located on chromosome 17 and 23. For the final set (lower panel), the priority was given to technical 
proprieties of the markers, leading to some gaps (no SNP on chromosomes 13, 15, 17 and beyond 
25) and only two on chromosome 1. Nonetheless, the vast majority of SNPs in the final set were 
located on macro-chromosomes (numbered from 1 to 8, following (Skinner et al., 2009)). 
Supplementary Figure S2 illustrates the distribution of SNPs on the Axiom HD chip and the 399 
SNPs shared between the Anas platyrhynchos and Cairina moschata datasets. Notably, 
chromosome 17 is absent from the Axiom chip. Twelve of the 399 common SNPs were located on 
chromosome 16, which may explain the relatively large representation of chromosome 16 in the 
final panel of 96 selected markers. 

A consistency (i.e. percentage of identical genotypes) of 0.997 was observed between the 
genotypes of the 72 individuals in the reference panel, which were obtained with both technologies 
(KASPar and Axiom). Three individuals were genotyped twice with the KASPar technology with 
complete (100%) consistency. As previously stated, the set of animals used to obtain the final list 
of 96 markers contained nine individuals of complete known pedigree. Using these 96 SNPs, all 
offspring in the 9 trios of known pedigree were correctly assigned to their true parental pair using 
the APIS R package. All these factors reinforce our confidence in the panel's effectiveness for 
reassignment in target populations.  



 

Figure 2 - Location of the SNPs on the chromosomes (upper part: 192 SNP panel and lower part:96 
SNP panel) Chromosomes 1 to 8 are macro-chromosomes, chromosomes 9 to 27 are micro 
chromosomes, Z is a sexual chromosome and KB745320.1 is a scaffold. 

Following (Vandeputte, 2012), the exclusion power of the 96 SNP panel, based on the allele 
frequencies in the parental population and assuming random mating, was computed and found 
above 0.99999 in all the populations These values were an encouraging result before attempting 
to build the pedigree of our experimental batches. 

Obtention of a DNA-based Pedigree of our three Experimental Populations 

Assignation rate 

The assignment rate to a unique parental pair was 97% for the mule ducks (201 over 207), 95% 
in the Pekin population (260 over 273), and 87% in the Muscovy population (136 over 157). A 
posteriori, this poor performance in the Muscovy population could be attributed to the absence of 
17 parental samples in the genotyped populations (fourteen females and two males). Yet, with 87% 
of success this set of markers performed at least as well as the previous microsatellite panel 
(Chapuis et al., 2010). In this study, assignment failures occurred when the most probable putative 
parent pairs identified had a relatively high number of Mendelian incompatibilities (above eight, 
when the threshold was set to two mismatches). In addition, this was confirmed by the two-peaked 
distribution of the difference in Mendelian transmission probability between best and second-best 
putative parents (figure 3) for the Muscovy offspring, unlike the two other populations. As stated by 
(Griot et al., 2020) assuming a sufficient power of the panel (exceeding 0.99999 here), this situation 
clearly signaled missing parents. This demonstrates that the main obstacle for a posteriori building 
of pedigree is the absence of one or both parents. To confirm this hypothesis, the absence of the 



same number of parents (two sires and fourteen dams randomly discarded) was simulated in the 
Pekin population and, over 50 replicates, the average assignment rate dropped to 0.80±0.01, i.e. 
a loss of 16 percentage points. In these replicates, the maximum number of observed mismatches 
in the assigned individuals was 2, while, in the non-assigned Muscovy individuals, it ranged 
between 5 and 11, indicating a clear cut-off when one parent is missing. Another cause of APIS 
assignment failures may be the wrong estimation of the empirical threshold to be set in Mendelian 
transmission probability. According to (Griot et al., 2020), a minimal number of 200 offspring is 
required to properly estimate this threshold, while we had only 157 Muscovy. 

Benefits of Mating Plan Knowledge  

The outcomes of an APIS run can be split into three situations: i) direct successful assignment 
to the rightful parental pair, ii) wrong assignment to an erroneous parental pair, or iii) failure to return 
a unique parental pair. In our case, thanks to the availability of the mating plan, the two latter 
situations could be sorted out in most cases. As an illustration, the vast majority of assigned 
parental pairs was fully compatible with both the list of possible mating and the cell number where 
the egg was collected, associated with the wing band. They were, therefore, considered as correct, 
and corresponded to case i. In addition, these pieces of information allowed to detect and fix one 
single wrong assignment returned by the software. In this case, the parental pair ranking first on 
Mendelian transmission probability could materially not be the true one, unlike the second ranking 
pair, exhibiting a Mendelian transmission probability only slightly lower than the first one (case ii). 
Assignment failure (case iii) occurred in very few situations (less than 5% of cases in Pekin and 
mule populations), for instance, when the two most probable parental pairs featured the same sire 
while the different dams could not be separated based on Mendelian transmission probability only. 
In these cases also, supplementary information brought by the wing band, which identified which 
cell number the egg originated from, and thus which mating was possible, helped to designate the 
true pair among the putative pairs proposed by APIS.  

Consequences on the Population Structure 

Avian pedigreed populations are usually bred using individual cages for females, applying a 
hierarchical mating design (a single male used to inseminate p females, a dam having offspring 
from one sire only). In factorial designs allowed by group housing, a female can give birth to 
ducklings with multiple sires, up to four different drakes in our case. Table 3 displays, for each of 
three experimental batches, the proportion of dams which had progeny identified from k males, k 
varying from 1 to 4. The population structure here is different from a hierarchical mating design, as 
less than half of the dams had offspring from only one sire. This remarkable change in the mating 
design is displayed on figure 4, which shows the last batch of Pekin and its two generations of 
closest ancestors (parents and grand-parents). When the hierarchical mating plans operated, much 
less combinations of sires and dams were recruited than when the mating scheme was factorial. 
Population structure varied among the three genetic types displayed in table 3. Without any 
replicate, however, it is not possible to infer the differential consequences to be expected in the 
three populations once the hierarchical mating plan is replaced by a factorial one.  

 



Figure 3 - Distribution of differences in Mendelian transmission probability between best and 
second-best putative parents in the three populations 

 

 

 



Table 3 - Proportion of dams giving birth to ducklings with k different sires 

 Population 

k Cairina moschata Mule ducks Anas platyrynchos 

4 _ 33% 12% 

3 16% 41% 30% 

2 36% 20% 27% 

1 48% 6% 30% 

 

It is useful here to remind that, given the characteristics of poultry reproduction, in particular the 
presence of sperm storage tubules in the oviduct of females, the hierarchical mating plan carried 
out for a long enough period was, regardless of the housing system, the only way to ascertain the 
pedigree of newborn chicks before the availability of molecular tools allowing for parentage 
assignment. Thus, females could be housed in cages or in pens, but they were mated to a single 
male during a given egg collection period. Switching from hierarchical to factorial design is 
recommended first for practical convenience when individual cages are banned: it is indeed easier 
to pick a female based on its colored leg ring and inseminate it with a prepared semen pool than 
randomly pick a female, read its wing band and inseminate it with sperm from the single relevant 
male. Besides, not only the SNP panel allows for parentage assignment but it also provides context 
for the correct estimation of maternal effects, which are no longer confounded with a sire-dam 
interaction in a given laying series, as can be seen on figure 4.  

 

Figure 4 - Pedigree representation of the last two generations in the Pekin line 



Orange circles represent dams and blue circles sires. The upper part describes a hierarchical design 
(only one line originates from each orange circle, as each dam is mated with only one drake), while a 
factorial design is used in the lower part. In that case, females can have progeny with up to 4 males.  

 

In the context of duck breeding for fat liver production, such a change in breeding schemes is 
prone to dramatically impact the way Pekin lines (i.e. the dam pathway of the mule duck) are 
selected. Indeed, their breeding values used to be computed based on purebred performances 
(body weight and laying performances) and crossbred performance measured on mule offspring. 
When these offspring are obtained through a hierarchical mating design, the dam estimated 
breeding value is confounded with the Muscovy drake potential, which may lead to bias, if the sire 
breeding value is not properly estimated, a common situation when evaluations for both Pekin and 
Muscovy lines are not carried out simultaneously. If mule offspring are obtained with multiple drakes 
for each dam, the bias partly wipes out. Besides, in the case of low male fertility, a Pekin female 
will potentially have lesser progeny with a hierarchical mating design than with a factorial mating 
design, due to the male side. Switching from a hierarchical to factorial mating design should, 
therefore, improve the selection process on the dam pathway.  

Table 4 - Dam family structure in three successive batches of mule ducks 

M1 and M2 were obtained using individual cages and a hierarchical mating design. M3 was obtained using a 
factorial design and pedigreed through genotyping. 

batch # anim # dam 
Dam family size  

MEAN VAR 
1 2 3 4 5 6 7 8 9 

M1 247 87 4 17 55 11           2,84 0,49 

M2 282 84 10 15 22 18 14 2 2 1   3,36 2,33 

M3 204 69 18 14 15 11 4 2 4   1 2,96 3,40 

 

On the other hand, management of breeding resources raises new issues in the case of floor 
reproduction and late pedigree knowledge. When the parents of the egg are known at egg collection 
(i.e. with a hierarchical design applied to individually caged females), it is easy to monitor family 
size at hatch and obtain a balanced family representation for a given batch size. This can be 
assessed looking at table 4, which displays dam family structure in three successive batches of 
mule ducks. In the latest mule batch (obtained under factorial design), dams had from 1 to 9 
offspring, with an average of 2.96 ±1.88. Only 70% of the dams had male offspring in this latest 
batch. This proportion was above 85% in the previous batches- with hierarchical designs. This drop 
can originate from the sampling of ducklings at hatch (males kept until the desired number was 
reached), when the dam is not yet known, and may also be due to zootechnical issues, if some 
females did not lay hatchable eggs, or only floor eggs. Such an unbalanced contribution of breeders 
to the progeny due to free mating system has been described by (Brard-Fudulea et al., 2023) in 
red partridge. Therefore, pen size (cell size in our situation) and animal sorting should be carefully 
organized, lest origins may be lost. In addition, there is room for optimization of the mating design. 
Usually mating plans are designed in order to monitor the increase of inbreeding rate, for instance 
by avoiding common ancestors between associated groups of males and females. Here another 
constraint should be imposed on the common ancestors within a group of breeders, lest difficulties 
arise to find the true parental pair. One solution could be to use, in the optimization process, a 
kinship matrix based on genotypes instead of the numerator relationship matrix derived from 
pedigree. One could also imagine minimize the expected inbreeding of future progeny, as do most 
mating plan setup software, while setting a constraint on a molecular kinship of breeders computed 
using marker genotypes. A similar algorithm (simulated annealing mixed with Lagrangian multiplier) 
was used by (Chapuis et al., 2016) to optimize breeder selection under a constraint on kinship. 



Last, but not least, here females were inseminated and doses were calibrated to equilibrate 
male contributions. Ultimately, in breeding companies with large populations, one could be tempted 
to rely on natural mating, using pens with p males and q females, like at the multiplication stage. 
Such condition would add another heterogeneity factor with mating behavior likely to dramatically 
impact family composition. A thorough modeling of selection schemes is, therefore, necessary, to 
face the replacement of hierarchical mating design with factorial ones.  

Assignation power in other duck and poultry populations 

This 96 SNP panel was explicitly designed to perform in our experimental population. Yet, eight 
95 x 96 chips were used to obtain 192 SNP genotypes, leaving some spots available that were 
used to collect genotypes for local breed samples. Thirty-four Duclair and 10 Rouen individuals 
(two local breeds of Anas platyrhynchos) were thus genotyped. Minor allele frequencies averaged 
0.26 and 0.29, respectively, in these two populations. These values were lower than those reported 
for our experimental lines in table 1. They nonetheless led to exclusion probabilities above 0.99 in 
these two populations, giving way to a potential use for improved management of genetic 
resources. Practically, a side outcome of this study is a list of 135 SNPs (i.e. the initial list of 192 
SNPs, deprived of the 57 markers that did not work in our Muscovy population) with reliable 
properties being now available in Anas platyrhynchos, Cairina moschata and their hybrid offspring, 
to setup SNP sets for any commercial or local population. Commercial populations undergoing 
genomic selection are not concerned with the need of an efficient assignment marker set, as the 
thousands of SNP on a chip can also be used to build pedigree. Yet, the question remains for mule 
offspring, as usually, for cost reasons, only selection candidates are genotyped using medium or 
low density (MD) chips featuring 10 to about 50K SNPs. Should individual cages be banned in 
European breeding companies, mule ducks would also require genotyping and then the cost benefit 
ratio of using a 96 SNP set vs. a MD chip should be carefully reevaluated.  

As previously stated, the setup of an operative assignment panel is not an issue in widely 
distributed poultry species, where genomic material has already been developed (chicken, turkey, 
ducks). This can be more complicated with minor species such as guinea fowl or game (partridge 
or pheasant). Yet, in Europe, breeders operating in these species could be also concerned with the 
ban of individual cages. Recently, in red partridge, assignment rate reached 90% using a 96 SNP 
panel (Brard-Fudulea et al., 2023). In their review, (Flanagan and Jones, 2019) noted that as few 
as 31 SNPs could be used to assign all offspring with >99% confidence in a population of wild 
birds.. They also reported many examples (mostly in fish, some in mammals) where 96 SNP panels 
would be sufficient to provide a unique parental pair for each offspring. In our situation, we benefited 
from previous work carried out in ducks and the availability of a 600K microarray. Assignment 
panels could also be obtained de novo using Next Generation Sequencing (NGS) methods. As 
stated by (Guichoux et al., 2011) these technologies enable the identification of large numbers of 
microsatellite loci at reduced cost in non-model species. Consequently, more stringent selection of 
loci is possible, thus further enhancing multiplex quality and efficiency. This potentially could allow 
for a microsatellite panel avoiding the pitfall encountered by (Chapuis et al., 2010) where the 
available microsatellites were not sufficiently polymorphic in both parental populations 
simultaneously. NGS methods also provide different ways to obtain sets of SNPs that could be 
used for parental assignment. For instance, in Atlantic salmon, (Holman et al., 2017) used RAD 
markers (Miller et al., 2007) to identify SNPs to be developed into a marker set. Knowledge of the 
mating plan allowed for a 100% accuracy in parentage resolution with no more than 94 SNPs, even 
when putative parents were related. These results, in accordance with our own, leaves to hope that 
a set of 96 SNP and some practical rules for bird management could be enough to provide an 
affordable tool for effective parentage assignment in most commercial poultry populations.  

 

Conclusion 

In this study, starting from a 600K AXIOM chip, a 96 SNP panel was developed and proved 
effective for correctly assigning parentage in an experimental population of three connected genetic 
types. The technical process, including an intermediate selection of 192 SNPs evaluated in the 



populations of interest, highlighted the importance of careful marker selection when transferring 
between technologies (AXIOM to KASPar). Besides, as poultry populations have limited effective 
sizes, an optimization of the factorial design was needed to avoid genetically similar types of 
progenies in the same pen (issued from sibling breeders), which resolved most of the dubious 
assignations, and the pending ones actually pointed out missing samples in the parents.  

If the 96 markers in the final panel were the best suited for our objective, the 192 SNPs in the 
intermediate panel (or rather 135, as 57 were problematic in our Muscovy population) can be used 
to develop panels that offer the highest reassignment rates, depending on the populations 
(commercial or heritage) being reassigned. 

The ban of individual cages is likely to dramatically impact selection schemes in poultry species. 
Here, we suggest to switch from a hierarchical to a factorial mating design, which leads to clear 
changes in the population structure. Their consequences in the long term for selection schemes 
still remain to be investigated, and the management of the mating plans (i.e. pen size) will have to 
be optimized accordingly. In addition to an impact on the pedigree, banning individual cages will 
also affect the individual recording of laying traits, and the development of connected nesting 
devices to record laying performances of female ducks will also be a concern. 
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Appendices 

Supplementary figure S1: Differences between the two genotyping technologies described in the article. 
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Supplementary figure S2: Distribution of SNPs across chromosomes: Panel A shows SNPs 
from the 600K chip, while panel B presents the 399 SNPs common to both Anas 
platyrhynchos and Cairina moschata libraries. Chromosomes 1 to 8 are 
macrochromosomes, 9 to 27 are microchromosomes, Z represents a sex chromosome, and 
KB745320.1 is a scaffold. 
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