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Abstract

Bycatch rates are essential to estimating fishery impacts and making management decisions, but data on bycatch are often limited.
Tropical tuna purse seine (PS) fisheries catch numerous bycatch species, including vulnerable silky sharks. Even if bycatch proportion
is relatively low, impacts on pelagic ecosystems may be important due to the large size of these fisheries. Partial observer coverage
of bycatch is a major impediment to assessing impacts. Here we develop a generic � modeling approach for predicting catch of four
major bycatch species, including silky sharks, in floating object-associated fishing sets of the French Indian Ocean PS fleet from 2011
to 2018 based on logbook and observer data. Cross-validation and variable selection are used to identify optimal models consisting of
a random forest model for presence–absence and a negative binomial general-additive model for abundance when present. Though
models explain small to moderate amounts of variance (5–15%), they outperform a simpler approach commonly used for reporting, and
they allow us to estimate total annual bycatch for the four species with robust estimates of uncertainty. Interestingly, uncertainty relative
to mean catch is lower for top predators than forage species, consistent with these species having similar behavior and ecological niches
to tunas.

Keywords: prediction intervals; random forest; general additive model (GAM); silky shark (Carcharhinus falciformis); dolphinfish (Coryphaena hippurus); rainbow
runner (Elagatis bipinnulata); rough triggerfish (Canthidermis maculata)
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Introduction

Purse seine fishing is a fishing technique that consists of tar-
geting and catching entire fish schools in surface waters by en-
circling them with a fishing net called a seine. In the tropical
oceans, purse seine (PS) is used extensively to target tropical
tunas, specifically skipjack tuna (Katsuwonus pelamis), yel-
lowfin tuna (Thunnus albacares), and bigeye tuna (Thunnus
obesus) (Kaplan et al. 2014). Tropical tuna fisheries are ex-
tremely important economically and in terms of protein pro-
vision for human consumption (Amandè et al. 2010, Bell et al.
2019), catching annually over 2 million tons of target tunas
worldwide (Pons et al. 2023). In addition to target species,
tropical tuna fisheries catch non-target species collectively re-
ferred to as bycatch. These species can be discarded at sea,
retained to be sold on local markets, or consumed on board
(Amandè et al. 2010). In the Indian Ocean, purse seiners have
the obligation to retain bycatch on board since 2018 (IOTC
Resolutions 17/04 and 19/05), with the exception of species
concerned by non-retention measures (e.g. turtles, cetaceans,
rays, most sharks, etc.). Even if the ratio of bycatch to tar-
get tuna catch is relatively low for tropical tuna PS fisheries
(roughly 5−10%; Kaplan et al. 2014), the impact on pelagic
populations and ecosystems can be important, specifically for
long-lived species with low reproductive rates (e.g. sharks and
rays; Dulvy et al. 2014, Pacoureau et al. 2021). Efforts to re-
duce bycatch are mandated for sensitive or protected species,
or species that are essential to the proper functioning of the
marine ecosystem (FAO 2020). However, impact studies for
©The Author(s) 2024. Published by Oxford University Press on behalf of Internat
distributed under the terms of the Creative Commons Attribution License (https:/
distribution, and reproduction in any medium, provided the original work is prop
ycatch species are often complicated by a lack of bycatch
ata recorded in fisheries logbooks, which typically only in-
lude data on target species.

For this purpose, observers are deployed on board fishing
essels to provide data on bycatch (specific composition, num-
ers, and size samples) and discards of tuna. In the case of the
rench PS fleets in the Indian and Atlantic Oceans, 10–20%
f fishing trips are covered by observers financed by the Euro-
ean Union Data Collection Framework (DCF), with a com-
lementary observation program supported by industry (Gou-
on et al. 2017) increasing total observer coverage to ∼50%
f fishing sets in the Indian Ocean and nearly 100% of fish-
ng sets in the Atlantic Ocean. Though these partial data pro-
ide essential information on bycatch rates and species com-
ositions, accurate estimates of total PS mortality of specific
ycatch species, including uncertainties, are essential to un-
erstanding mortality rates and causes, and identifying pop-
lation trends and overfishing. Similar issues of partial ob-
erver coverage are impediments to accurately quantifying the
ull impact of fishing on bycatch species in numerous tuna
nd non-tuna fisheries worldwide. In addition, understand-
ng the extent to which bycatch is predictable based on fish-
ng, spatio-temporal, and environmental covariates is essen-
ial to developing effective spatial management (Pons et al.
022). Therefore, the objective of this study is to develop ro-
ust statistical models for predicting the catches of bycatch
pecies as a function of various covariates, including the quan-
ity of target tuna caught, the time and location of fishing
ional Council for the Exploration of the Sea. This is an Open Access article
/creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse,
erly cited.
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ctivities, and associated environmental conditions. These
odels will allow us to both estimate total bycatch mortality

or the French Indian Ocean PS fleet and help us understand
he links between target species, bycatch species, and the en-
ironment, improving fishery-based population status indices
nd enhancing management capacity for these understudied
pecies.

One persistent challenge for modeling bycatch of relatively
are species is the large number of absences observed in the
ata (e.g. in the Indian Ocean, silky sharks, the principal
hark species caught by PS, are absent from approximately
ne quarter of fishing sets), which typically prohibits the use
f simple statistical models that do not explicitly account for
oth bycatch presence–absence (i.e. ones and zeros) and abun-
ance when present (i.e. number of individuals caught per
et given that at least one individual was caught in the set;
ereafter referred to simply as “abundance” when there is
o risk of confusion). Moreover, presence–absence and abun-
ance may be partially driven by different biological pro-
esses (Stock et al. 2020). Therefore, it seems reasonable to
odel these two processes separately, combining model re-

ults in the end to develop a final prediction of bycatch. This
ype of modeling approach is known as a � model, and it
as been used successfully for modeling catch per unit ef-
ort of non-target species (Ortiz and Arocha 2004) and target
pecies (Shono 2008). It has the advantage over standard sta-
istical distributions (e.g. normal, log-normal, and Poisson),
ero-inflated distributions (e.g. the zero-inflated Poisson dis-
ribution), and distributions that permit integrated modeling
f presence–absence and abundance data (e.g. Tweedie dis-
ribution) in that it allows for greater flexibility and a more
ragmatic approach by separately modeling of each aspect of
ycatch abundance. For example, a random forest model, a
achine learning modeling approach often used for binomial

esponse variables, can be used to estimate presence–absence
f a bycatch species, whereas a general additive model (GAM),
non-linear, semi-parametric approach to modeling contin-

ous variables, can be used for abundance when present. In
ddition to providing maximum flexibility when estimating
ach aspect of bycatch, this approach allows us to examine
esults from the individual models separately, as well as in
ombination.

Below, we develop a series of � models for four major by-
atch species (silky shark, Carcharhinus falciformis; common
olphinfish, Coryphaena hippurus; rainbow runner, and Ela-
atis bipinnulata; rough triggerfish, Canthidermis maculata)
f the French tropical tuna PS fishery in the Indian Ocean
ased on logbook and observer data. First, we identify optimal
odeling approaches and model formulations for presence–

bsence and abundance of these bycatch species using a multi-
tep approach based on multiple modeling frameworks, mul-
iple distribution families for residuals, predictor variable se-
ection, and cross-validation of results. Next, we combine �

odel outputs with observations to estimate total annual by-
atch of the four species, including uncertainties in those pre-
ictions. Finally, we compare our results to a simpler bycatch-
o-landings ratio approach currently extensively used for by-
atch reporting to regional fisheries management organiza-
ions. We end with a discussion of results and their implica-
ions for fisheries management. Code for carrying out all anal-
ses is made freely available (https://github.com/Agathedum
nt/modeling-bycatch-abundance-delta-method) so that the
pproach can be applied worldwide in other fisheries.
aterials and methods

ishing activity data

he primary data used in this study are catch data for tar-
et tunas from logbooks (i.e. mandatory declarations) and
ycatch species from observer data from the Indian Ocean
rench tropical tuna PS fishery between 2011 and 2018. The
xploited Tropical Pelagic Ecosystems Observatory (Ob7) of

he French National Research Institute for Sustainable Devel-
pment (IRD) collects and manages fishery and observer data
rom the French tropical tuna PS fleet in the Atlantic and In-
ian Oceans. Though the approach we develop could be ap-
lied in the Atlantic and elsewhere, we choose to consider only
ata from the Indian Ocean, for which ∼34% of all fishing sets
ave observer coverage (∼37% if only floating object fishing
ets are taken into account). Data on fishing set vessel, time,
ocation, school type, and catch in tons of the three major
arget tunas (skipjack tuna, yellowfin tuna, and bigeye tuna)
ere obtained from captain logbooks data corrected for bias

n species composition based on port sampling using the T3
rocedure (Pianet et al. 2000). Data on bycatch per species
n number of individuals for each fishing set were obtained
rom onboard observers as part of two PS observer programs:
he European Union-funded “Data Collection Framework”
DCF; Reg 2017/1004 and 2016/1251) and the “Observateur
ommun Unique Permanent” (OCUP) program initiated and

unded by the PS fishing industry (Goujon et al. 2017). Each
ine of the data corresponds to a fishing set, i.e. a single fishing
ctivity involving encircling a tuna school with the seine and
ringing the fish caught within the seine on board. The data
xtraction initially had 21 240 sets, of which 7188 sets had
bserver data.
Two fishing modes are commonly used in the Indian Ocean

ropical tuna PS fishery (Kaplan et al. 2014). “Free-swimming
chool (FSC)” sets correspond to catch on tuna schools not
ssociated with any object in the water and detected by crew
embers during a fishing trip, either visually or via use of

echnologies, such as bird radars. FSC sets are generally com-
osed of monospecific individuals in which bycatch species are
are (Kaplan et al. 2014). “Floating object” (FOB) sets consist
f fishing on tuna schools associated with natural objects at
ea (e.g. logs, palm branches, or debris from human activities,
uch as marine cargo) or artificial floating objects specifically
eployed by PS vessels to aggregate tunas, referred to as drift-
ng fish aggregating devices (dFADs; Davies et al. 2014), which
oday represent the vast majority of floating objects (Maufroy
t al. 2016).

FOB sets represent >80% of recent PS catch in the Indian
cean (Floch et al. 2021) and have roughly three times the
ycatch per set of FSC sets, including some emblematic species
usceptible to overfishing, such as silky sharks, that are rarely
aught in FSC sets (Kaplan et al. 2014). Therefore, we limited
ur analyses to FOB sets. After limiting data to FOB sets, our
ata set consisted of 16 281 sets distributed throughout the
S fishing zone in the Indian Ocean (Fig. 1), of which 6046
ets have observer coverage.

As bycatch data contain well over 100 species or species
roups, many of which are very rare, we focused our study
n four of the more common and emblematic bycatch species
Ruiz et al. 2018): silky shark (Carcharhinus falciformis),
ough triggerfish (Canthidermis maculata), rainbow runner
Elagatis bipinnulata), and common dolphinfish (Coryphaena
ippurus). Top predators such as silky sharks and common

https://github.com/Agathedumont/modeling-bycatch-abundance-delta-method
https://github.com/Agathedumont/modeling-bycatch-abundance-delta-method
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Figure 1. Map of the spatial distribution of FOB fishing sets in our dataset from the French PS fleet in the Indian Ocean between 2011 and 2018.Dark,
black dots indicate sets without observer coverage, whereas lighter, red dots indicate sets with observer coverage.
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dolphinfish are typically found as individuals or in small
groups in PS sets, whereas rainbow runner and rough trigger-
fish are often caught as part of large aggregations. Silky shark
is generally considered to be the PS bycatch species of most
concern due to it being caught in relatively large numbers in
FOB sets and due to its life history traits common to many
sharks of high longevity and low reproductive rates (Dulvy
et al. 2014). As such, though models are developed for all four
bycatch species, certain results are only presented in the main
text of the article for silky shark, with results for the other
species being presented in the online supplementary materials.

Observer bycatch data separates bycatch observations into
three categories: live release, dead release, and retained (i.e.
landed). Given our objective of estimating mortality rates and
a number of indications that sharks released live by PS ves-
sels have high post-release mortality (e.g. Hutchinson 2015,
Onandia et al. 2021), for the sake of this paper, we decided
to sum all three categories into a total “bycatch” mortality
observation for each species for sets with observer coverage.
Inclusion of live-release individuals will have a tendency to
overestimate true mortality rates.

Environmental data

As we wished to understand how bycatch rates vary as a func-
tion of spatial, temporal, and environmental covariates, we
first identified a set of environmental variables that poten-
tially impact bycatch in tropical tuna PS fisheries. Sea sur-
face temperature (SST), salinity (SSS), and depth-integrated
net primary production (NPP) were identified as general envi-
ronmental variables potentially important for the distribution
and abundance of pelagic species (e.g. Mannocci et al. 2020).
Surface mixed layer depth (MLD) was also considered as it
can limit the vertical distribution of species, modifying the ac-
essibility of tuna schools to surface fisheries, among other
ffects (Arrizabalaga et al. 2015).

Environmental variables were obtained from Copernicus
the Earth observation component of the European Union’s
pace program) at different spatial scales and attributed to
shing observations by associating each point observation
ith Copernicus data of the containing grid cell and closest

imestamp. Daily sea surface potential temperature and salin-
ty, and surface mixed layer depth were obtained from the
opernicus—Global Ocean Physics Reanalysis based on the
urrent available real-time global forecasting CMEMS system,
aving a 0.083◦ × 0.083◦ resolution and covering the time pe-
iod 01/01/1993–31/12/2019 (https://doi.org/10.48670/moi-
0021, 01/09/2022, date last accessed). Daily primary pro-
uction was obtained from the Copernicus-PISCES biogeo-
hemical global hindcast having a 0.25◦ × 0.25◦ horizon-
al resolution with daily means available from −5500 m to
m depth covering the time period 01/01/1993–31/12/2020

https://doi.org/10.48670/moi-00019, 01/09/2022, date last
ccessed). Net primary production was calculated as the sum
f primary production from the sea surface to 200 m depth.

odeling bycatch rates with a � method

conceptual overview of our modeling approach is presented
n Fig. 2. In initial exploratory analyses of bycatch data, we
oted that zeros (absences) are prevalent in the data at levels
hat are not consistent with standard statistical distributions.
or example, 1346 (22%) of the total 6046 FOB sets with ob-
erver coverage included no silky shark bycatch (Fig. 3; Table
). As such, we chose to develop � models to estimate total
ycatch. The � method breaks catch down into two separate
odels, one for presence–absence and the other for abundance
hen present (i.e. the number of individuals of a bycatch

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://doi.org/10.48670/moi-00021
https://doi.org/10.48670/moi-00019
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Figure 2. A conceptual overview of our approach to modeling bycatch rates of the four target species. The approach is generic, but some of the
information presented, such as the modeling approaches and distribution families used to construct our final “optimal” � models used to predict
bycatch rates represent results specific to this study. Fish illustrations ©Léa Ortega.
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pecies caught in the fishing set given that at least one individ-
al was caught; Ortiz and Arocha 2004). Total bycatch in a
iven set is estimated as the product of predictions from these
wo sub-models. This methodology has the advantages of al-
owing for different model formalisms and structures in the
wo components, thereby permitting greater flexibility than
ther approaches to dealing with large numbers of zero obser-
ations, such as zero-inflated models and integrated likelihood

odels. o
Given the potential for non-linearity of the relationships
etween spatial, temporal, and environmental predictors and
esponse variables (i.e. presence–absence or number of indi-
iduals of a bycatch species per set), we developed models
hat explicitly permit non-linearity. When modeling presence–
bsence of a bycatch species, sets for which any non-zero num-
er of the species were recorded by observers were assigned a
ne, and all other sets were assigned a zero. We compared two
verall modeling frameworks to model presence–absence: (i)
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Figure 3. Histogram of silky shark bycatch per fishing set from observer data of the Indian Ocean French tropical tuna PS fishery on FOBs between 2011
and 2018.

Table 1. Prevalence of each of the 4 bycatch species in our dataset of 16 281 fishing sets, of which 6046 sets were covered by observers.

No. of sets Prevalence (%) No. of individuals Mean no./Set Mean no./Set when present CVa

Silky shark 4700 77.7 39 635 6.56 8.43 1.59
Rough triggerfish 4604 76.1 836 083 138.29 181.60 2.19
Rainbow runner 4346 71.9 313 810 51.90 72.21 4.74
Common dolphinfish 4213 69.7 115 547 19.11 27.43 1.80

a CV = coefficient of variability calculated as the ratio between the standard deviation of the number of individuals caught over all sets and the mean number
of individuals per set.
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general additive models (GAMs; Wood 2017) with a binomial
distribution for the response variable, and (ii) random forest
(RF) models (Breiman 2001). Details of both approaches are
given below in Sections 2.3.2 and 2.3.3.

When modeling abundance when present for a bycatch
species, the number of individuals observed (or a direct func-
tion thereof) was used as the response variable and all sets for
which the species was not observed were removed. For abun-
dance, only GAMs were developed, but several candidate sta-
tistical distributions for the response variable were explored:
Poisson, negative binomial, Tweedie, and log-normal.

Predictors variables
Spatial, temporal, environmental, and vessel identifier vari-
ables were included as covariates in models (Table 2). Spatio-
temporal factors may have an effect on bycatch as species
abundance and catchability vary on seasonal, inter-annual,
and regional scales (Kaplan et al. 2014). To take this into ac-
count, models included longitude and latitude, as well as the
month and year, as explanatory variables. Month and year
were treated as continuous variables, and month was mod-
eled as a circular variable in GAMs. Both direct and inter-
action terms were included in GAMs when examining the
impacts of longitude and latitude, and of year and month
i.e. in the notation of the mgcv R package, both “s()” and
ti()” terms were included in models]. The effects of longi-
ude and latitude in GAMs were stratified by quarter of the
ear. Unfortunately, for random forest, it is not possible to
reat month as a circular variable. Nevertheless, we chose
o keep month as a continuous variable, as this allows ran-
om forest models to associate (or not) temporally adjacent
onths (other than December and January) in an ordered

ashion.
In addition to these spatio-temporal variables and the envi-

onmental variables described in Section 2.2, the total catch of
arget tunas (i.e. all three major tropical tuna species summed
ogether) in tons per fishing set was also included in our mod-
ls, as it has been extensively used as a predictor of PS by-
atch (Amandè et al. 2010). Finally, we included the potential
or persistent differences among vessels in terms of bycatch
pecies composition via the inclusion of a categorical vessel
dentifier in models as a fixed effect so as to be able to predict
ycatch per set for specific vessels.
Models including all the predictor variables listed above

ill be referred to as “full” models, whereas models post-
ariable selection to reduce model complexity and/or decrease
roblems of model overfitting will be referred to as “op-
imal” models (see Section 2.3.4 for the variable selection
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Table 2. Description of potential predictors of bycatch per FOB fishing set.

Full name Abbreviationa Units Type Mean 95% Interval

Latitude / Longitude lat / lon Decimal degrees Continuous – –
Month month [1:12] Continuous – –
Quarter quarter [1:4] Categorical – –
Year year [2011:2018] Continuous – –
Trop. tuna catch catch Tons Continuous 27.27 [ 1.98; 103.69]

Mixed layer depth MLD Meters Continuous 18.62 [10.53; 47.89]
Net primary production NPP mg/d/m3 Continuous 179.33 [48.06; 597.05]
Sea surface temperature SST ◦C Continuous 28.48 [25.47; 30.64]
Sea surface salinity SSS Practical salinity unit Continuous 35.29 [34.47; 36.05]
Vessel identifier vessel – Categorical – –

aThe “Abbreviation” column gives the short name for each variable that will be used in text, figures, and tables. The “95% Interval” and “Mean” columns
refer to the central 95% of the data and the mean of the data over FOB fishing sets with observer coverage in our dataset.
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ethodology used). Before fitting models, cross-correlation
nalysis among predictors was carried out to understand po-
ential for variable redundancy in model formulations and,
f need be, remove any redundant variables (see Results
ection).

AMs for presence–absence and abundance of bycatch
n GAMs, the effects of predictor variables on the response
ariable are modeled as the sum of a certain number of non-
inear, smoothing spline functions. Various classes of smooth-
ng splines exist, including thin plate regression splines, which
e used for modeling the effect of single continuous variables,
nd cyclic cubic regression splines, which we used for the cir-
ular variable month. Tensor product regression splines were
sed for modeling two-dimensional variability in lon–lat and
ear–month space, with cubic regression splines being the ba-
is for these tensor products for all dimensions but month, for
hich cyclic cubic regression splines were used. GAMs were

un using the R package mgcv version 1.9.1 (Wood 2017) in
version 4.3.3 (29/02/2024) (R Core Team 2023); see Online

upplementary Materials for more details and specific pack-
ge versions used for all analyses.

The maximum number of basis smoothing spline functions
k) to be considered when estimating the effect of a predictor
ariable is typically specified in GAMs (regularization is used
uring the model fitting process to only include a subset of this
aximum number of splines in the final model predictions).
or the spatial effect, estimations were stratified by quarter
nd a maximum of 13 splines were used for each dimension,
ollowing the example of Wain et al. (2021) studying the same
eographic region and similar data. For the month and year
ffects, 12 circular cubic splines and 8 thin plate regression
plines were used, respectively, these values being the maxi-
um possible values in each case. For other predictor vari-

bles, default values set in the mgcv R package for the max-
mum number of splines were used (typically k = 10; Wood
017).
To assess model fit, QQ-plots of residual quantiles with re-

pect to the theoretical quantiles were examined, along with
lots of residuals as a function of predicted values and ex-
mination of model performance indicators developed below
Section 2.3.5).

When modeling presence–absence of a given bycatch
pecies, a binomial distribution was assumed for the response
ariable with the standard “logit” link function. When model-
ng abundance when present, several distributions were tested
Table 3): the Poisson distribution, which is theoretically suit-
ble for count data; the negative binomial, which accounts
or positive definite data, like the Poisson distribution, but al-
ows for overdispersion; the Tweedie distribution, which ac-
ounts for both overdispersion and potentially excessive num-
ers of small observations; and a normal distribution for the

og-transformed catch data. Given that the abundance data in-
luded no zeros, the number of individuals per set minus one
as used as the response variable for the Poisson, negative bi-
omial, and Tweedie distributions (as these distributions start
t zero).

andom forest models for presence–absence of bycatch
F models were also developed as an alternative approach to
odeling presence–absence of bycatch species. RF models are
machine learning algorithm based on decision trees where

ach node of a tree represents a cutoff threshold on one of the
redictor variables, with the cutoff selected to maximize cor-
ect classification of observations (Breiman 2001). RF mod-
ls use a large number of such trees, weighting them in the
nal model prediction according to their predictive capacity
ased on the results of internal cross-validation. As predictor
ariables can occur multiple times in each tree and the ensem-
le average of many trees is used in making predictions, the
ethod implicitly allows for highly non-linear effects and in-

eractions among predictors. RF models were run using the R
ackage randomForest version 4.7.1.1 (Liaw and Wiener
002).
Two free parameters in RF models, the total number of de-

ision trees to use and the number of predictor variables to
andomly select and test for predictive capacity at each node,
ere fixed based on analyses of the full RF model using the
uneRF function of the randomForest package (Liaw and
iener 2002).

odel selection
redictor variable selection was used to identify the most par-
imonious models that accurately represent the data. First,
everal distribution families for residuals were tested for
abundance when present” GAMs with all the predictor vari-
bles included (i.e. the “full model”): Poisson, Tweedie, nega-
ive binomial, and log-normal. The selection of the best distri-
ution family to use was based on examination of standard di-
gnostic plots for GAMs (e.g. QQ-plots and plots of residuals
ersus predicted values), as well as the predictive performance
e.g. deviance explained) of the models, in both cases consid-
ring primarily results for silky shark given its importance as
bycatch species.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Table 3. Summary of the different GAM distributions of residuals used to model presence–absence and abundance when present of silky shark bycatch
per fishing set.

Distribution Model type Data type Transformation Link function

Poisson Abundance No. of individuals N-1 log
Negative binomial Abundance No. of individuals N-1 log
Tweedie Abundance No. of individuals N-1 log
Log-normal Abundance No. of individuals log(N) identity
Binomial Presence–absence 0 = absence / 1 = presence N logit

In the “Model type” column, “Abundance” indicates that abundance when present was modeled. The “Transformation” column indicates the transformation
that was applied to the response variable before running the model, with “N” indicating that no transformation was applied.

a
p

w
a
f

e
p
p
a
s
G
c

w

a

w
g
w

a
w
i
m
e
t
e
a
e
e
e
o
2
o
f

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsae043/7641131 by IN

R
A R

echerches Forestieres user on 19 April 2024
Second, variable selection was carried out for both GAMs
and RF models to choose the best set of predictor variables for
presence–absence and abundance. The overarching principle
of parsimony was used to select the simplest model with fewest
variables and computational complexity that accurately de-
scribes the data, thereby reducing potential for model over-
fitting (Gregorutti et al. 2017).

For GAMs, the model using the set of all explanatory vari-
ables (i.e. the full GAM) was run. Then backwards selection
using P-values was carried out by sequentially dropping the
single term with the highest non-significant P-value from the
model and re-fitting, until all terms were significant (Wood
2017). This approach was used as stepwise regression based
on the Akaike Information Criterion (AIC) would have been
too time-consuming to run due to the large number of com-
plex models that would need to be estimated and because
model selection based on P-values has been shown to produce
roughly equivalent results to that based on AIC (Murtaugh
2014). When a smooth term was dropped, it was replaced with
the corresponding non-smoothed term [e.g. “s(year)” would
be replaced with “year”] to test for significance in the absence
of the smooth before proceeding to remove other terms from
the model.

For the RF model, automatic variable selection using the R
package VSURF version 1.2.0 (Genuer et al. 2022) was used,
constructing the nested collection of RF models and select-
ing the variables involved in the model leading to the small-
est out-of-bag estimated error percentage (OOB error). The
“variable selection procedure for prediction” procedure of
the VSURF package was used with the parameters selected
at the tuning step (i.e. the number of trees and number of
variables examined per node determined by the tuneRF func-
tion). The VSURF method has been tested on several data sets,
which showed that it was reliable and versatile (Genuer et al.
2015).

The models resulting from these selection processes are re-
ferred to as “optimal GAMs” (for presence–absence or abun-
dance) and “optimal RF models” (for presence–absence).

Model performance statistics
In order to compare GAMs and RF models for species
presence–absence, as well as to compare GAM models across
residual distributions and to assess combined � models, a set
of standard model performance statistics was developed and
calculated in the same way for all comparable models. For
presence–absence models, the percentage of well-classified ob-
servations was calculated and compared across models. An
observation was considered to be well classified if the model
estimated probability of presence (absence) was ≥0.5 (<0.5)
when the true observation was a presence (absence).
Goodness-of-fit metrics root mean square error (RMSE)
nd mean absolute error (MAE) were calculated for all
resence–absence, abundance, and � models as follows:

RMSE =
√∑N

i=1(predictioni − observationi)2

N
and

MAE =
∑N

i=1 |predictioni − observationi|
N

,

here N is the total number of observations, and predictioni

nd observationi are the model predicted and observed values
or the ith observation.

For abundance when present and combined � mod-
ls, we also calculated the fraction of the deviance ex-
lained by the model. Though GAMs report the deviance ex-
lained, we chose not to use these model-reported values to
void issues with whether or not they are calculated in re-
ponse or link space and to use a single approach for both
AMs and � models. Fraction of deviance explained was

alculated as:

deviancetotal − devianceresidual

deviancetotal
, (1)

here

devianceresidual =
N∑

i=1

(predictioni − observationi)2

nd

deviancetotal =
N∑

i=1

(observation − observationi)2,

ith observation being the mean of all observations (for a
iven species and excluding or including zeros for abundance
hen present versus � models, respectively).
In order to assess the robustness of performance statistics

nd potential for model overfitting, 10-fold cross-validation
as used to develop model assessments of predictive capac-

ty that are independent of the training data used to construct
odels. Our data set was broken into 10 randomly selected

qual parts, using 9 of them to train the model and 1 of them
o validate the model. Model performance was measured for
ach validation fold in terms of RMSE, MAE, the percent-
ge of well classified observations for presence–absence mod-
ls, and the deviance explained for abundance and � mod-
ls. The average of the 10 performance measures (from using
ach of the 10-folds as the validation data set) was used as the
verall performance of the model in cross-validation (Berrar
018). Model performance measures calculated as the average
f these 10 values are prefixed with “v-” to distinguish them
rom performance statistics based on the model trained with
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he entire data set. For example, “v-RMSE” indicates the av-
rage of the 10 RMSE calculated from each of the 10 folds
eing used as the validation data set. To assure comparabil-
ty of these cross-validation measures across models, the same
andom folds were used for all models based on equivalent
umbers of observations (i.e. a single set of folds was used for
resence–absence and � models, and one set of folds was used
or each of the four bycatch species when running abundance
hen present models).

odel prediciton intervals
s one of our objectives is to be able to predict bycatch for
shing sets lacking observer data, we needed to assess our con-
dence in model predictions, i.e. not the certainty in the ex-
ectation value for a given set of explanatory variable values
i.e. the confidence interval), but rather the certainty in new
redictions. These “prediction intervals” can be evaluated di-
ectly for general linear models (GLMs) using functionality al-
eady integrated into standard R functions for GLMs. How-
ver, for GAMs and combined � models, standard software
ools for calculating prediction intervals are lacking. Instead,
e decided to use a bootstrap approach, following Andersen

2022).
First, the � model expected mean bycatch prediction of
set, (μ̂C), was estimated as the product of mean predic-

ions from the presence–absence and abundance components
f the model μ̂C = π̂ × η̂. π̂ = Pr(presence) is the expected
ean presence probability and η̂ is the expected abundance
hen present, both having been back-transformed as neces-

ary to response variable space (e.g. following Fletcher 2008;
or log-normal models). Using these mean expected values,
e calculated performance statistics of the overall � model

i.e. RMSE, MAE, and deviance explained) using the formu-
as given above.

Next, we randomly generated 104 sets of potential coeffi-
ients of the GAMs for both the GAM presence–absence and
AM abundance models. This was done using the Cholesky
rick, following the approach of Andersen (2022). Simply put,
his approach uses the optimal coefficients estimated by the
odel and the standard errors of these coefficients to estimate
distribution for each coefficient from which potential coef-
cients are randomly drawn.
Then, for each of these 104 sets of potential model coef-

cients, model predictions in link-function space, including
via the standard errors as described above) uncertainty in pa-
ameters were generated. These were then back-transformed
nto response units using the appropriate inverse link func-
ion. Final predictions were generated by randomly drawing
rom the appropriate model distribution family (e.g. binomial
or presence–absence), including, for two parameter distribu-
ions such as the negative binomial, the residual variance of
ach of the GAMs (i.e. the scale parameter). This final step
ntegrates, via the model scale parameter, unexplained vari-
nce in observations into predictions. This produced 104 sim-
lated predictions, η̂∗, for the abundance GAM and 104 π̂∗

or the presence–absence GAM, for each fishing set in the
ataset.
RF models of presence–absence have no equivalent for the

ncertainty in model parameter estimates and, therefore, lack
arameter estimates with standard errors. Instead, for each
shing set in the dataset, we drew 104 values of 0 or 1 from a
ingle binomial distribution with probability of presence de-
ermined by the prediction of the RF model, thereby obtaining
04 predictions of presence–absence, π̂∗, for each fishing set
hat include fundamental uncertainty in whether a species is
resent due to the binomial probability of presence, but not
ncertainty in the model-estimated binomial probability of
resence parameter itself.
The last step is to combine the simulated predictions of the

AM for abundance when present and the GAM or RF model
or presence–absence by calculating μ̂∗

C = π̂∗ × η̂∗. These pre-
ictions include both uncertainty in model estimates of pa-
ameters (for GAMs) and uncertainty due to variance not ex-
lained by the model via random selection of values from the
odel distribution family, including where appropriate the
odel-estimated scale parameter. We then obtain a simulated
istribution of predicted bycatch based on the 104 values of
∗
C for each fishing set in the dataset, from which a 95% pre-
iction interval is calculated as the 2.5% and 97.5% quantiles
f the simulated data.

ests for residual spatio-temporal autocorrelation
e assessed whether or not spatial, temporal, and spatio-

emporal autocorrelation were adequately accounted for in
odel formulations by calculating variograms and autocorre-

ation functions (ACFs) on optimal � model residuals follow-
ng the general approach of Legendre and Legendre (2012).
patial variograms were estimated using the R package geoR
ersion 1.9.3 (Ribeiro et al. 2023), temporal autocorrelation
unctions were calculated using the acf function of R, and
patio-temporal variograms were estimated using the R pack-
ge gstat version 2.1.1 (Gräler et al. 2016). As potentially
ultiple fishing sets with observer data existed for a given day,
hen calculating temporal ACFs, observations were randomly

elected 100 times, for each day generating 100 estimates for
he ACF, which were summarized to characterize temporal au-
ocorrelation. A small number of observations (<0.1%) with
dentical spatial positions were randomly removed when cal-
ulating spatial or spatio-temporal variograms. Results, pre-
ented in Supplementary Figs S15–S18, indicated an absence
f significant unexplained autocorrelation, so we decided that
he addition of spatial and/or temporal covariance terms to
odels was unnecessary.

rediction performance of � models at different
cales

he predictions of the optimized � models for each of the
our bycatch species were aggregated in time and space in or-
er to examine our predictive capacity at different and larger
patio-temporal scales that may be of interest for fisheries
anagement of bycatch. The temporal scales of aggregation
ere: month (i.e. aggregating across all fishing sets for a spe-

ific month of a specific year), 2 months (bi-month), 3 months
quarter), 6 months (half year), year, and the entire time pe-
iod (all time). The spatial scales of aggregation were: 1◦ × 1◦

nd 5◦ × 5◦ spatial grid cells, and the entire western Indian
cean fishing area.
The � model prediction for bycatch in a stratum S, μ̂CS , is

alculated as:

μ̂CS =
JS∑

i=1

μ̂Ci ,

ith JS the number of observations in the stratum and μ̂Ci the
redicted bycatch for fishing set i in the stratum S.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data


Modeling bycatch abundance in tropical tuna purse seine fisheries on floating objects using the � method 9

t
s
2

v
s
g
s
a
v
t
i
b
d
v
c
i
m
r
p
t
p
o

n
d
d
b
n
p

C
A
u
I
M
q
t
t
w
t
b
u
μ̂

r
e
m

e
e
a

R

W
v
a
T
e
F
f

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/advance-article/doi/10.1093/icesjm
s/fsae043/7641131 by IN

R
A R

echerches Forestieres user on 19 April 2024
Prediction performance statistics were calculated for ag-
gregated predictions as described above. For example,
RMSE for a given level of spatio-temporal aggregation was
calculated as:

RMSE =

√√√√∑
S

(
μ̂CS − ∑JS

i=1 observationi

)2

NS
,

where, in this case, NS is the number of strata S at the
given level of aggregation. To compare performance statis-
tics across multiple levels of aggregation, we calculate the
normalized RMSE and MAE statistics (denoted “RMSEnorm”
and “MAEnorm”) for each level of aggregation by dividing the
RMSE and MAE by the average aggregated bycatch predic-
tion. For example, for RMSEnorm:

RMSEnorm = RMSE∑
S μ̂CS
NS

.

The same 10-fold cross-validation procedure that was used
to assess uncertainty in model predictions for individual fish-
ing sets was also used on the aggregated data (i.e. the folds
were based on the original fishing set data, not the aggregates).
For each fold, we calculated the RMSEnorm and MAEnorm as
described above, and then these 10 results were averaged to-
gether to calculate the final error estimates (i.e. v-RMSEnorm

and v-MAEnorm).
Prediction intervals for aggregate predictions were cal-

culated in a similar way. The procedure described above
was used to develop 104 predictions for each fishing
set, which were then aggregated by strata to produce
104 predictions of bycatch in each strata, the 2.5–97.5%
quantiles of which were used to define the prediction
interval.

� model performance comparison for different
bycatch species

We compared � model results for our four bycatch species
(silky shark, rough triggerfish, rainbow runner, and com-
mon dolphinfish) to test whether predictive capacity dif-
fers among different species with different life history traits.
Optimal models (i.e. models including predictors optimized
for each species) for both presence–absence and abundance
when present were used to develop � model predictions
for each species. The normalized RMSE and MAE (i.e.
RMSEnorm and MAEnorm), with and without 10-fold cross-
validation, were used as a common indicator of prediction er-
ror across species with different levels of mean prevalence and
abundance.

Prediction of total bycatch

The total bycatch of silky sharks for the French PS fleet in the
Indian Ocean between 2011 and 2018 was calculated for a
given year as the sum of observed bycatch for those fishing
sets with observer data and model predictions of bycatch for
those fishing sets without observer data. These estimates were
calculated using the optimal � model for the corresponding
species. In order to understand spatial patterns of predicted to-
tal bycatch, we also calculated bycatch per set and prediction
uncertainty in bycatch per set on 5◦ × 5◦ grid cells for the en-
tire study time period. Prediction uncertainty was calculated
as the difference between the 97.5% and 2.5% quantiles of
he predicted bycatch in each grid cell (uncertainty being as-
umed to be zero for sets with observer data; Valliant et al.
000).
When making these predictions, one issue is that six French

essels had no observer coverage of fishing activities over the
tudy period, which represents ∼26% of the fleet (this absence
enerally being due to space constraints placed on certain ves-
els by the need to carry military personnel to prevent pirate
ttacks). This prohibited prediction for fishing sets by these
essels using models including vessel identifier as an explana-
ory variable. We therefore developed � models without vessel
dentifier as an explanatory variable specifically for predicting
ycatch of these vessels. Three different sets of models were
eveloped without the vessel identifier predictor: (i) “full w/o
essel”: corresponding to models including all predictors ex-
ept vessel; (ii) “optimal w/o vessel”: corresponding to models
ncluding the optimal (RF or GAM) predictors with vessel re-
oved after model selection; and (iii) “no vessel optimal”: cor-

esponding to models where the vessel predictor was removed
rior to predictor variable selection. Performance statistics of
hese three sets of models were compared to assess which ap-
roach was best for predicting bycatch for these vessels with-
ut observer data.
Final total bycatch predictions were therefore the combi-

ation of observed bycatch for sets with observer data, pre-
icted bycatch by optimal � models for sets without observer
ata for vessels with observer data, and predicted bycatch
y � models without vessel as a predictor for vessels with
o observer data in the Indian Ocean over the study time
eriod.

omparison with the bycatch-over-landings ratio approach
bycatch-over-landings extrapolation approach is currently

sed to estimate total PS bycatch by fleet for reporting to the
ndian Ocean Tuna Commission (IOTC) and other tuna RF-

Os. The approach is based on first stratifying the catch by
uarter and by year. For each combination of quarter and year,
he ratio of total bycatch of a given species to total catch of
arget tunas is calculated, summing over all fishing sets i for
hich observer data is available: ratio =

∑
i observationi∑

i Ti
with Ti

he catch of target tunas in set i. Given this ratio, the expected
ycatch of the species in a given set i is calculated as the prod-
ct of the ratio and the total catch of target tunas in the set
Ci = ratio × Ti.
We compared the � model and the bycatch-over-landings

atio approach to estimating bycatch using the standard error
stimates described above for the � model (i.e. 10-fold esti-
ation of RMSE, MAE, and percent deviance explained).
The total annual bycatch of the four study species was also

stimated by this approach, using the bycatch-over-landings
xtrapolation exclusively for sets without observer coverage,
nd compared with the estimation from the optimal � model.

esults

e begin by presenting cross-correlations among predictor
ariables, followed by results from both the presence–absence
nd abundance when present components of the � model.
his is followed by examinations of the certainty of model
stimates at different spatio-temporal scales of aggregation.
inally, we present overall predictions of total bycatch of the
our bycatch species for the French fleet in the Indian Ocean
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Figure 4. Marginal effects of non-spatial predictors with smooths on the presence of silky sharks in floating object fishing sets of the French PS fleet in
the Indian Ocean. The effects were estimated with the optimal GAM for presence–absence and are listed in the following order: (a) s(catch); (b) s(year);
(c) ti(year,month); and (d) s(MLD). In all panels except the 2D interaction plot (c), the horizontal axis indicates the value of the predictor variable and the
vertical axis indicates the marginal effect of the predictor on presence–absence in the scale of the linear predictor, with positive values indicating an
increase in probability of presence. Solid, black curves indicate the best estimate of the mean effect, whereas gray areas indicate 95% confidence
intervals around the mean effect. The horizontal red lines at the bottom of panels (a) and (d) represent the central 95% of the distribution of the
corresponding predictor variable. For the 2D interaction plot in year–month (c), the effect is plotted as a raster plot with yellow colors indicating a positive
effect on probability of presence.
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nd compare model results with predictions from the simpler
ycatch-over-landings ratio approach regularly used by scien-
ists and managers to estimate bycatch in data-limited situa-
ions.

ovariability of predictor variables

n order to understand predictor redundancy in model for-
ulations, we analyzed cross-correlations between predictor

ariables. Non-negligible correlations were found between
ultiple pairs of predictor variables, with correlations >0.5,

or latitude and SSS, as well as for SST and NPP. All other cor-
elations are <0.5. We therefore decided to remove SSS and
PP from GAM models to enhance model stability and inter-
retability. We chose to retain latitude as latitude is modeled
n GAMs jointly with longitude making it difficult to remove,
nd to retain SST as this variable is thought to have a more
mmediate impact on tropical tuna behavior and physiology
nd is also more readily available from both satellite data and
ceanographic model outputs.
All predictor variables, including SSS and NPP, were in-

luded in full RF models as RF models do not require that
redictor variables be uncorrelated.
resence–absence models of bycatch

inomial GAM models
n general, optimal models for the four study species are fairly
imilar. The optimal model for rainbow runner is:

Pr(Rainbow runner)

∼ s(catch) + s(lon, by = quarter) + s(lat, by = quarter)

+ ti(lon, lat, by = quarter) + s(month) + s(year)

+ ti(year, month) + s(MLD) + s(SST ) + vessel

he model for rough triggerfish is identical except for exclu-
ion of the term s(catch), whereas the model for common dol-
hinfish is identical except for the exclusion of the term s(SST).
he model for silky shark differs from that for rainbow run-
er by the exclusion of the terms s(lon,by=quarter), s(month),
nd s(SST). The lon–lat by quarter and year–month interac-
ion terms were retained for all species, as was the smooth on
ST, and the smooth on catch was retained for three of the
our species.

The marginal effects of predictors on probability of pres-
nce varied across species, but there are several somewhat
onsistent trends (Figs 4 and 5; Supplementary Figs S1–S6).

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Figure 5. Marginal effects of spatial predictors by quarter on the presence of silky sharks in floating object fishing sets of the French PS fleet in the
Indian Ocean. The effects were estimated for the optimal GAM for presence–absence using the mgcv::vis.gam function with all predictors other than
lon, lat, quarter, and month fixed at their median values. Month was set to be the central month of the corresponding quarter (e.g. for quarter 1, month
was set to 2). Lighter, yellow colors indicate a positive effect on probability of presence and numbers on contour lines indicate the marginal effect of
spatial variables on the scale of the linear predictor.
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For silky shark, rainbow runner, and, to a lesser degree, com-
mon dolphinfish, the effect of target tuna catch for small to
medium set sizes shows an increasing trend. Target tuna catch
had a particularly strong impact on presence of silky sharks
(Fig. 4a), for which the trend is increasing more or less lin-
early up to set sizes of ∼150 t (note that mean set size in our
data is 27 t and only 0.8% of sets are >150 t), suggesting that
model results are unlikely to be reliable above this limit. For
all species, increasing MLD increases probability of presence
for the range of values typically encountered in the data, and
for species with s(month) included in the model, probability
of presence was higher in the second half of the year than in
the first half of the year. The marginal effects of other pre-
ictors and interactions are more variable across species (and
or spatial effects, quarters) and difficult to interpret, though
here does appear to be a consistent peak in bycatch presence
n 2012–2014 for all species except silky shark.

andom forest
or silky shark, the number of variables randomly tested at
ach node for the full RF model (i.e. the model including all
redictors) was estimated by tuneRF to be three, and plots
f the error as a function of the number of trees used (not
hown) indicate that errors stabilize >200 trees. To be certain
hat RF model results were stable, the number of trees in the
orest was fixed at 400, somewhat higher than this minimum.
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Table 4. Performance comparison of presence–absence models of the four bycatch species in floating object fishing sets of the French tropical tuna PS
fleet in the Indian Ocean.

Species Model RMSE MAE well class. (%) v-RMSE v-MAE v-well class. (%) AIC OOB err. (%)

Silky shark Full GAM 0.39 0.31 78.3 0.40 0.32 77.6 5985.2 –
Silky shark Optimal GAM 0.39 0.31 78.3 0.40 0.32 77.5 5985.1 –
Silky shark Full RF model 0.15 0.12 100.0 0.40 0.31 78.2 – 21.9
Silky shark Optimal RF model 0.15 0.11 100.0 0.40 0.31 78.3 – 21.8

Rough triggerfish Full GAM 0.40 0.32 77.6 0.41 0.33 77.0 6122.1 –
Rough triggerfish Optimal GAM 0.40 0.32 77.5 0.41 0.33 76.8 6123.9 –
Rough triggerfish Full RF model 0.15 0.11 100.0 0.40 0.31 77.7 – 22.5
Rough triggerfish Optimal RF model 0.19 0.13 98.4 0.42 0.29 75.5 – 24.7

Rainbow runner Full GAM 0.42 0.36 73.4 0.44 0.38 72.0 6712.1 –
Rainbow runner Optimal GAM 0.42 0.36 73.4 0.44 0.38 72.0 6712.1 –
Rainbow runner Full RF model 0.16 0.13 100.0 0.42 0.35 73.9 – 25.8
Rainbow runner Optimal RF model 0.16 0.13 99.9 0.43 0.34 73.4 – 25.9

Common dolphinfish Full GAM 0.43 0.37 72.9 0.44 0.38 71.2 6753.9 –
Common dolphinfish Optimal GAM 0.43 0.37 72.9 0.44 0.38 71.4 6753.3 –
Common dolphinfish Full RF model 0.16 0.13 100.0 0.43 0.36 73.1 – 27.2
Common dolphinfish Optimal RF model 0.16 0.13 99.9 0.43 0.35 72.7 – 27.2

Results for the full and optimal GAM and RF models are presented. Data were limited to sets with observers on board between 2011 and 2018. Statistics
preceded with “v-” (e.g. v-RMSE, v-MAE) were computed as the average over results from 10-fold cross-validation.
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As shown below, the variable selection process using
SURF (Genuer et al. 2015) yielded optimal RF models that
ere more variable in composition than the variable selection
rocess for GAMs:

Pr(Silky shark) ∼ catch + lon + lat + month

+ year + NPP + SST

+ SSS + vessel

Pr(Rough triggerfish) ∼ lat + month + year + vessel

Pr(Rainbow runner) ∼ lon + lat + month + year

+ NPP + SST + SSS + vessel

Pr(Common dolphinfish) ∼ lon + lat + month + year

+ SSS + vessel

ll models retained at least lat, month, year, and vessel as pre-
ictors, with lon and SSS also being selected for three out of
our species. Surprisingly, catch of target tunas (catch) was
nly selected as a predictor for silky shark presence and MLD
as never selected, despite both being identified as important
ariables in GAMs of presence–absence.

The performance of these RF models was compared both
ith full RF models and with RF models using the opti-
al set of predictors identified for GAM presence–absence
odels and generally found to be superior to both (e.g. in

erms of lower OOB error or higher percent well classi-
ed in cross-validation), though differences were small and
erformance of the optimal RF model for rough triggerfish
resence was somewhat lower than that of the full model
Supplementary Table S2). For example, for silky shark, the
ptimal RF model has an OOB error of 21.8%, whereas RF
odels with all predictors and the same predictor variables as

he optimal GAM for presence–absence had higher OOB er-
ors of 21.88–22.68%, respectively (Supplementary Table S2).

When vessel identifier is removed as a predictor for RF
odels (in order to predict bycatch for vessels without ob-

erver data over the study period), the VSURF variable selec-
ion procedure identified models that were identical to optimal
F presence–absence models with vessel removed, except for

ommon dolphinfish, for which NPP and SST were added as
redictors (Supplementary Table S3). These models had con-
istently worse performance statistics than optimal RF models
ncluding vessel identifiers (see next section).

erformance comparison for presence–absence models
verall, optimal models determined by variable selection
ave similar performance statistics to full models, and RF
odels marginally outperform GAMs for presence–absence

e.g. in terms of well-classification rate in cross-validation;
able 4). RF models show signs of overfitting. For example,
he optimal RF model for silky shark presence–absence has

well-classified rate of 100% in training that decreases to
8.3% in cross-validation, whereas the optimal GAM has a
ell-classified rate of 78.3% that becomes 77.5% in cross-

alidation, a much smaller change. Nevertheless, optimal RF
odels outperform optimal GAMs in predictive power, with

ower RMSEs and MAEs and higher well-classified rates in
ross-validation for all species except rough triggerfish, for
hich results are mixed with some performance statistics
eing higher for RF models, whereas others are higher for
AMs. Based on these results, we decided to use the opti-
al RF models for all further presence–absence and combined
model analyses (including rough triggerfish for consistency

ith the other species; Fig. 2).
When vessel identifier is removed as a predictor from pres-

nce to absence models both before and after variable se-
ection, there is a noticeable drop in performance statistics
or both GAMs (Supplementary Table S1) and RF models
Supplementary Table S2). In general, performance of no ves-
el optimal RF models (i.e. optimal RF models for which vessel
dentifier was removed before variable selection) is equivalent
o or superior to other models not including vessel identifier
s a predictor. As such, we chose to use no vessel optimal RF
odels for presence–absence predictions for vessels lacking
bserver data.

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Table 5. Predictive performance results of the full GAM for abundance when present of bycatch per floating object fishing set for each of the four study
species for the French tropical tuna PS fleet in the Indian Ocean, 2011–2018 as a function of the distribution family assumed for model residuals.

Species Family RMSE MAE Dev. expl. (%) v-RMSE v-MAE v-Dev. expl. (%)

Silky shark Poisson 9.06 5.05 34.2 11.5 6.02 − 12.4
Silky shark Negative binomial 10.3 5.39 14.2 10.7 5.63 4.1
Silky shark Tweedie 10.1 5.35 17.9 10.7 5.66 3.9
Silky shark Log-normal 10.6 5.44 10.1 10.6 5.60 6.0

Rough triggerfish Poisson 260 136 40.1 ∞ ∞ −∞
Rough triggerfish Negative binomial 310 150 15.0 318 156 6.1
Rough triggerfish Tweedie 307 149 16.4 317 157 6.3
Rough triggerfish Log-normal 321 165 8.9 322 170 3.3

Rainbow runner Poisson 199 55.8 52.1 ∞ ∞ −∞
Rainbow runner Negative binomial 278 60.3 6.8 189 63.2 3.1
Rainbow runner Tweedie 276 60.5 8.2 191 63.8 − 0.6
Rainbow runner Log-normal 285 63.4 1.7 189 65.5 4.3

Common dolphinfish Poisson 28.6 17.5 44.4 ∞ ∞ −∞
Common dolphinfish Negative binomial 34.2 19.4 20.6 35.3 20.2 13.9
Common dolphinfish Tweedie 33.5 19.2 23.8 35.7 20.3 10.8
Common dolphinfish Log-normal 35 20.2 17.0 36.3 21.0 7.8

RMSE, MAE, and deviance explained are the values computed with all data, whereas v-RMSE, v-MAE, and v-deviance explained were computed as the
average of results from 10-fold cross-validation. Deviance explained was calculated using (1). Any values outside of the range of ±1000 are indicated as
infinite.

Table 6. Performance of the full and optimal negative binomial GAMs for abundance when present of the four bycatch species on floating object fishing
sets of the French tropical tuna PS fleet in the Indian Ocean.

Species Model RMSE MAE Dev. expl. (%) v-RMSE v-MAE v-Dev. expl. (%) AIC

Silky shark Full abund. GAM 10.34 5.39 14.2 10.66 5.63 4.1 28070.3
Silky shark Optimal abund. GAM 10.33 5.38 14.4 10.68 5.63 3.7 28076.0

Rough triggerfish Full abund. GAM 309.81 149.54 15.0 317.57 156.43 6.1 55563.9
Rough triggerfish Optimal abund. GAM 309.71 149.53 15.1 317.36 156.46 6.3 55563.2

Rainbow runner Full abund. GAM 277.92 60.34 6.8 189.25 63.23 3.1 44151.6
Rainbow runner Optimal abund. GAM 277.88 60.39 6.8 189.11 63.23 3.4 44148.7

Common dolphinfish Full abund. GAM 34.21 19.38 20.6 35.29 20.22 13.9 35142.9
Common dolphinfish Optimal abund. GAM 34.21 19.38 20.6 35.29 20.22 13.9 35142.9

Data were limited to sets with observers on board between 2011 and 2018. RMSE, MAE, and deviance explained are the values computed with all data.
v-RMSE, v-MAE, and v-deviance explained were computed with 10-fold cross-validation. Deviance explained was calculated using (1).
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Abundance when present models

Whereas the Poisson distribution produces “abundance when
present” GAMs with the lowest RMSE and MAE and the
highest deviance explained in training, the negative bino-
mial, Tweedie, and log-normal distributions have much bet-
ter performance statistics in cross-validation (Table 5). The
Poisson distribution produces highly erratic predictions on
novel data, leading to poor and extremely erratic performance
statistics in cross-validation (e.g. note the infinite values in
Table 5). Among the other three families, the deviance ex-
plained in training is highest for the Tweedie distribution,
but in cross-validation, both the log-normal and the nega-
tive binomial explain more of the deviance, with the nega-
tive binomial having equal or lower cross-validation RMSE
and MAE statistics for all but silky shark. Quantile-quantile
diagnostic plots also indicated that the theoretical and ob-
served residual quantiles adequately fit the expected diag-
onal line for the negative binomial, log-normal, and, to a
lesser degree, Tweedie distributions, whereas large discrep-
ancies with respect to the expected relationship were ob-
served for the Poisson model (e.g. Supplementary Fig. S7).
Graphs of residuals versus predicted values showed no strong
trends for any of the distributions (e.g. Supplementary Fig. S8).
Based on these results, we decided that the negative bi-
omial distribution is on balance the best distribution for
ll further predictions of bycatch abundance when present
Fig. 2).

Variable selection only excluded relatively few predictors
rom negative binomial models of bycatch abundance when
resent, consistently retaining tuna catch, spatial predictors
nd their interactions, year, the year-month interaction, and
essel identifier, and differing only in the environmental vari-
bles retained. For example, the optimal abundance GAM for
ommon dolphinfish is:

No. of common dolphinfish - 1

∼ s(catch) + s(lon, by = quarter) + s(lat, by = quarter)

+ ti(lon, lat, by = quarter) + s(month) + s(year)

+ ti(year, month) + s(MLD) + s(SST ) + vessel

he optimal model for silky shark is identical except that it
oes not include the smooth on SST, whereas the models for
ough triggerfish and rainbow runner include no environmen-
al predictors. The similarity of full and optimal abundance
AMs is reflected in the close performance of the two (Table
), though optimal models have equivalent or better perfor-
ance indicators (e.g. equal or higher deviance explained)

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data


14 Dumont et al.

Figure 6. Marginal effects of non-spatial predictors with smooths on abundance when present of silky shark in floating objects fishing sets of the French
PS fleet in the Indian Ocean. The effects were estimated with the optimal abundance GAM and are listed in the following order: (a) s(catch); (b) s(month);
(c) s(year); (d) ti(year, month); and (e) s(MLD). See the caption of Fig. 4 for a description of the format with which information is presented in each panel.
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nder 10-fold cross-validation for all species except silky
hark.

Deviances explained of the full and optimal negative mod-
ls are also quite low, ranging from 3.1 to 13.9% in cross-
alidation, with values being particularly low for the forage
pecies rainbow runner. The low deviance explained is re-
ected in error rates that are of approximately the same order
f magnitude as the mean abundances when present (Table 1).
or example, for silky shark, mean abundance when present

s 8.4 individuals per set (Table 1), whereas the MAE of the
ptimal model in cross-validation is 5.63 (Table 6).
The marginal effect of smoothed predictors on bycatch

bundance shows relatively few consistencies across species
Figs 6 and 7; Supplementary Figs S9–S14). Bycatch abun-
ance does consistently increase with target tuna catch,
hough the strength of this increase varies considerably
ith species, being particularly notable for silky shark.
patial patterns of bycatch abundance for the two top
redators, silky shark (Fig. 7) and common dolphinship
Supplementary Fig. S14), generally were highest to the
orth of the study region, whereas those for forage species,
ough triggerfish (Supplementary Fig. S12), and rainbow run-
er (Supplementary Fig. S13), were more variable and dif-
cult to interpret. Year has an oscillating pattern for all
pecies except rough triggerfish, which has a decreasing trend
Supplementary Fig. S12). Month has a peak positive impact
n abundance of forage species rough triggerfish and rainbow
unner in August–September (Supplementary Figs S12–S13),
hereas the month effect for silky shark peaks in December–
anuary (Fig. 7) and that for common dolphinfish is more
omplex, but also has a peak in the final quarter of the year
Supplementary Fig. S14). The effects of environmental pre-
ictors were generally either highly uncertain or showed no
trong trend over the typical range of the predictor.

No vessel optimal models were identical in form (i.e. the
erms included in Supplementary Table S4) to optimal mod-
ls with vessel identifier removed as a predictor and had
eviance explained in cross-validation equivalent to or su-
erior to that of full models without vessel as a predictor
Supplementary Table S5). To be consistent with presence–
bsence model formulations, we decided to use no-vessel op-
imal models for making bycatch predictions for those vessels
or which observer data is not available.

� models of bycatch abundance

verall predictions of bycatch abundance were computed by
ultiplying the optimal RF model for presence–absence and

he optimal negative binomial GAM for abundance when
resent for a given species. Deviance explained under cross-
alidation by these optimal � models ranges from 4.8 to
4.9%. Deviance explained is particularly low for rainbow
unner, with similar amounts of deviance explained for rough
riggerfish and silky shark and considerably higher deviance
xplained for common dolphinfish (Table 7). These low to
oderately explained deviances are reflected in normalized
erformance indices, indicating that MAE is of the same order
f magnitude as the mean catch per set, with values somewhat

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Figure 7. Marginal effects of spatial predictors by quarter on the abundance when present of silky shark in floating objects fishing sets of the French PS
fleet in the Indian Ocean. The effects were estimated with the optimal GAM for abundance using the mgcv::vis.gam function, with all predictors
other than lon, lat, quarter, and month fixed at their median values. Month was set to be the central month of the corresponding quarter (e.g. for quarter
1, month was set to 2). Lighter, yellow colors indicate a positive effect on abundance and numbers on contour lines indicate the marginal effect of spatial
variables on the scale of the linear predictor.
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higher for the two forage species, rough triggerfish and rain-
bow runner, than those for the two top predators, silky shark
and common dolphinfish (Table 8). For example, the optimal
� model for silky shark predicted a MAE (in cross-validation)
of 5.28 sharks per fishing set, comparable to, but somewhat
smaller than, the mean abundance of silky sharks per fishing
set of 6.56 sharks (Table 1), the ratio of the two being 0.84.
Corresponding values for rough triggerfish, e.g. are an MAE
of 135.11 individuals per set and a mean abundance of 138.29
individuals per set (Table 1), producing a ratio of 1.03.

Patterns of differences between species in predictive power
follow patterns of cross-correlations in bycatch abundance for
the four species (Supplementary Fig. S19). The two teleost
rey species, rough triggerfish and rainbow runner, have
uch stronger cross-correlations between each other, both for
resence–absence and for total abundance than either of the
wo top predators, silky shark and common dolphinfish, do
ith each other or with the two prey species.

rediction performance of � models at different
cales

s expected, v-RMSEnorm and v-MAEnorm of predictions de-
rease with increasing spatial or temporal scales of aggrega-
ion (Fig. 8 and Supplementary Fig. S20). However, the de-
reases are more important in the spatial dimension than in the

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Table 7. Performance of the � model for bycatch of the four study species per floating object fishing set for the French tropical tuna PS fishery in the
Indian Ocean, 2011–2018.

Species Model RMSE MAE Dev. expl. (%) v-RMSE v-MAE v-Dev. expl. (%)

Silky shark Full model 9.21 4.49 22.3 9.78 5.28 7.9
Silky shark Optimal model 9.19 4.49 22.6 9.78 5.28 7.8

Rough triggerfish Full model 272.09 119.23 19.5 280.93 134.15 8.1
Rough triggerfish Optimal model 272.50 120.45 19.3 281.86 135.11 7.4

Rainbow runner Full model 236.05 45.96 8.1 162.35 53.02 3.9
Rainbow runner Optimal model 236.03 45.93 8.1 162.01 52.93 4.8

Common dolphinfish Full model 28.94 14.60 29.4 31.50 17.42 15.1
Common dolphinfish Optimal model 28.90 14.55 29.6 31.53 17.36 14.9

Data were limited to fishing sets with observer’s data. Presence–absence was modeled using RF models, whereas abundance when present was modeled using
negative binomial GAMs. RMSE and MAE are the values computed with all data, whereas v-RMSE and v-MAE were computed with 10-fold cross-validation.

Table 8. Normalized performance measures for the optimal � models for
the four study species.

Species RMSEnorm MAEnorm v-RMSEnorm v-MAEnorm

Silky shark 1.44 0.70 1.55 0.84
Rough triggerfish 2.06 0.91 2.13 1.03
Rainbow runner 4.91 0.95 3.43 1.12
Common
dolphinfish

1.57 0.79 1.72 0.95

Presence–absence was modeled using RF models, whereas abundance when
present was modeled using negative binomial GAMs. RMSEnorm and
MAEnorm are the coefficients of variation of MAE and RMSE, respectively,
i.e. they have been normalized by the predicted mean number of individuals
of the given species per set. v-statistics were computed with 10-fold cross-
validation.
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emporal dimension. For example, for silky shark, the RMSE
elative to the overall mean decreases from 1.48 to 0.58 when
oing from aggregating over 1◦ × 1◦ cells by month to ag-
regating over the entire Indian Ocean by month, a decrease
f 60.7%. In comparison, when going from aggregating over
◦ × 1◦ cells by month to aggregating over the entire time se-
ies by 1◦ × 1◦ cells, the RMSE decreases by only 24.2%. This
attern of spatial aggregation producing a more important re-
uction in uncertainty as compared to temporal aggregation
olds true for all species, though the absolute levels of uncer-
ainty are again somewhat higher for the two prey species than
hey are for the two top predators (Supplementary Fig. S20).
verall, normalized RMSE at the annual-ocean level of aggre-

ation is satisfactory, ranging from 0.18 to 0.42 for the four
pecies (Supplementary Fig. S20).

stimation of total bytcatch using � models

patial (Figs 9 and 10) and temporal (Fig. 11) predictions of
otal bycatch for the four study species were calculated us-
ng optimal RF-negative binomial � models (using no vessel-
ptimized models for sets carried out by vessels without any
bserver data over the study time period). Bycatch per set of
he two top predators, silky shark and common dolphinfish, is
ighest in the northern part of fishing domain and, to a lesser
egree, in the equatorial part of the fishing domain (Fig. 9).
patial patterns of bycatch per set of the two schooling—prey
pecies, rough triggerfish, and rainbow runner—are less simi-
ar and more variable, with both being more equatorial than
he two predators, and both showing indications of a bimodal
istribution with peaks north and south of the equator. The
patial coherence of bycatch of the two top predators is sur-
rising given the low cross-correlation between bycatch of the
wo species (Supplementary Fig. S19), but this is consistent
ith the relatively minor fractions of total fishing effort in the
orthern part of the fishing domain (Floch et al. 2021), as evi-
enced by the high relative uncertainty in bycatch predictions
or this area (Fig. 10).

Temporal trends in predicted total annual bycatch show in-
reasing trends for silky shark and rainbow runner, a variable
nd potentially increasing trend for common dolphinfish, and
decreasing trend for rough triggerfish. Increasing trends in

ycatch are consistent with the increase by the French fleet in
he number and fraction of fishing sets carried out on FOBs
ince 2010 (Floch et al. 2021).

omparaison with the bycatch-over-landings ratio approach
he bycatch-over-landings ratio approach currently used for
eporting total bycatch to the IOTC and other RFMOs has
onsistently worse performance statistics (Table 9) than op-
imal � log-normal models (Table 7). In particular, the ap-
roach has negative explained deviances for all species, indi-
ating it did not fit the data despite the increasing relationship
etween landings and bycatch observed for all four species
e.g. Fig. 6).

Despite this poor fit, trends in total annual bycatch pre-
icted by the ratio approach are overall similar to those of
ptimal � models (Fig. 11), though there were some large dis-
repancies between the two approaches for rainbow runners.

iscussion

e developed a � modeling approach to estimate bycatch
ates of species caught in tropical tuna PS fisheries from a
ombination of logbook and observer data that accounts for
oth high prevalence of zeros (absences) in the data and large
uctuations in abundance when present. Overall, our mod-
ls for the French Indian Ocean PS fleet explain (in cross-
alidation) between 5 and 15% of the variability in the num-
er of bycatch individuals per set for four common and em-
lematic PS bycatch species. Though much of the variance is
ot explained by our models, highlighting the highly stochas-
ic nature of PS bycatch, models outperform the commonly
sed bycatch-over-landings ratio approach in terms of stan-
ard performance measures (e.g. RMSE, MAE, and deviance
xplained). Furthermore, predictive capacity improves consid-
rably when bycatch is aggregated over spatial strata (e.g. to
alculate total bycatch per year), and the method provides a
obust mechanism for calculating both confidence and pre-
iction intervals for bycatch estimates. Overall, these results

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Figure 8. Prediction performance statistics of the optimal � model for silky sharks at different scales of aggregation. Presence–absence was modeled
using RF models, whereas abundance when present was modeled using negative binomial GAMs. Panel (a) presents v-RMSEnorm, i.e. the mean over
the 10-folds of the ratio of prediction RMSE to the mean prediction, whereas panel (b) presents v-MAEnorm, i.e. the mean over the 10-folds of the ratio of
prediction MAE to the mean prediction. Note that results for “all ocean” and “all time” are comparing a single predicted value to a single observed total
bycatch, so that a v-RMSEnorm or v-MAEnorm of 0.07, e.g. indicates that the observed bycatch differs from the predicted by ±7%.

Figure 9. Spatial distribution of average bycatch per set of the four study species for the French PS fleet in the Indian Ocean between 2011 and 2018.
Bycatch per set was calculated as the sum of observed bycatch for those fishing sets with observer data and model predictions of bycatch for those
fishing sets without observer data, divided by the total number of sets for each 5◦ × 5◦ grid cell. Model predictions were calculated using the optimal �

model (using “no vessel optimal models” for fishing activities by vessels without any observer data over the study time period). Shading indicates the
number of individuals caught per set, with the shading scheme based on quantiles of the data for each of the four species and with darker shapes
indicating more individuals per set. .
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Figure 10. Spatial distribution of relative uncertainty in bycatch per set of the four study species for the French PS fleet in the Indian Ocean between
2011 and 2018. Bycatch per set was calculated as the sum of observed bycatch for those fishing sets with observer data and model predictions of
bycatch for those fishing sets without observer data, divided by the total number of sets for each 5◦ × 5◦ grid cell. Model estimates were calculated
using the optimal � model (using “no vessel optimal models” for fishing activities by vessels without any observer data over the study time period).
Relative uncertainty was measured as the ratio between the 95% prediction interval for total bycatch and the total estimated bycatch in each grid cell.
Shading indicates relative uncertainty with the shading scheme based on quantiles of the data across all four species (i.e. the same shading scheme is
used for all species) and darker shades indicating greater uncertainty..
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rovide the best available estimates of bycatch rates that can
e used for scientific and management assessments of the im-
acts of tropical tuna PS fishing on pelagic bycatch species.
Predictive capacity for top predators, silky sharks and com-
on dolphinfish, is higher than that of schooling, forage

pecies rough triggerfish and rainbow runner (Table 8). Spa-
ial patterns of bycatch per set are also more consistent for
he top predators than for the two forage species (Fig. 9).
hese differences in predictive capacity are due to a combi-
ation of reduced catch variability relative to the mean catch
er set for the two top predators (the CV column of Table 1)
nd differences in the predictive capacity of GAMs for abun-
ance when present (Table 6), with RF model performance of
resence–absence being similar across species (Table 4). This
attern is somewhat surprising given the considerably higher
revalence of the forage species relative to the top predators
by a factor of ∼2–15; Table 1), which would naively sug-
est these species are subject to lower stochasticity than the
op predators. Nevertheless, it is consistent with the overall
rophic level and ecological niche of silky sharks and com-
on dolphinfish being closer to that of predatory target tuna

pecies, leading to a stronger link between tunas and the by-
atch of these species and thereby better fit of these species to
he model. This hypothesis is supported by observations that
ropical tunas and silky sharks have similar temporal patterns
f presence at FOBs, but very different patterns to those of the
wo forage species (Forget et al. 2015). Nevertheless, positive
elationships between tuna catch and bycatch abundance were
oted for all four species (Fig. 6a, Supplementary Figs S9a,
10a, and S11a), and higher error in count data for highly
revalent bycatch species could also be a factor. Overall, re-
ults suggest that, while top predators may be somewhat eas-
er to predict than forage species, management strategies de-
igned to minimize bycatch of these species while maintaining
atch of target tunas (e.g. Pons et al. 2022) are likely to be rel-
tively ineffective due to the link between target species and
on-target species and the overall high unexplained variance
n models.

One simple, but important, observation of our model se-
ection procedure is the importance of cross-validation for
dentifying and quantifying model overfitting. For example,
ross-validation and model diagnostic plots were essential to
dentifying the weaknesses of Poisson distribution models of
bundance when present for predicting bycatch, thereby lead-
ng us to choose to use negative binomial models. Though
he Poisson model for silky shark abundance had the high-
st nominal performance, in cross-validation performance was
ery poor, indicative of overfitting and poor predictive capac-
ty. Similarly, cross-validation was essential to estimating the
rue predictive capacity of RF models of bycatch presence–
bsence, which have a nominal well-classified rate at or close
o 100%, but a cross-validation well-classified rate close to
5% (Table 4). Though cross-validation is of course common-
lace in biological sciences, it is not systematically carried out,
nd its value for identifying overfitting is not always recog-
ized (Yates et al. 2023).
It is difficult to interpret the variables retained in opti-
al models and, in particular, the retained environmental

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsab043#supplementary-data
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Figure 11. Estimated annual total bycatch of the four study species for the French tropical tuna PS fleet in the Indian Ocean between 2011 and 2018.
Totals are the sum of the observed bycatch for sets with observer data and model predictions of bycatch for sets without observer data. Model
predictions for the ligher, red, solid curve are derived from the ratio model currently used for IOTC reporting and catch assessments, whereas the darker,
black, solid curve uses estimates from the optimal � model for each species (using “no vessel optimal models” for fishing activities by vessels without
any observer data over the study time period). The two dashed curves indicate the lower and upper bounds of the 95% confidence interval for
estimates from the optimal � model.

Table 9. Performance statistics for the bycatch-over-landings ratio approach currently used for reporting total bycatch predictions to the IOTC and other
RFMOs.

Model Species RMSE MAE Dev. expl. (%) v-RMSE v-MAE v-Dev. expl. (%)

Ratio Silky shark 11.55 6.40 −22.3 11.49 6.46 −30.9
Ratio Rough triggerfish 331.56 162.62 −19.5 329.45 164.47 −28.8
Ratio Rainbow runner 247.65 62.84 −1.2 183.49 63.82 −45.0
Ratio Common dolphinfish 38.10 21.32 −22.3 38.62 21.59 −28.9
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predictors in terms of biological drivers of species abundance
and catchability due to variability between species in retained
variables and between presence–absence and abundance when
present models, as well as due to the presence of spatial and
temporal predictors that undoubtedly mask some of the en-
vironmental effects. This difficulty is also likely in part due
to the inherent difficulty of directly associating abiotic and
low-trophic-level biotic environmental predictors with behav-
ior and abundance of higher-trophic-level pelagic species (e.g.
Mondal et al. 2022), as well as the strong stochasticity of
pelagic ecosystems (Paiva et al. 2013). Nevertheless, mixed
layer depth (MLD) was included in all optimal GAMs of
presence–absence and in optimal GAMs of abundance when
present for the two top predator species, and a deeper MLD
was consistently found to increase presence of bycatch species.
A link between bycatch and MLD is logical given that MLD
has long been assumed to be a driver of the vertical distribu-
tion of pelagic species (e.g. Kitagawa et al. 2000) and there-
fore their catchability in surface fisheries, though typically one
would assume that a shallower MLD increases catchability of
target species. We hypothesize that this seeming contradiction
ould be due to the fact that we separately control for catch
f target tunas in our models, thereby removing the impact
f overall catchability. Furthermore, we only use data in this
aper from “successful” fishing operations during which tuna
ere caught, so the general effect of shallow MLD facilitating

atch may not be reflected in our (positive) catch data.
The results of this work have numerous consequences for
anagement of PS bycatch species. First and foremost, the �

odels developed here provide the most accurate available ap-
roach to estimating bycatch per set for the assessed species.
hereas the bycatch-over-landings ratio approach typically

sed for reporting bycatch levels to RFMOs consistently ex-
lained none of the variability around the mean in bycatch

evels per set, our models explained small to modest amounts
f the variability. Unexplained variance at the scale of an in-
ividual set remains non-negligible, but uncertainty in annual
otal bycatch, an important result for management organiza-
ions, was estimated with a RMSE of 0.18–0.42, which is ac-
eptable for many management objectives. Above all, the ap-
roach provides a consistent and theoretically sound method
f estimating prediction uncertainty, i.e. essential to identi-
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ying significant trends in bycatch levels. Finally, though the
bjective of this work is to predict bycatch levels, the mod-
ls developed here can be adapted (with some modification)
o generate standardized abundance indices for evaluating the
tatus of often data-poor bycatch species, such as silky sharks
nd other pelagic sharks (e.g. Kaplan and Tolotti 2023).

Our results also have important consequences for spatial
anagement measures designed to reduce bycatch levels while
inimizing impact of catch of target tunas. Previous work on

patial management of tropical tuna fisheries has found that
tatic marine protected areas (MPAs) are likely an ineffective
pproach to management of Indian Ocean tropical tuna fish-
ries (Kaplan et al. 2014), whereas dynamic MPAs that target
reas characterized by high bycatch and low catch of target
pecies could be an effective approach to bycatch reduction
or many large-scale industrial fisheries (Pons et al. 2022). Ex-
ected benefits of dynamic MPAs for tropical tuna PS fisheries
aried, with non-negligible benefit estimated for the eastern
acific Ocean, but little expected benefit for the Atlantic and
ndian Oceans due to high covariability between catch and
ycatch (Pons et al. 2022). Our results, indicating a positive
elationship between target tuna catch and bycatch, support
hese conclusions. Furthermore, the value of dynamic MPAs is
redicated on our capacity to predict future bycatch patterns
t the level of individual space-time strata (e.g. 1◦ × 1◦-month
rid cells). The considerable unexplained variance in our mod-
ls, even when aggregating in space and time, indicates that
hese types of models will likely be an ineffective basis for de-
igning effective dynamic MPAs that depend on high accuracy
n predictions to achieve significant reductions in bycatch.

Future avenues for improving predictions from statisti-
al models of bycatch species include examining alternative
odel formulations and considering new predictor variables.
mong the prior are using zero-inflated distributions and
ierarchical models, both of which can in principle model
resence–absence and abundance in a coherent framework.
e initially modeled bycatch using zero-inflated GAMs, but
e found that available zero-inflated distributions lacked suf-
cient flexibility to optimally capture our data and/or were not
vailable for GAMs. In addition, splitting presence–absence
nd abundance into two models allowed us to understand
ach process individually, thereby providing additional in-
ight. Though Bayesian hierarchical models are a powerful
ramework for modeling data driven by multiple processes,
here are no fundamental reasons to believe that such a para-
etric approach would significantly improve predictive ca-
acity over highly non-linear, “semi”-parametric approaches
uch as GAMs. Furthermore, our own work and numerous
ther studies have found that machine-learning approaches,
uch as RF models, are generally more effective at model-
ng multinomial data than parametric approaches (including
oth GAMs and Bayesian models). For these reasons, we con-
ider that our � models using machine learning for model-
ng presence–absence and non-linear, parametric models for
bundance represent the best available compromise among
he constraints of predictive capacity, flexibility, and inter-
retability (e.g. as might be lacking in an approach based en-
irely on machine learning).

Among new predictor variables that could be used to model
ycatch rates, we did not take into account information from
revious nearby fishing operations that could be informative
f local bycatch levels. This type of information has been used
o develop “move-on rules” for benthic and demersal fisheries
Dunn et al. 2015), but this possibility has not to our knowl-
dge been explored for tropical tuna PS fisheries. Though an
nteresting avenue to explore, our models have a relatively
arge unexplained variance despite including both spatial and
emporal predictors, alone and in interaction, suggesting that
ncluding even more fine-scale spatial and temporal informa-
ion may have difficulty overcoming the large stochasticity of
elagic ecosystems. Perhaps more promising, our models only
onsider environmental predictors at the time and location of
ndividual fishing sets, whereas, given the time needed to trans-
it abiotic and low-tropic-level biotic signals to higher tropic

evels, space-time lags between environmental predictors and
ycatch levels are to be expected (Lehodey et al. 2010). One
romising statistical approach to assessing this possibility is
ia deep learning methodologies capable of analyzing large
mounts of data to identify cryptic connections that might
therwise be difficult to identify (e.g. Sokolova et al. 2021).
Despite these avenues for future developments, our model-

ng approach currently represents the best available approach
o predicting total bycatch in tropical tuna fisheries with in-
omplete observer coverage. As such, we strongly encourage
hat this methodology be used for estimating bycatch levels
or management and scientific purposes.
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Observatory (Ob7; https://www.ob7.ird.fr/en/) using the fol-
lowing e-mail address: adm-dblp@ird.fr.

Code for carrying out all analyses is available in open access
at the following address: https://github.com/Agathedumont/
modeling-bycatch-abundance-delta-method.
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