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ABSTRACT
Complex respiratory diseases are a significant challenge for the livestock industry worldwide. 
These diseases considerably impact animal health and welfare and cause severe economic 
losses. One of the first lines of pathogen defense combines the respiratory tract mucus, a 
highly viscous material primarily composed of mucins, and a thriving multi-kingdom microbial 
ecosystem. The microbiome-mucin interplay protects from unwanted substances and 
organisms, but its dysfunction may enable pathogenic infections and the onset of respiratory 
disease. Emerging evidence also shows that noncoding regulatory RNAs might modulate the 
structure and function of the microbiome-mucin relationship. This opinion paper unearths the 
current understanding of the triangular relationship between mucins, the microbiome, and 
noncoding RNAs in the context of respiratory infections in animals of veterinary interest. There 
is a need to look at these molecular underpinnings that dictate distinct health and disease 
outcomes to implement effective prevention, surveillance, and timely intervention strategies 
tailored to the different epidemiological contexts.

Introduction

Complex respiratory diseases entail multifactorial pro-
cesses whose mechanisms are still not fully under-
stood and are a significant problem for animal health 
and welfare, particularly in intensive systems. Moreover, 
these diseases can cause economic losses due to 
reduced productivity, increased morbidity, premature 
mortality, treatment costs, and severe consequences 
for public health and the environment (Ericsson et  al. 
2016; Bond et  al. 2017; Oladunni et  al. 2019; Ericsson 
et  al. 2020; Mach et  al. 2021). There is a growing 
awareness in livestock physiopathology that the viru-
lence of infectious agents can be affected by multi-
species synergic interactions (Kuiken et  al. 2005; Holt 
et  al. 2011; Ericsson et  al. 2016; Bond et  al. 2017; 
Oladunni et al. 2019; Ericsson et al. 2020; Blakebrough-
Hall et  al. 2020). Consequently, a central finding of 
disease complexes involves interactions among holo-
bionts (the host and the many other microorganisms 
living in or around it (Simon et  al. 2019)) and multiple 
etiological agents (Mach et  al. 2021).

New evidence shows that the airway microbiota, 
defined as the complex community of microorgan-
isms living in the respiratory tract, including bacteria, 
eukaryotes, and archaea (Zeineldin et al. 2019), might 
act as a gatekeeper that provides resistance to  
infection on the mucosal surface (Man et  al. 2017; Li 
et  al. 2019). Under normal physiological conditions, 

commensal microorganisms maintain a mutualistic 
relationship with the host by regulating the airway’s 
innate and adaptive immune functions (Mach et  al. 
2021). Classifying healthy versus diseased animals 
based on their respiratory tract microbiomes has 
been done successfully for ruminants (Holman et  al. 
2015; Nicola et  al. 2017; Gaeta et  al. 2017; Zeineldin 
et  al. 2017; Timsit et  al. 2017; McMullen et  al. 2019; 
Zeineldin et  al. 2020; McMullen et  al. 2020; Chai 
et  al. 2022; Mariadassou et  al. 2023), pigs (Correa-Fiz 
et  al. 2016; Wang et  al. 2018; Correa-Fiz et  al. 2019; 
Mahmmod et  al. 2020), horses (UCVM Class of 2019, 
2020), and chickens (Yitbarek et  al. 2018; Ngunjiri 
et  al. 2019; Yitbarek et  al. 2019). However, mucus is 
an often forgotten aspect of the complex respiratory 
system in animals.

While mucus has historically been viewed as a sim-
ple physical barrier, recent work has suggested that 
mucins, the major gel-forming components of mucus, 
have many structural and functional roles in the 
respiratory system (Rose and Voynow 2006; Thornton 
et  al. 2008; Thai et  al. 2008; Ridley and Thornton 
2018; Atanasova and Reznikov 2019). Mucins have a 
high molecular weight and are made of glycosylated 
proteins with hundreds of branching chain carbohy-
drates (O-linked glycans). The carbohydrate structures 
found in mucins and their arrangements, particularly 
within glycoproteins, comprise the glycome (Kunej 
2019, Shipunov and Kupaev 2022).
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The vast diversity of mucin glycome patterns makes 
them ideal for encoding biological information with a 
higher specificity (Shipunov and Kupaev 2022). First, 
they provide a physical and chemical barrier that traps 
and clears inhaled particles and neutralizes toxins, 
allergens, pollutants, and pathogens (Rose and Voynow 
2006; Schnaar 2015; Atanasova and Reznikov 2019; 
Reily et  al. 2019; Qin and Mahal 2021; Brazil and 
Parkos 2022). Second, the mucin glycome has also 
been shown to have immune-modulating properties 
(Hansson 2019). Third, the mucin glycome affects the 
respiratory microbiota composition and functions as 
an environmental niche and a carbon and nitrogen 
source (Rose and Voynow 2006; Bergstrom et  al. 2017; 
Chatterjee et  al. 2020). Reciprocally, the respiratory 
tract microbiota’s composition and activity influence 
mucins’ production and structure, consequently affect-
ing the host’s ability to fight against pathogenic infec-
tions (Pérez-Cobas et  al. 2023). Any disruption in 
mucin structure, quantity, or function and the glyco-
sylation pattern of their glycans can lead to dysbiosis 
and potentially increase the risk of respiratory infec-
tions in livestock (Miao et  al. 2022).

Importantly, recent studies show that noncoding 
RNAs (ncRNAs) tightly regulate mucin production, 
secretion, and glycosylation at the genomic level 
(Skovgaard et  al. 2013; Agrawal et  al. 2014; Fleming 
and Miller 2019; Zhang et  al. 2019). The glycans on 
mucins are products of multiple glycosyltransferases 
and glycosidases working in a coordinated manner 
(Thu and Mahal 2020). Additionally, there are varia-
tions in glycan distribution in the respiratory tract 
between species and different locations within the 
host (Wallace et  al. 2021). One type of ncRNAs impli-
cated in mucin glycome regulation are microRNAs 
(miRNAs) (Agrawal et  al. 2014; Thu and Mahal 2020; 
Jame-Chenarboo et  al. 2022), which are small (~22 
nucleotides) RNA molecules that bind to messenger 
RNAs (mRNAs) and regulate their translation and sta-
bility into proteins. Several miRNAs have been shown 
to regulate the glycan biosynthetic enzymes and reg-
ulate the expression of mucin genes in the respiratory 
tract of humans, including miR-34b/c (Li et  al. 2021), 
miR-146a (Zhong et  al. 2011), miR-378 (Skrzypek et  al. 
2013), and miR-141 (Siddiqui et  al. 2021), but also in 
livestock (Brogaard et  al. 2018; Skovgaard et  al. 2013; 
Timoneda et  al. 2014; Fleming and Miller 2019).

This review aims to give insights into the potential 
avenues of complex respiratory disease, building on 
the surge of recent primary research to debate differ-
ent aspects of the complex and intricate relationships 
between pathogens, the holobiont, mucins, and their 
genomic regulation. Underpinning these mechanisms 
will be crucial for determining how these can be har-
nessed to develop novel interventions to prevent dis-
ease infection and improve animal health and welfare.

Materials and methods

A systematic review and synthesis of relevant quali-
tative research was conducted according to the 
requirements established in the preferred reporting 

items for systematic review and meta-analysis proto-
cols (PRISMA) (the PRISMA-P Group, 2015).

Eligibility criteria and literature search strategy

A systematic and comprehensive search of electronic 
databases, including Medline database (https://
pubmed.ncbi.nlm.nih.gov/), Scopus, ClinicalTrials.gov, 
Science Direct, Springer Link, Google Scholar, and 
EMBASE was done from January 2023 to October 
2023. The search process was completed using the 
keywords: ‘mucin respiratory tract’, ‘respiratory com-
plex disease’, ‘microbiota’, ‘pathogens’, ‘livestock’, 
‘non-coding RNAs’, and ‘animals of veterinary interest’. 
The search was not restricted to the type of study 
(e.g. case-control, prospective cohort studies, ran-
domized control trial, before-and-after study, cross-
over randomized control trial), sample size, age, sex, 
breed, geographic localization, or species. However, 
editorials, systematic and literature reviews, and let-
ters to the editors were excluded. Our analysis did 
not include studies focusing on specific medical con-
ditions, treatments, or demographics. We only con-
sidered peer-reviewed and original research studies 
published from 2000 forward and in English only. All 
papers were exported to the reference database 
Mendeley.

Data extraction

Complete copies of citations coded as potentially rel-
evant were obtained, and those meeting the inclu-
sion criteria were read in detail, and data were 
extracted. The author pulled information about the 
species, study aims, population and sample size, 
experimental design and duration of follow-up, indi-
vidual characteristics, changes in the microbiota 
composition, mucin characterization, and association 
or not with ncRNAs. The primary outcome was the 
microbiota profile, aberrant changes in the mucin 
composition, abundance, or structure, and other rel-
evant outcomes related to ncRNAs and microbio-
ta-mucin interactions. If eligibility could be 
determined, the entire article was retrieved.

Data synthesis

The search conducted on January 2023 resulted in 
1461 articles, most of which were cross-matched 
between databases. Of the remaining and unique 
575 articles, we observed the following list of key 
term combinations: respiratory complex disease, 
microbiota, and animal = 156; airway mucins and 
respiratory disease =195; mucins, respiratory illness 
and sialic acid = 76; airway mucins and respiratory 
microbiota = 30; airway mucins, respiratory microbi-
ota and infection = 17; non-coding RNAs and mucins 
= 91; and the ncRNAs, mucins, and livestock = 10. 
After screening by title and abstract, 160 papers 
were identified as meeting the inclusion criteria. 
Following a full-text article assessment for eligibility, 

https://pubmed.ncbi.nlm.nih.gov/
https://pubmed.ncbi.nlm.nih.gov/
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116 more papers were excluded, leaving 46 experi-
mental studies on farm and companion animals eli-
gible for inclusion in this review (Figure 1). Most of 
the articles were randomized controlled trials. Data 
collection periods spanned from 2000 to 2023, pro-
viding data from humans and animal models.

Discussion

Food-producing animal complexes: holobionts in a 
polymicrobial environment

Complex respiratory diseases are a significant cause 
of morbidity and mortality in livestock, in which pre-
vention, prompt diagnosis, and targeted treatments 
are essential to keep animal health and welfare 
(Ericsson et  al. 2016; Bond et  al. 2017; Oladunni et  al. 
2019; Ericsson et  al. 2020; Mach et  al. 2021). For 
example, the bovine respiratory disease complex 
(BRDC) is a leading cause of morbidity and economic 
losses in wealthy countries (Arcangioli et  al. 2008; 
Salem et  al. 2020; Gaudino et  al. 2023), especially for 
young feedlot calves, ranging from 30% in Belgium 
(van Leenen et  al. 2020), to 49% in Switzerland, and 
up to 90% in the U.S.A (Hilton 2014). Additionally, 
sheep respiratory disease affects many animals 
(Lacasta 2019) and causes significant losses, such as 
carcass condemnations, treatments, and decreased 
production (Lacasta 2019). Moreover, the prevalence 
of the porcine respiratory disease complex (PRDC) in 
finishing pigs continues to grow (Qin et  al. 2018), 
with a morbidity rate ranging from 10% in Denmark 

(Hansen et  al. 2010) to 40% in the U.S.A (Harms et  al. 
2002). As for common livestock animals, the respira-
tory disease complex in commercial birds remains 
widespread in countries (Umar et  al. 2016; Guinat 
et  al. 2018; Belkasmi et  al. 2020; Filaire et  al. 2022), 
causing subclinical infections, mild respiratory symp-
toms, and high production losses in birds raised for 
meat or eggs (Awad et  al. 2014; Guabiraba and 
Schouler 2015; Patel et  al. 2018; Samy and 
Naguib 2018).

These food-producing animal complexes depend on 
more than one pathogen (Vayssier-Taussat et  al. 2015). 
Synergistic interactions between multiple pathogens 
often occur (Mach and Clark 2017; Mazel-Sanchez et  al. 
2019). A plethora of examples in ruminants and swine 
illustrate the framework for coinfection between patho-
gens (Gaudino et  al. 2023), especially in crowded con-
ditions and breeding programs that are overly focused 
on enhancing traits related to production instead of 
robustness and resilience. In this context, multiple viral 
agents can contribute to the development of BRDC 
(Holman et  al. 2015; Alexander et  al. 2020; Chai et  al. 
2022), including bovine viral diarrhea virus (BVDV), 
bovine respiratory syncytial virus (BRSV), bovine herpes 
virus 1 (BHV-1), influenza D virus (IDV) (Oliva et  al. 
2019; Lion et  al. 2021), bovine coronavirus (BCoV) 
(Salem et  al. 2020), parainfluenza three virus (PI3V) 
(Klima et al. 2014; Gaudino et al. 2023), and Mycoplasma 
bovis (Lion et  al. 2021; Gaudino et  al. 2023). In France, 
Mycoplasma bovis is the most frequently isolated etio-
logic agent in these BRDC outbreaks, spreading early 
and widely throughout the affected units (60–100% 

Figure 1.  Data search and extraction (PRISMA flow chart).
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isolation rate and seroconversion) (Arcangioli et  al. 
2008). Mannheimia haemolytica is the primary causative 
pathogen leading to lung damage in sheep (Gupta 
et  al. 2023). Mycoplasma ovipneumoniae, PI3V, and M. 
haemolytica infection predispose sheep to physical and 
welfare impairment (Sharp et  al. 1978; Gupta et  al. 
2023). A synergy between nasal Staphylococcus aureus 
and pathobionts such as Pasteurella multocida and 
Klebsiella spp. has also been reported in pigs (Espinosa-
Gongora et  al. 2016). The co-occurrence of the porcine 
reproductive and respiratory syndrome virus (PRRSV), 
Haemophilus parasuis, and Mycoplasma hyorhinis in 
lungs is frequently observed (Jiang et  al. 2019). The 
swine influenza virus enhances the morbidity of 
Streptococcus suis infection (Meng et  al. 2016). Another 
case in point is that during outbreaks, the low patho-
genic avian influenza viruses (LPAIV) are often coupled 
with coinfections by Mycoplasma gallisepticum, 
Mycoplasma synoviae, Ornithobacterium rhinotracheale, 
avian pathogenic Escherichia coli (APEC) and 
Staphylococcus aureus, which increases the animal’s 
mortality rate (Much et  al. 2002; Umar et  al. 2016; 
Filaire et  al. 2022) and reduce productivity (Umar et  al. 
2016). M. gallisepticum, in turn, changes the whole 
respiratory bacterial community, leading to tracheal 
inflammation injury and oxidative stress (Miao et  al. 
2022). Frequently, these polymicrobial infections signifi-
cantly hinder therapy, prognosis, and overall disease 
management.

Airway mucins: the first line of defense in the 
respiratory tract

The respiratory tract resists environmental injury 
despite continuous exposure to pathogens, particles, 
and toxic chemicals in inhaled air (Fahy and Dickey 
2010). Such resistance is highly dependent upon 
adequate mucus (Fahy and Dickey 2010) that shields 

the lungs from environmental insults through a pro-
cess known as mucociliary clearance (Song et  al. 
2022). Mucus consists of mostly water (approximately 
> 97%), mucins, non-mucin proteins, ions, lipids, and 
immunological factors (Fahy and Dickey 2010; Bansil 
and Turner 2018; Nason et  al. 2021).

Mucins are the primary structural component of 
mucus and are made of O-linked glycoproteins (Ridley 
and Thornton 2018) (Figure 2). There are two classes 
of mucins: those that remain tethered to cell mem-
branes and those secreted, usually by the goblet cells. 
The cell-tethered mucins form the basis of a gel-like 
layer surrounding the cilia (periciliary layer), essential 
to move mucus out of the airways (Ridley and 
Thornton 2018). In contrast, the secreted mucins con-
stitute the mobile mucus layer (Button et  al. 2012). 
The major mucins produced in the airways are the 
secreted polymeric mucins MUC5AC and MUC5B and 
the cell-tethered mucins MUC1, MUC4, MUC16, and 
MUC20 (Thornton et  al. 2008). In humans, MUC5AC is 
mainly synthesized in the epithelial surface of goblet 
cells in the upper airways, whereas MUC5B is primarily 
secreted from mucous cells in submucosal glands 
(Thornton et  al. 2008). Similar conformation is 
observed in pigs (Ermund et  al. 2017; Caballero et  al. 
2021) and poultry (Reddy et  al. 2017). Interestingly, 
host species differ in genetic makeup and expression 
of mucins, resulting in a species-specific mucin and 
glycan repertoire (Pajic et  al. 2022). The mucus layer 
can, therefore, be regarded as a significant host range 
determinant (Wallace et  al. 2021). However, in all spe-
cies, mucins have a central protein core rich in Ser-, 
Pro-, or Thr-repetitive and non-repetitive sequences 
(Ridley and Thornton 2018) decorated with many gly-
can chains. The glycans attached to the protein mucin 
core are highly O-glycosylated (Ridley and Thornton 
2018). These O-glycans are primarily built from  
five monosaccharide components: galactose, N- 

Figure 2.  Schematic diagram of the respiratory mucus layer.
The mucus covers the respiratory epithelia and consists of two layers: the gel layer of secreted mucins and the periciliary layer of cell-tethered mucins. 
The gel layer contains soluble mucins MUC5AC and MUC5B. These soluble mucins significantly contribute to this layer’s viscosity and gel-like proper-
ties. Cilia on the epithelial surface are rich in MUC1, MUC4, MUC16, and MUC20. Host species differ in genetic makeup and mucin expression, resulting 
in a species-specific mucin and glycan repertoire on cell surface receptors and in the gel layer. This figure has been created with BioRender.com.
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acetylglucosamine (GlcNAc), N-acetylgalactosamine 
(GalNAc), fucose, and sialic acid (Hansson 2019), which 
are attached to the protein backbone through an oxy-
gen atom (Varki 2007). Each possible glycan form has 
a potentially unique regulatory capability (Jin et  al. 
2017). The ensemble of glycan forms found in mucins 
and their arrangements, particularly within glycopro-
teins, comprise the glycome (Kunej 2019; Shipunov 
and Kupaev 2022). The study of the glycome, the 
so-called glycomics, is metaphorically akin to forestry; 
each glycoprotein contains glycans (leaves) conju-
gated to a protein (tree trunk) (Critcher et  al. 2022). 
Briefly, glycomics evaluates the structures and func-
tion of glycoproteins in a biological system (Kunej 
2019) and has started to delineate the emerging and 
promising role of the mucinome, which is the ensem-
ble of glycoproteins whose mucin domains make 
them functional (Malaker et  al. 2022). Glycomics has 
started identifying human and mouse airway mucin 
glycan patterns (Walther et  al. 2013 ;Jia et  al. 2020; 
Shipunov and Kupaev 2022). Nonetheless, information 
is scant for livestock. For example, only two studies 
have described the N-glycan patterns, one in pig 
(Byrd-Leotis et al. 2014) and another in chicken (Suzuki 
et  al. 2022) lungs, with no information about the 
O-glycome. The N- and O-glycans differ in structure, 
attachment sites, and functions.

Gaining a complete understanding of the mucin 
glycome’s role in respiratory health is crucial 
because an essential function of glycans in airway 
mucins is to prevent respiratory infections (Schnaar 
2015; Reily et  al. 2019; Qin and Mahal 2021; Brazil 
and Parkos 2022). Mainly, airway mucin glycosyla-
tion patterns are partially responsible for mucus’s 
ability to set protective physical barriers against 
mechanical and chemical damage from the external 
environment (Goto et  al. 2016) and harmful micro-
organisms (Xia et  al. 2005). The terminal sialylated 
glycans, e.g. sialic acids (Sia), are attached to 
secreted and tethered mucins at the cell surface 
and typically bind and trap pathogens, preventing 
them from accessing the respiratory epithelium 
(Varki 2007). Glycans on mucins also possess antimi-
crobial properties and modulate and maintain 
immune homeostasis (Schnaar 2015; Reily et  al. 
2019; Qin and Mahal 2021; Brazil and Parkos 2022). 
They also prevent opportunistic microbes’ virulence 
(Kavanaugh et  al. 2014; Wheeler et  al. 2019), aggre-
gation, and biofilm formation, interfering with 
pathogen adhesion and cell receptor binding 
(Wheeler et  al. 2019).

Despite the various defense mechanisms of 
mucins, some pathogens have developed strategies 
to exploit or manipulate mucins to enhance their 
survival or evade host immune responses. For exam-
ple, Gram-negative and Gram-positive bacteria, 
including Pseudomonas aeruginosa and Staphylococcus 
aureus, induce excessive MUC5B production (Roy 
et  al. 2014; Fan et  al. 2022). Excessive mucus produc-
tion can no longer attenuate microbial virulence and 
pacify opportunistic pathogens (Schulz et  al. 2007) 
(Figure 3). Bordetella bronchiseptica increases MUC1 

production in swine nasal turbinate cells (Park et  al. 
2020). In line with this, viruses can also stimulate 
MUC5AC overproduction in vitro or in vivo on airway 
epithelial cells (Thai et al. 2008). Likewise, Mycoplasma 
gallispeticum, one of the most common pathogens in 
chicken farms, alters the expression of different air-
way mucin genes, leading to an excessive swelling of 
the infraorbital sinuses (Miao et  al. 2022). In extremis, 
pathogens such as Bordetella pertussis and 
Pseudomonas aeruginosa can upregulate MUC2 
expression in lung goblet cells, inducing mucus over-
production, airway obstruction, and even death (Li 
et  al. 1998). Other viruses have evolved surfaces that 
do not adhere to mucins (Schaefer and Lai 2022). In 
contrast, some pathogens can degrade the mucus 
layer to penetrate and release toxins that disrupt the 
epithelial barrier and the porous size or modify 
mucus pH, influencing its viscosity, ionic strength, 
and charge. The combination of mucin-degrading 
proteases, chemotaxis, and flagella allows pathogens 
to move inside the mucus, adhere to cells, and pro-
duce infection (Paone and Cani 2020). Several canine 
mycoplasmas, such as M. canis, M. cynos, and M. 
molare (May and Brown 2009), synthesize sialidase to 
catalyze the hydrolysis of sialic acid, which aids in 
the destruction of the extracellular matrix and, there-
fore, facilitates coinfection. Other viruses, such as 
influenza viruses, some coronaviruses, and paramyxo-
viruses, can thwart the mucin barrier by releasing 
themselves from decoy receptors via activating their 
associated glycan-receptor-destroying enzymes 
(Wallace et  al. 2021).

Once the mucus barrier is surpassed, pathogens 
can recognize and target particular classes of epi-
thelial cell receptors, such as sialylated glycans and 
glycosaminoglycans, to mediate cellular attachment 
and entry (Varki 2007; Stencel-Baerenwald et  al. 
2014). Several RNA and DNA viruses use Sia to 
access the host cells as initial anchors (Huang et  al. 
2016). Given their terminal location and wide distri-
bution, Sias are common binding targets for many 
pathogens (Wasik et  al. 2016). Binding specificity 
goes beyond the presence or absence of an appro-
priate Sia receptor as it depends on the types of Sia, 
their modifications, and their linkage to the underly-
ing sugar chain (Varki 2008). Species-specific differ-
ences in the sialoglycan profile probably contribute 
to mucus being a host range determinant (Wallace 
et  al. 2021). The best-known role of sialic acids is in 
binding influenza and coronaviruses, two of the 
most critical zoonotic threats, to airway epithelium 
(Byrd-Leotis et  al. 2014). Sia linkage type (α2,3 or 
α2,6) is the hallmark structural element governing 
the binding affinity of influenza A viruses (IAV; α2,3 
binding by avian viruses; α2,6 binding by human, 
bovine, and swine viruses) (Wallace et  al. 2021). 
When studying the Sia structures in the chicken tra-
chea and lung, IAVs bind preferentially to the termi-
nal N-acetylneuraminic acid (Neu5Ac), a type of sialic 
acid linked to the penultimate galactose through an 
α2,3 bond, with or without fucosylation and 6-sulfa-
tion, but not to an α2,6 bond (Muranaka et  al. 2011; 
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Suzuki et  al. 2022). Instead, the influenza D virus in 
cattle, domestic pigs, goats, sheep, and horses 
attaches to the 9-O-acetyl form of α2,3 or α2,6-
Neu5Ac (Su et  al. 2017). All influenza viruses tested 
in pigs interacted with one or more sialylated 
N-glycans but not O-glycans or glycolipid-derived 
glycans (Byrd-Leotis et  al. 2014). Similarly, the 
9-O-acetyl form Sia can be used as a specific recep-
tor for bovine coronaviruses (Vlasak et  al. 1988). 
Bovine and porcine rotaviruses strains, dou-
ble-stranded RNA (dsRNA) viruses in the reovirus 
family use the Sia N-glycolylneuraminic acid (Neu5Gc) 
instead (Yu et  al. 2012).

Pathogenic bacteria also use Sias for their benefit 
as a nutrient and to coat themselves with the mole-
cule, avoiding phagocytosis and the lytic action of the 
complement cascade. Other pathogens often carry 
glycan structures on their surface, such as sialic 
acid-specific glycans, to aid in host cell attachment 
and to evade host immunity (Severi et al. 2007; Chang 
et  al. 2014; Schnaar 2015; Macauley et  al. 2015; de 
Jong et  al. 2022). For example, virulent strains of 
Haemophilus parasuis present the sialyltransferase-en-
coding gene lsgB gene, which is involved in the termi-
nal sialylation of the lipooligosaccharides 
(Martínez-Moliner et  al. 2012). This sialylation is a 
molecular mimicry mechanism to evade the host 
immune system. Thus, pathogens partake in molecular 
mimicry by modifying their surface glycans to 

resemble those of host cells, making it difficult for the 
immune system to recognize and target them.

In summary, pathogens exploit their own and host 
mucin glycans to establish infection and survival. The 
presence of glycotopes on tethered or secreted mucins 
can have complex and context-dependent effects on 
health and pathogen interactions. Glycotopes can 
influence pathogen attachment and entry, immune 
responses, and the overall susceptibility of animals to 
infection. Understanding these interactions is crucial 
for developing strategies to prevent infectious dis-
eases and may have implications for prevention devel-
opment and therapeutics.

Airway mucins: sweet and well-coated partners for 
respiratory microbiota

Being both an environmental niche and a food source, 
respiratory mucins are essential drivers of the airway 
microbiota composition, diversity, stability, and func-
tionality (Varki 2007) (Figure 4). This is especially true 
for the airway microbiota, which primarily extracts 
nutrients from the respiratory mucins because nutrients 
are scarce.

Although the respiratory tract microbiome is less 
diverse than the gut (Mach et  al. 2021), the upper 
respiratory tract contains a significant microbial bio-
mass (Zeineldin et  al. 2019). The colonization of the 

Figure 3.  Barrier function, mucus production, mucociliary clearance, and host defenses in the normal and disturbed airway 
epithelium.
Panel 1. In a healthy stage, the mobile mucus layer forms a 3-dimensional network in the respiratory tract lumen containing secreted mucins and 
the residing microbiota. The heavily glycosylated and sialylated mucins (both tethered and secreted) create a barrier against pathogens, which are at 
risk of being expelled by mucociliary clearance after immobilization in the mucus layer.
Panel 2. Despite mucins’ various defense mechanisms, some pathogens have developed strategies to exploit or manipulate mucins (e.g. increase 
mucus production or modify glycan profiles) to enhance their survival or to evade host immune responses. The absence or presence of glycotopes in 
mucins, including sialic acid modifications, are likely to affect the infection potential of viruses. This figure has been created with BioRender.com.



Veterinary Quarterly 7

airways occurs shortly after birth in animals, and 
maturation of the respiratory microbiome can occur 
within just weeks in ruminants, pigs, and birds (Mach 
et  al. 2021). The airway microbiota composition is 
mediated mainly by microbial immigration, microbial 
elimination, and the proliferation rate of bacteria 
(Mach et  al. 2021). The airway microbiota is essential 
for proper lung development (Gollwitzer et  al. 2014), 
immune responses, and overall health (Scher et  al. 
2016; Zeineldin et  al. 2019).

The first insights into the respiratory mucin-micro-
biome interplay in livestock are reported in Table 1. 
Up to date, only five studies have studied the modi-
fications of airway mucins and the microbiota in live-
stock. For instance, microbiota modification due to 
different levels of ammonia concentrations in grow-
ing pigs impacted the thickness and viscosity of the 
mucus layer and increased the colonization of harm-
ful bacteria (Wang et  al. 2019). Furthermore, enrich-
ing the upper respiratory tract with the probiotic 

Bacillus amyloliquefaciens in chicken increased the 
count of goblet cells and the expression of the MUC2 
gene in the tracheal epithelium and the overall respi-
ratory mucosal barrier function (Luan et  al. 2019). 
According to these results, nasal probiotic sprays 
containing Bacillus and Lactobacillus species limited 
the microscopic damages in the respiratory tract 
caused by avian influenza virus H9N2, improved the 
health status of the cilia and the number of goblet 
cells and epithelial cells in the trachea (Rasaei et  al. 
2023). Further, the interplay between the respiratory 
microbiota and the mucosal barrier function against 
pathogens has been recently demonstrated by Miao 
et  al. (2022). These authors showed that transplanta-
tion of respiratory microbiota from the Mycoplasma 
gallisepticum-infected chicks induced inflammatory 
injury, oxidative stress, mucosal barrier damage, and 
reduction of microbiota diversity in the receptor ani-
mals. Specifically, the microbiota transplantation 
induced down-regulating tight junction-related and 

Figure 4. T he microbiome-mucin axis in the respiratory tract: mucin damage matters.
Upper panel: The mutualistic relationship between the airway mucins and the microbiota and derived metabolites under eubiosis. On the one hand, 
the microbiota and their metabolism induce the synthesis of large gel-forming mucins, including encapsulation, glycosylation, changes in fucosylation 
and sialidation patterns, and thickness. On the other hand, the mucin layer serves as an environmental niche and a food source for the microbiota. 
The high diversity of gut mucins impacts the gut microbiota composition, diversity, and stability but also influences immune homeostasis.
Bottom panel: The mutualistic relationship between the mucin glycome and the microbiota under a disrupted airway ecosystem and environment. 
The deterioration of the respiratory mucosal barrier enables virus binding to the cells and the translocation of bacteria and lipopolysaccharides  out-
side the respiratory tract, triggering immune and inflammatory responses, often resulting in increased permeability and, eventually, endotoxemia. 
Changes in the respiratory barrier integrity involve changes in the abundance, expression, and glycosylation of mucins, and thus immune dysregula-
tion, dysbiosis, and risk of disease onset.
This figure has been created with BioRender.com.
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mucin genes, which could be the possible causes of 
dysregulated immune responses (Ericsson et  al. 2016; 
Blakebrough-Hall et  al. 2020) as well as a decrease in 
microbiota diversity.

To better understand the mucin-microbiome syn-
ergy, one must first investigate how and which 
mucin glycans shape and drive respiratory microbial 
composition and function (Belzer et  al. 2017). 
Microorganisms are required to synthesize large 
gel-forming mucins, encapsulation, glycosylation, 
changes in fucosylation, sialidation patterns, and 
thickness (Arike et  al. 2017). Looking deeper at the 
sheer amount of data we have gathered from the 
mucin-microbiome interplay in the gut, we know 
that the microbial ecosystem influences the overall 
gut barrier function, including mucus layer compo-
sition and thickness, intestinal epithelial tight junc-
tion protein structure, antimicrobial peptide 
secretion, and goblet cells abundance at the tran-
scriptional and epigenetic levels. The short-chain 
fatty acids (SCFAs) butyrate and propionate epige-
netically regulate MUC2 gene expression in the 
human goblet cell-like LS174T cells (Burger-van 
Paassen et  al. 2009), which helps maintain intestinal 
barrier function. In line with these findings, an ele-
gant study by Bergstrom and Xia (Bergstrom and 
Xia 2022) showed that the SCFAs resulting from 
O-glycan fermentation regulated intestinal mucin 
barrier function. Bioactive SCFA administration (pri-
marily butyrate) also promotes MUC2 and MUC5AC 
gene expression and increases epithelial cell integ-
rity after damage (Giromini et  al. 2022). A study in 

piglets concluded that gastric infusions of SCFAs 
maintained intestinal barrier function by increasing 
the expression of intestinal epithelial tight junction 
proteins occludin and claudin-1 genes and decreas-
ing the gene and protein abundances of IL-1 in the 
colon, coupled with reduced intestinal epithelial cell 
apoptosis (Diao et  al. 2019). In this regard, the 
microbiota, the microbial metabolites, the mucins, 
the epithelium cells, and tight junctions are likely 
interdependent, so the loss of one diminishes the 
other (Capaldo et  al. 2017). Taking advantage of 
human intestinal enteroids, Pearce et  al. (2020) 
demonstrated that the infusion of microbial-derived 
SCFA affected the overall gut barrier function, 
including increased expression of mucin genes, 
goblet cell markers, common mucus constituents, 
and antimicrobial peptides (Pearce et  al. 2020). 
Butyrate administration in Caco-2 cell monolayers 
restored occludin and F-actin delocalization and 
enhanced tight junction protein expression (Peng 
et  al. 2009). Besides SCFAs, bacteria and microbial 
products such as LPS, flagellin, and lipoteichoic 
acid, among others, can also modify mucin compo-
sition and structure. Accordingly, an in vitro study in 
human mucin-secreting goblet cell line HT29-MTX 
revealed that bacterial LPS increased mucin MUC5AC, 
MUC5B, and cytokine mRNA expression (Smirnova 
et  al. 2003). Interestingly, co-culturing experiments 
of Akkermansia muciniphila with non-mucus-degrad-
ing butyrate-producing bacteria (Belzer et  al. 2017) 
indirectly stimulated intestinal butyrate levels near 
the intestinal epithelial cells with potential health 

Table 1.  First insights into the respiratory mucin-microbiome interplay in livestock.The tracheal tissue samples

Species Objective Type of sample Airway microbiota
Associated mucin-microbiota 

putative role Ref

Pig (n = 120 
Duroc × Landrace  
× Yorkshire)

Effect of continuously exposed 
to gaseous ammonia at 
0,5, 10, 15, 20, and 25 ppm

nasal swabs 16S rRNA gene analysis The expression of MUC5b in the 
20 ppm group was the highest, 
concomitant with harmful 
bacteria colonization. In contrast, 
the alpha diversity of the nasal 
microbial community decreased

Wang et  al. 
(2019)

Chicken (n = 320 
one-day-old 
healthy males 
commercial breed)

Effect of probiotics (Bacillus 
amyloliquefaciens) using a 
nasal spray on respiratory 
mucosal barrier 

tracheal lavage 
fluid 

Non Probiotics enhanced MUC2 
production at day 21. Evoke the 
role of the airway microbiota 
indirectly. 

Luan et  al. 
(2019)

Chicken (n= 
non-specified; 
one-day-old white 
leghorn healthy 
males)

Effect of Mycoplasma 
gallisepticum infection on 
respiratory microbiota 
composition and 
respiratory mucosal barrier

respiratory 
tract  lavage 
fluid

16S rRNA gene analysis Respiratory microbiota transplanted 
from Mycoplasma infection 
increased  MUC5AC,  MUC5B 
levels and decreased  MUC2  gene 
expression, while Chao1 and 
Shannon indices of respiratory 
microbiota were significantly 
reduced

Miao et  al. 
(2022)

Chicken (n = 40 
one-day-old 
commercial breed)

Effect of spraying a single or 
mixed cocktail of 
Lactobacillus  spp. 
and  Bacillus  spp. on 
respiratory mucosal barrier 
following avian influenza 
virus H9N2 infection

tracheal tissue 
samples

Non Probiotics administration lowered 
cilia destruction and tracheal 
goblet cells at 3 and 7 days post 
infection. Evoke the role of the 
airway microbiota indirectly

Rasaei et  al. 
(2023)

Chicken (n = 300; 
one-day-old males 
commercial breed)

Effect of glycans 
supplementation (Mulberry 
leaf polysaccharides) on 
the mucosal barrier 
immune response

Non The number of goblet 
cells and the mRNA 
levels of  MUC5AC, 
and  MUC5B were 
higher than those 
supplemented with 
glycans. Evoke the 
role of the airway 
microbiota indirectly

Chen et  al. (2021)
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benefits to the host. Confirming these findings, 
exposing human enteroids to cecal contents 
obtained from mice treated with A. muciniphila 
stimulated the MUC2 protein and MUC2 mRNA 
expression, along with mucus thickness, compared 
to the control (Kim et  al. 2021).

The mucin-microbiome data from gut studies 
undoubtedly opens possibilities to explore terra 
incognita in the respiratory health and disease con-
texts for animals of veterinary interest.

The mucin-microbiome interplay is malleable

The problems mucus and mucins can cause are evi-
dent during upper respiratory tract colds 
(Hansson 2019).

Persistent mucus accumulation and airway block-
age pervasively impair microbial clearance, enhance 
the transition from the microbiome to the pathobi-
ome (Fahy and Dickey 2010; Ridley and Thornton 
2018), and increase inflammation (Rose and Voynow 
2006; Meldrum and Chotirmall 2021). The conversion 
from healthy to pathologic mucus occurs through 
multiple mechanisms (Fahy and Dickey 2010), includ-
ing abnormal secretion of salt and water, increased 
submucosal gland mucus secretion (Hoegger et  al. 
2014), mucus infiltration with inflammatory cells, and 
heightened broncho-vascular permeability with respi-
ratory distress (Fahy and Dickey 2010) (Figure 4).

Beyond mucin expression alterations, glycan gly-
cosylation patterns have also been linked to respira-
tory physiopathology (Hoffman et  al. 2020; Shipunov 
and Kupaev 2022). During inflammation, mucin gly-
cans exhibit reduced chain length, sulfation, fuco-
sylation, and increased sialylation (Schulz et  al. 2007). 
It is important to note that seemingly minor differ-
ences in glycan structures may result in significant 
pathophysiological outcomes. As an illustration, a 
shift in the nine-carbon backbone monosaccharides 
of the sialic acid might enhance the virus binding 
and infection of cells, facilitating increased coloniza-
tion and the development of lung disease (Carnoy 
et  al. 1994). The specific roles of mucins and their 
glycome during respiratory infections can vary 
depending on the pathogen, tissue, and host factors 
involved (Hoffman et  al. 2020).

Given the intertwined relationship between the 
mucin and microbiota and the considerable mallea-
bility of the microbiota relative to host genomes, 
the possibility of influencing respiratory tract health 
via microbiota manipulation seems possible 
(Hoffman et  al. 2020). Today, controlling pathogens’ 
access to glycans on mucins via microbiome modifi-
cations has proven to be a promising method to 
prevent infection (Hoffman et  al. 2020). An elegant 
study by Pereira et  al. (Pereira et  al. 2020) demon-
strated that the administration of a synthetic bacte-
rial consortium decreases the availability of sialic 
acid from mucins by cross-feeding microbes, which 
consequently protects against an infection caused 
by microbial pathogens that use these sugar groups 

as binding sites, e.g. viruses such as influenza virus, 
reovirus, adenovirus, and rotavirus (Stencel-
Baerenwald et  al. 2014). Therefore, synthetic micro-
bial communities expressing sialidase activity might 
improve mucosal health and prevent complex respi-
ratory diseases (Almagro-Moreno and Boyd 2009). 
Complementary to this approach, nebulizing hepa-
ran sulfate-consuming commensal bacteria consis-
tently contained SARS-CoV-2 attachment in 
higher-risk individuals (Clausen et  al. 2020). At the 
same time, nebulized fucose has been shown to 
reduce bacterial adhesion and improve lung func-
tion in animal models of respiratory infections 
(Hauber et  al. 2008). Determining the ideal microbial 
composition for optimal respiratory health and 
immune function in livestock is still a topic of ongo-
ing research (Holman et  al. 2015; Amat et  al. 2017; 
Bond et  al. 2017; Klima et  al. 2019; Zhang et  al. 
2019; McMullen et  al. 2020; Guo et  al. 2020; 
Alexander et  al. 2020; Mahmmod et  al. 2020; Pirolo 
et  al. 2021; Chai et  al. 2022). The nature and the 
mechanisms behind respiratory microbiome and its 
interactions with the mucins and glycome profiles in 
livestock are not understood. Yet, Chen and col-
leagues have demonstrated in chicks that mulberry 
leaf polysaccharide (a type of glycan) has the poten-
tial to modify mucin structure and activate respira-
tory mucosal immunity against Newcastle disease 
virus, possibly via modifications in the airway micro-
biota (Chen et  al. 2021). It seems likely that there is 
a substantial amount of untapped potential con-
cerning the airway microbiome-mucin interplay in 
the respiratory tract of livestock and how external 
factors, such as the administration of nebulized syn-
thetic bacterial consortium or the use of food con-
taining synthetic and natural dietary glycans 
designed to target microbial activity at the mucosa. 
In the gut, such approaches have shed light on how 
alterations to the biochemistry of mucins and mucus 
impact their protective capacity and restore healthy 
mucosal function (Belzer et  al. 2017; Ottman et  al. 
2017; Belzer 2022). Several examples of dietary gly-
cans already show their potential to resolve mucus-
layer defects associated with disorders such as type 
2 diabetes, obesity, and gastrointestinal pathologies 
(e.g. Crohn’s disease, ulcerative colitis, and colorectal 
cancer) (reviewed by (Clark and Mach 2023)).

Lastly, a new avenue is understanding if gut 
microbiota-derived metabolites could be critical 
molecular mediators of the airway microbiota-mucin 
interplay and could affect the onset of respiratory 
diseases. It has been recently suggested that respira-
tory comorbidities might be partly regulated by the 
bidirectional gut-lung intercommunication (Dang and 
Marsland 2019), the so-called gut-lung axis (Enaud 
et  al. 2020). This bidirectional communication likely 
occurs via the translocation of gut microbes and 
metabolites and local and systemic immune 
responses (Budden et  al. 2017). Research is now deci-
phering how the gut microbiota and its metabolites 
modulate the onset of respiratory infections and 
whether the airway microbiota, in turn, influences 
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immune cells to adjust inflammatory responses at 
distal sites such as the gut (Wypych et  al. 2019). For 
instance, in a study developed in chickens, 
Lactobacillus salivarius intake alleviated lung inflam-
mation injury caused by Mycoplasma gallisepticum 
infection and increased host defense against 
Escherichia coli by improved gut microbiota composi-
tion (Wang et  al. 2021). More examples of livestock 
are reported elsewhere (Mach et  al. 2021).

Non-coding RNAs: controlling mucin production 
and glycome patterns

Understanding the genetic and genomic regulation 
of mucin production and glycosylation patterns 
offers another way to modulate mucin levels, affect-
ing specific signaling pathways or transcription fac-
tors involved in their synthesis and glycosylation, 
among others. However, transmembrane and secreted 
mucins have a complex glycosylated nature and 
extreme size (Gum 1992), and they are products of 
an orchestrated collection of enzymes working in a 
coordinated manner (Thu and Mahal 2020).

As conserved regulatory agents, ncRNAs have 
gained attention as crucial mucin and glycome regu-
lators at the transcriptional, posttranscriptional, and 
translational levels. The ncRNAs are RNA molecules 
that do not encode proteins but have regulatory or 
structural functions within cells (Kosinska-Selbi et  al. 
2020). ncRNAs are mainly divided into small ncRNAs 
and long ncRNAs. MicroRNAs, circular RNAs, and their 
precursor pri-miRNAs are small ncRNAs (sncRNAs) 
ranging from ~22  bp in their mature form to ~70  bp 
in their premature stem-loop form. LncRNAs are long 
ncRNAs transcribed by RNA polymerase II (RNA Pol II) 
and are longer than 200 nucleotides. Like miRNAs, 
lncRNAs have emerged as new regulators of gene 
expression and have become a focal point of bio-
medical and veterinary research (Do et  al. 2021).

MiRNAs regulate gene expression at the post-tran-
scriptional level by binding (usually with imperfect 
complementarity) to the 3-UTR of a target mRNA, 
resulting in translation degradation or inhibition. A 

single miRNA can have hundreds of target genes, 
and multiple miRNAs can converge on a single 
mRNA. Unlike transcriptional regulators, the role of 
miRNAs is not to turn a gene on or off but to regu-
late gene expression (Thu and Mahal 2020). On the 
other hand, the lncRNAs regulate the genomic out-
put at many levels, from transcription to translation 
(Malmuthuge and Guan 2021). The effect of lncRNAs 
is mainly achieved by interfering with the expression 
of downstream genes, supplementing or interfering 
with the mRNA splicing process, and regulating pro-
tein activity (Wang et  al. 2021). An individual tran-
scriptome contains more lncRNAs than mRNA 
molecules (Foissac et  al. 2019). For livestock, the 
most significant number of identified lncRNA tran-
scripts is available for pigs and cattle (Foissac et  al. 
2019). Poultry is represented by less than half of the 
records. Genomic annotation of lncRNAs showed that 
most are assigned to introns (pig, poultry) or inter-
genic (cattle) (Kosinska-Selbi et  al. 2020). The number 
of detected miRNAs in farm animal species is lower 
than lncRNs, from 1,064 in cattle to 267 in goats and 
406 in pigs (miRbase release 22; http://www.mirbase.
org/). However, miRNAs have received more research 
attention and scrutiny than lncRNAs in livestock and 
companion animals (Pacholewska et  al. 2016; Mach 
et  al. 2016).

Given the emerging importance of ncRNAs in 
health and disease and their potential to modify 
genetic expression, it is clear that more attention 
should be paid to ncRNA and mucin interactions in 
the context of respiratory infections. To this point, 
data on ncRNAs’ roles in mucin regulation has been 
mainly generated by well-controlled murine models 
and humans. In humans, mucin expression during 
infection is regulated by a panoply of miRNAs, 
namely miR-34b/c (Li et  al. 2021), miR-146a (Zhong 
et  al. 2011), miR-378 (Skrzypek et  al. 2013), and miR-
141 (Siddiqui et  al. 2021). MiRNAs can also control 
the expression of glycosyltransferases and modify the 
glycome on mucins (Agrawal et  al. 2014; Thu and 
Mahal 2020). Jame-Chenarboo et  al. (2022) estab-
lished that miRNAs are substantial regulators of cell 
glycosylation. Therefore, changes in mucin 

Table 2.  Functional implications of mucin regulation by ncRNAs in livestock infected with viruses with respiratory tropism.

Species Mucin ncRNA
Respiratory 
pathogen

Associated putative 
role Reference

Pig (n = 20, 4-week-old 
Landrace)

MUC1 (suggested) 
expression from 
olfactory bulb 
samples

miR-133a, miR-133b, 
miR-378, and miR-206

Aujeszky’s disease 
virus

Immune response 
against the viral 
infection

Timoneda et  al. 
(2014)

Pig (n = 20, cross-bred) MUC1 expression 
analyzed from nasal 
swab samples

miR-15a, miR-21, miR-146, 
miR-206, miR-223, and 
miR-451

Influenza A virus 
subtype H1N2

Antimicrobial functions Skovgaard et  al. 
(2013)

Pig (n = 25) MUC1 expression 
analyzed from nasal 
swab samples

ssc-miR-15a, ssc-miR-18a, 
ssc-miR-21, ssc-miR-29b, 
and hsa-miR-590-3p)

Influenza A virus 
subtype H1N2

Modulators of the 
pulmonary innate 
immune response

Brogaard et  al. 
(2018)

Pig (n = 28; 28-week-old, 
crossbreed)

Mucin-type O-glycan 
biosynthesis pathway 
analyzed from whole 
blood samples

ssc-miR-27b-3p and 
ssc-miR-23a-3p

PRRSV Bolster mucosal 
immunity

Fleming and Miller 
(2019)

Poultry (chicken 
macrophage and 
chick 10-day-old 
embryos) 

Mucin-type O-glycan 
biosynthesis pathway

Large number of circRNAs Avian leukosis 
virus  subgroup 
J (ALV-J)

Several immune-
associated 
functions

Zhang et  al. (2019)

http://www.mirbase.org/
http://www.mirbase.org/
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glycosylation patterns, such as increased sialylation, 
will likely alter mucin’s binding properties with 
pathogens and their protective functions.

The mechanisms and results based on laboratory 
animals have yet to be validated in animals of veter-
inary interest due to the limitations in obtaining 
samples and the complexity of production systems, 
hosts, biotic and abiotic stressors, and respiratory 
infectious etiology. Nevertheless, recent studies indi-
cate that miRNAs tune host mucins to face respira-
tory pathogen infection in farm animals (Table 2). In 
experimentally infected pigs with the Aujeszky’s dis-
ease virus, miR-206 was upregulated and likely inter-
acted with the MUC1 gene, whose primary function 
is to act as a physical barrier by trapping pathogens 
(Timoneda et  al. 2014). Similarly, a set of miRNAs 
responded to swine Influenza A virus subtype H1N2 
infection (e.g. miR-15a, miR-21, miR-146, miR-206, 
miR-223, and miR-451) by inducing the antimicrobial 
protein MUC1 (Skovgaard et  al. 2013). Mucin-type 
O-glycan biosynthesis pathways were modified at the 
molecular level via miRNA action following PRRSV 
infection in pigs. For instance, PRRSV infection upreg-
ulated ssc-miR-27b-3p and ssc-miR-23a-3p and 
induced the expression of mucin type-O pathway 
(Fleming and Miller 2019). In a possible attempt to 
bolster mucosal immunity, the avian leukosis virus 
subgroup J also caused changes in the mucin-type 
O-Glycan biosynthesis in lungs (Zhang et  al. 2019). 
Collectively, these studies reveal a role for miRNAs as 
potent host-derived regulators of respiratory patho-
gen infection that broadly affect how the host pre-
vents mucosal infections.

Much work is needed to explain the influence of 
ncRNAs on mucin and pathogen virulence and 
infectivity.

An extra difficulty lies in the fact that the presence 
and activity of microbiota might also regulate the 
host ncRNAs (Oliveira et  al. 2023; Aggeletopoulou 
et  al. 2023). Indeed, the microbiomes and microbial 
metabolites such as secondary bile acids and SCFAs 
have been shown to regulate the expression of miR-
NAs (Pant et  al. 2017) and lncRNAs in the intestine 
epithelial cells (Dempsey et  al. 2018), macrophages 
(Gao et  al. 2020), and other metabolic organs 
(Dempsey et  al. 2018) in adult mice or in vitro 
(Chowdhury et  al. 2017) studies, suggesting that the 
gut microbiome regulates the expression of both cod-
ing RNAs and ncRNAs regionally and systemically 
(Sommer et  al. 2015). For instance, a study investigat-
ing early rumen development in neonatal dairy calves 
revealed that nearly 46% of miRNAs expressed in the 
rumen are responsive to SCFA (Malmuthuge et  al. 
2019). Another experiment on rumen microbiota (Ricci 
et  al. 2022) suggested that the microbiota influences 
the host’s miRNA expression patterns and that the 
host potentially helps shape the gut bacterial profile 
by producing specific miRNAs. The airway microbiota 
and ncRNA relationship mechanisms are not yet 
defined, and no knowledge exists about the ncRNA 
regulatory mechanisms behind mucin-microbiome 
interactions in the respiratory tract. Still, these 

emerging nuances in the gut illustrate that the micro-
biome might interact with the host genome directly 
(direct modulation of transcriptome) and indirectly via 
the expression of ncRNA (Malmuthuge and Guan 2021).

Directions for further research

The few studies that satisfied our inclusion criteria 
have emphasized the requirement for more cohort 
studies designed to identify respiratory microbi-
ome-mucin modifications and their genomic control 
to understand better the interplay between patho-
gens, respiratory health, and the use of interventions 
such as pre-and probiotics.

New avenues might include the use of cut-
ting-edge tools to describe how and which mucin 
glycans shape and drive respiratory microbial com-
position and function under eubiosis in different 
farm species and dissect the glycan-mediated inter-
actions within the microbiota ecosystem. Integrating 
insights from diverse fields, such as metagenomics, 
metatranscriptomics, and glycomics, will foster a 
comprehensive understanding of glycome-microbiota 
dynamics. Coupled with this, longitudinal studies 
analyzing pre- and post-infection modifications of 
mucin glycan and microbiota profiles in the respira-
tory tract will enable the identification of the evolv-
ing nature of this relationship and discover molecular 
features related to resilience or recovery within the 
same subject. Pathogen and species-specific studies, 
encompassing bacteria and viruses combined, are 
obliged, as some pathogens likely have more specific 
effects on the microbiota and mucins than others.

Shifting the focus toward functional characteriza-
tion of glycan-microbiota interactions, studies 
designed to explain the influence of non-coding RNAs 
on holobiont response (at the transcriptional and epi-
genetic levels) under infection and the mechanisms 
through which host glycan expression influences 
microbial composition and pathogen protection are 
needed. Lastly, compelling studies are also required to 
evaluate the therapeutic potential of modulating the 
glycome and the microbiota composition for respira-
tory health benefits. Experiments designed to deci-
pher the role of nebulized synthetic bacterial 
consortiums or food containing synthetic and natural 
dietary glycans on the microbial activity at the mucosa 
and the holobiont response might have therapeutic 
implications. By unraveling these aspects, we will 
comprehensively overview the exciting developments 
and future directions in mucin-microbiota studies.

Concluding remarks

In livestock pathology, there is a growing awareness 
that respiratory infectious agents frequently do not 
operate alone, and their virulence and pathogenicity 
are likely affected by their interaction with the 
microbiome-mucin interplay. Therefore, microbi-
ome-mucin interactions are a significant player in 
the health of the respiratory tract. As such, they 
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contain signals that can be used to identify airway 
pathophysiology. There are fundamental knowledge 
gaps for species of veterinary interest. Furthermore, 
ncRNAs may play a vital role in the microbiota-mu-
cin crosstalk via modifying the holobiont. The next 
phase in the livestock research area should focus on 
understanding whether particular microbiome-mu-
cin glycome structures confer resistance and resil-
ience to respiratory pathogen infection and which 
are the critical factors controlling the mucin-microbi-
ome interconnection, including the role of ncRNAs. 
It is now time to harness the forecasting power of 
the microbiome-mucin synergies.
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