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Abstract
The role of intraspecific variability (IV) in shaping community dynamics and species coexistence hasbeen intensively discussed over the past decade and modelling studies have played an important rolein that respect. However, these studies often implicitly assume that IV can be represented by inde-pendent random draws around species-specific mean parameters. This major assumption has largelyremained undiscussed, although a great part of observed IV is structured in space or time, in particularwhen environmental dimensions that influence individual performance are imperfectly characterisedor unobserved in the field. To test the impact of this strong assumption on the outcome of communitydynamics models, we designed a simulation experiment where we varied the level of knowledge ofthe environment in virtual communities, resulting in different relative importance of explained vs unex-plained spatial individual variation in performance. We used a community dynamics simulator to gen-erate communities where the unexplained individual variation is, or is not, added as an unstructuredrandom noise. Communities simulated with unstructured IV never reached the community diversityand composition of those where all the variation was explained and structured (perfect knowledgemodel). This highlights that incorporating unstructured IV (i.e. a random noise) to account for unex-plained (but structured) variation can lead to incorrect simulations of community dynamics. In addition,the effects of unstructured IV on community diversity and composition depended on the relative im-portance of structured vs unstructured IV, i.e. on the level of knowledge of the environment, whichmaypartly explain the contrasting results of previous studies on the effect of IV on species coexistence. Inparticular, the effect of unstructured IV on community diversity was positive when the proportion ofstructured IV vs unstructured IV in the model was low, but negative when this proportion was high.This is because unstructured random noise can either limit the competitive exclusion of inferior com-petitors in low dimensions or destabilise tight niche partitioning in high dimension. Our study suggeststhat it is crucial to account for the sources and structure of observed IV in real communities to betterunderstand its effect on community assembly and properly include it in community dynamics models.
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Introduction
The role of intraspecific variability (IV) in shaping community dynamics has been intensivelydiscussed over the past decade (Albert et al., 2011; Bolnick et al., 2011; Des Roches et al., 2018;Raffard et al., 2019; Violle et al., 2012). Observed IV, i.e. the variability among measured individ-ual attributes (functional or demographic traits, or any proxy of individual performance) withina species has indeed been reported to be large within communities (Poorter et al., 2018; Siefertet al., 2015). Modelling studies have played an important role to decipher the effect of IV onspecies coexistence (e.g. Courbaud et al. 2012; Crawford et al. 2019; Hart et al. 2016; Lichsteinet al. 2007; Uriarte and Menge 2018; Vieilledent et al. 2010), offering opportunities of virtualexperiments out of the scope of empirical approaches. These studies have led to contrastingresults however, letting the debate unresolved: IV could either (i) blur species differences, thuspromoting transient or unstable coexistence (Crawford et al., 2019; Vieilledent et al., 2010), (ii)disproportionately advantage the strongest competitor, thus hindering coexistence (Courbaudet al., 2012; Hart et al., 2016), or (iii) promote coexistence in specific spatial configurations (Uri-arte and Menge, 2018). While a unifying framework differentiating whether IV affects nichetraits or hierarchical traits has been recently proposed to explain these discrepancies (Stump etal., 2022), a major assumption usually made in modelling studies, namely that IV is unstructuredin space or time and can be represented by independent random draws around species-specificmean parameters, remains largely undiscussed (Girard-Tercieux et al., 2023).The IV observed in individual attributes is not necessarily purely random and can emergefrom various genetic and environmental processes (Moran et al., 2016; Violle et al., 2012). Mostof these additional processes are unlikely to generate unstructured IV in the form of a randomnoise, whereby the site and date of measurement would have no influence on the measured at-tribute value (unstructured IV, henceforth denoted uIV). Previous works have already exploredthe role of genetically heritable traits variability (Ehlers et al., 2016). In contrast, much less atten-tion has been given to IV generated by structured variation of environmental gradients in spaceor time (structured IV, henceforth denoted sIV). It is, however, well-known that many species
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attributes respond to environmental gradients (Bonnier, 1890; Jung et al., 2010; Kropotkine,2015; Niinemets, 2015; Rixen et al., 2022). As a result, high-dimensional (and potentially un-observed) variation of the environment can lead to large observed IV. For instance, in a highlycontrolled clonal experiment, IV in tree growth within clones was larger than genetically-drivenIV between clones (Girard-Tercieux et al., 2023). Indeed, differences in attributes among conspe-cific individuals can result from differences in environmental dimensions that are unobserved ormischaracterised due to a mismatch between the individual scale and the scale of the measure-ments. Consequently, these observed differences do not necessarily mean that conspecific indi-viduals substantially differ in their response to the environment. While it is widely accepted thatenvironmentally-driven sIV is ubiquitous in natural communities (Nicotra et al., 2010), the con-sequences of its substitution by random uIV on species coexistence and community dynamicsremain to be thoroughly tested in models (Clark, 2010; Girard-Tercieux et al., 2023).Here, we explore the effect of considering IV either as structured by environmental dimen-sions (sIV) or as an unstructured random noise (uIV), through a virtual experiment designed toprovide a first proof-of-concept, performed using a simulator of community dynamics. To doso, we first created a virtual plant community, where individual performance is fully determinedby species-level responses to 15 environmental dimensions varying in space (Fig. 1A). This ex-treme scenario, although unrealistic regarding its level of environmental determinism, was sub-sequently used as a reference (henceforth denoted Perfect knowledge model) in our virtual exper-iment. We then considered imperfect knowledge models, where this 15-dimensional individualperformance is estimated using 0 to 15 supposedly “observed" environmental dimensions, whilethe remaining IV (or unexplained variation) resulting from the effect of “unobserved" environ-mental dimensions, is ignored (Imperfect knowledge models without uIV) or is included as randomunstructured IV (Imperfect knowledge models with uIV, Fig. 1B). These three performance modelsare used to independently run the same community dynamics simulator in order to comparetheir effects on species coexistence and community dynamics.Specifically, we are asking two questions. First, how well does random unstructured IV (uIV)mimic the effect of environmentally-driven structured IV (sIV) on diversity and community com-position? To answer this question, we compare communities simulated under the Perfect knowl-edge model and under Imperfect knowledge models with uIV. Importantly, these models share thesame amount of total variation across individuals, but partitioned differently between sIV anduIV, depending on the amount of knowledge of the environment, i.e. on the number of “observed"environmental dimensions (Fig. 1C, arrow 1). Second, how does the effect of adding uIV on di-versity and community composition vary with the knowledge of the environment (Fig. 1C, arrow2), i.e. with the relative importance of sIV and uIV in our model? To answer this question, wecompare pairs of models with the same amount of sIV, i.e.with the same knowledge of the envi-ronment, but including or excluding uIV. This latter comparison corresponds to the approachesproposed in previous studies testing the effects of IV on coexistence (Courbaud et al., 2012;Hart et al., 2016; Vieilledent et al., 2010).
1. Materials and method

1.1. Environmental variables
We considered a grid of M = 25 × 25 = 625 sites. Each site m was characterised by K = 15environmental variables x1, ... , xK . To confer some realism to our virtual experiment and theresulting illustrations (Fig. S5.17), each environmental variable was spatially auto-correlated, asit is often the case in nature (Tymen et al., 2017; Zellweger et al., 2019), and independentlyderived from a conditional autoregressive model, with a normal distribution centered on 0 andof variance 1. Therefore, environmental variables were not uniformly distributed, some habitatsbeing more frequent than others. Environmental variables were then rescaled to [0, 1] to ensurethat each variable had the same effect on species performance on average. We here assumedthat the environmental variables do not vary in time and therefore restricted our experiment toenvironmental variation in space.
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Figure 1 – Conceptual framework. Consider an environment that is varying spatially in many di-mensions, X1 to X15. Each dimension influences individual performance in a species-specific way, asillustrated in A for one species (where the variation of performance with all environmental variablesis projected separately for each variable in 2-dimensional plots). In practice, several of these environ-mental dimensions are often unobserved in the field. The effect of these unobserved environmentaldimensions on individual performance results in an observed intraspecific variability (IV) in the speciesresponse to observed dimensions. As an illustration, in B, only X6 is observed and used to fit a polyno-mial function to the performance data (teal curve), and the remaining variation is estimated through avariance term (gray envelope). This variability is often represented as a probability distribution, whichis used to simulate the variation in performance among conspecific individuals through random drawsthat are independent and unstructured in space (density panel in B).We propose a framework to assessthe consequences of representing the variation resulting from unobserved environmental dimensions,which is structured in space and time, by such unstructured IV (uIV) on community dynamics, and howthese consequences vary with the level of knowledge of the environment (C). To do so, we varied from0 to 15 the number of dimensions that are observed and used for estimating the 15-dimensional per-formance (panel B providing an example with one dimension). By increasing the number of observeddimensions, we thus increased the proportion of structured IV (sIV) that is accounted for in estimatingindividual performance (C, horizontal axis; see also Fig. 2). For a given number of observed dimensions,or % of sIV, the variation resulting from unobserved dimensions can be either added as uIV or not (C,vertical axis). For each way to estimate performance (with uIV or not, and with different numbers of ob-served dimensions), we simulated community dynamics using the same simulator. We then comparedthe simulated communities in terms of diversity and composition (e.g. species richness in colored pointsin C). By comparing communities simulated with uIV with the one with 100 % sIV (arrow 1) we testedthe effect of substituting sIV with uIV on community dynamics. By comparing communities simulatedwith and without uIV, for a given % of sIV (arrow 2), we mimicked the approach of previous modellingstudies testing the effect of intraspecific variability on community dynamics and species coexistence.By comparing this difference between communities simulated with and without uIV across different% of sIV (arrow 3), we tested whether the results of previous studies can be influenced by the level ofknowledge of the environment.
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1.2. Individual performance
For parsimony’s sake, we here focus on an attribute (or trait) that has a direct link with per-formance, hereafter “individual performance". We considered J = 20 species, whose individualperformances were computed in three alternative ways, as follows.

1.2.1. The Perfect knowledge model. We first considered a simple model representing the func-tioning of a plant community in a hypothetical world where all determinants of individual per-formance would be environmental and known - named Perfect knowledge model and henceforthconsidered as the reference. Individuals within a species did not have any intrinsic differencesand could therefore be considered as clones, andwe assumed no genetic variation among individ-uals. We considered that the environment was multidimensional and partitioned among species.To this end, in this model, the performance of an individual i of species j (j ∈ [1, ... , J]) was max-imal at one point in the multidimensional environmental space, denoted x∗
j = (x∗

1,j , ... , x
∗
K ,j). Foran environmental axis k (k ∈ [1, ... ,K ]), x∗

k,j was drawn in a uniform distribution in [0, 1]. Then,the performance of an individual i of species j on sitem, pi ,j ,m, was computed as the opposite ofthe normalised Euclidean distance between x∗
j and the local environment at the site where theindividual resided, xm = (x1,m, ... , xK ,m) (Eq.1).Therefore, at each site, one species outperformed all the others. The number of sites whereeach species had the highest performance varied between species, since the environmental vari-ables were not uniformly distributed. For some species, there was no site where they were themost competitive. Importantly, all individuals of a given species j responded in the same wayto the environment, the performance of conspecifics differing only because they resided in adifferent environment. Individual variation was thus fully environmentally-driven and structuredin space (0% uIV and 100% sIV in Fig. 1C).

(Eq.1)
pi ,j ,m = −(di ,j ,m − µd)/σd

di ,j ,m =

√√√√
K∑

k=1

(x∗
k,j − xk,m)2

where µd and σd are the mean and variance of dj ,m across all species j and sites m.
1.2.2. The Imperfect knowledge models. As it is typically unfeasible to fully characterise all rel-evant dimensions of the environment at fine scales in the field, we then assumed that only
nobs < 15 environmental variables were measured and accounted for when estimating individ-ual performance. These performances were thus estimated from a statistical model fitting theindividual performance pi ,j ,m provided by the Perfect knowledge model (Eq.1, representing whatactually happens in the field and is measured, assuming no measurement error) against the nobsobserved environmental variables (Fig. 1). We considered the common case where ecologists, inabsence of exact knowledge of the underlying processes, here depicted by the Perfect knowledgemodel, assume a quadratic relationship between performance and each observed environmentalvariable, thus approaching the triangular shape (i.e. increasing then decreasing piecewise linear)of the actual relationship of the Perfect knowledge model (Eq.2). The use of an intercept to es-timate species performance in averaged environmental conditions is also a common practiceamong ecologists.

(Eq.2) pi ,j ,m = β0,j +
nobs∑

k=1

(β1,k,jxk,m + β2,k,jx
2
k,m) + εi ,j ,m

εi ,j ,m ∼ N (0,Vj)

This statistical model was fitted using the “lm" function of the “stats" R package. Speciesparameters (βj = {β0,j ,β1,k,j ,β2,k,j}) and residuals εi ,j ,m were retrieved. In this model, Vj rep-resented an unstructured observed IV which was estimated for each species j . This variability
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emerged from the spatial variation in environmental variables that were not measured and ac-counted for, namely [xnobs+1, ... , xK ].In Imperfect knowledge models, the individual performance p̂i ,j ,m was computed with the pa-rameters obtained at different levels of knowledge of the environment using Eq.2, i.e. with nobsvarying from 0 to 15. εi ,j ,m thus accounted for the K −nobs unobserved environmental variables,respectively. In the Imperfect models without uIV, the residual variation, εi ,j ,m, was neglected(Eq.3), while in the Imperfect knowledge models with uIV, it was included as a random noise δi ,j ,mgenerated through independent individual draws in a normal distribution of variance V̂j (Eq.4).The Imperfect knowledge models with uIV therefore shares the same amount of total variationacross individuals with the Perfect knowledge model, but partitioned differently between sIV anduIV: for a given number of observed environmental dimensions, random IV V̂j was used as asubstitute of the environmental variation that was not observed.Importantly, in the Imperfect knowledgemodels without uIV, conspecific individuals respondedsimilarly to the environment as in the Perfect knowledge model for the observed environmentaldimensions, but lacking information on the other environmental dimensions (0% uIV in Fig. 1C).

(Eq.3) p̂i ,j ,m = β̂0,j +
nobs∑

k=1

(β̂1,k,jxk,m + β̂2,k,jx
2
k,m)

In contrast to the Perfect knowledge model and the Imperfect knowledge models without uIV, inthe Imperfect knowledge models with uIV, conspecific individuals could perform differently in thesame environment (0 to 100% uIV in Fig. 1C), due to the contribution of the random term δi ,j ,m tothe performance. Note that this contribution, which mimics what was typically done in previousstudies, can lead to a trend of increasing average performance over iterations in simulations ofcommunity dynamics, especially due to the unbounded, normal distribution of δi ,j ,m.

(Eq.4) p̂i ,j ,m = β̂0,j +
nobs∑

k=1

(β̂1,k,jxk,m + β̂2,k,jx
2
k,m) + δi ,j ,m δi ,j ,m ∼ N (0, V̂j)

The three types of performancemodels (Eq.1, Eq.3, Eq.4) were then implemented in the samesimulator of community dynamics, in order to disentangle the effects of random, unstructured IVon the one hand, and of the imperfect characterisation of the environment on community dynam-ics and species coexistence on the other hand. Note that, when comparing simulation outcomeswith performance computed with the Perfect Knowledge and the Imperfect Knowledge models,differences can actually result from two main aspects: (i) the model mis-specification (i.e. theuse of a quadratic function including an intercept, Eq.2, Eq.3, Eq.4, instead of a distance, Eq.1),and (ii) the number of observed dimensions. Change in the latter actually results in a changein the proportion of uIV, but also in the number of variables that can be used to compute thesite-dependent (or environment-dependent) part of performance. Moreover, the presence of anintercept in models ( Eq.2, Eq.3, Eq.4) can lead to a hierarchy in species performances fosteringspecies extinctions.We tested the magnitude of the effect of the intercept and of the model mis-specification, using an Imperfect knowledge model with a distance function, with and withoutintercepts, which did not substantially change our results (see Reviews and discussion below).
1.3. Community dynamics simulation

Our simulator of community dynamics was inspired by Hurtt and Pacala (1995). However,several of our modelling choices differed. First, we explicitly used several environmental dimen-sions to account for niche multidimensionality, while they used a one-dimensional environmen-tal index. Second, we randomly drew species optima, therefore leading to various sizes of theenvironmental space where each species outperforms all the others, while they used equallywide ecological niches across species. This allowed us to test several configurations of nichepartitioning. Finally, mortality and recruitment were stochastic in their model, while we chose adeterministic process to stabilise coexistence and limit the sources of uncertainty to the effectof IV, although we also tested a stochastic alternative (see details below).

6 Camille Girard-Tercieux et al.

Peer Community Journal, Vol. 4 (2024), article e28 https://doi.org/10.24072/pcjournal.360

https://doi.org/10.24072/pcjournal.360


For a given simulation of community dynamics, the simulated community was initialisedwith ten individuals of each of the 20 species, located randomly in the landscape. The perfor-mance of these individuals was computed using either the Perfect knowledge model (Eq.1), anImperfect knowledge model without uIV (Eq.3), or an Imperfect knowledge model with uIV (Eq.4).Mortality events resulted in vacant sites for which species then competed for recruitment. Totest the robustness of our results to the choices made in building the community dynamicssimulator, we implemented alternative ways to simulate mortality and fecundity. In the follow-ing formulas, performance pi ,j ,m is replaced by p̂i ,j ,m for Imperfect knowledge models. For mor-tality, we explored the three following approaches: (i) the one percent less performing indi-viduals in the landscape die at each timestep, henceforth denoted deterministic mortality; (ii)one percent of the individuals die at each timestep, and the probability θi ,j ,m of each individ-ual j to die is inversely proportional to its performance, θi ,j ,m = logit−1(0.5 × pi ,j ,m), hence-forth denoted stochastic mortality; (iii) θi ,j ,m is computed as a function of individual performance,
θi ,j ,m = logit−1(logit(0.01) − 0.5 × pi ,j ,m), henceforth denoted logistic stochastic mortality. Deathevents are then drawn in a binomial distribution B(ns , θ)with θ the vector of all θi ,j ,m. For fecun-dity, we explored the two following approaches: (i) the number of propagules λj ,t depends onspecies abundance Aj ,t : λj ,t = round(0.5 × Aj ,t), henceforth denoted the abundance-dependentfecundity; or (ii) each species present in the community produces ten offspring per timestep,henceforth denoted the fixed fecundity. In both cases, propaguleswere then randomly distributedamong all vacant sites. If several propagules landed on the same vacant site, the propagule withthe highest individual performance outcompeted the others and won the site. A species thatwas not the best at a site could win “by forfeit" and be recruited at this site. When individualperformance was computed using the Perfect knowledge model, the colonisation of a vacant siteonly depended on the species optima. When individual performance was computed using anImperfect knowledge model without uIV, this colonisation depended on the estimated species pa-rameters (the β̂j ), and, for an Imperfect knowledge model with uIV, also on a random individualvariation (the random term δi ,j ,m), that enabled potential inversions of competitive hierarchy lo-cally.

Overall, multidimensional niche partitioning and environmental filtering were the main co-existence mechanisms within the simulated communities: mortality and recruitment were con-trolled by performance, which depended on the local environment in a species-specific way.Therefore, individuals that were maintained and recruited on a site were filtered by the environ-ment, and performance on each site increased rapidly. As population sizes were relatively low,communities were also subject to ecological drift (i.e. extinctions due to demographic stochastic-ity). Note that our community dynamics simulator is spatially-implicit, i.e. the fate of an individualon a site does not depend on its neighbours neither on the environment in the neighbourhood(the spatial auto-correlation of the environmental variables does not directly influence in thedynamics and here was only used for illustration, Fig. S5.17). Spatial processes that could con-tribute to species coexistence (e.g. Wiegand et al. 2021) were thus absent from our simulator,whose aim was not to provide all potential coexistence mechanisms. When using the perfor-mance models without uIV (i.e. Perfect knowledge and Imperfect knowledge models without uIV),each species tends to occupy its preferred habitat defined by its optima (perfectly or imperfectlyestimated) in many environmental dimensions. It should be noted that species favorable habitatswere not equally frequent across species, thus intrinsically defining rare and dominant speciesin the landscape. Few species that had a rare favorable habitat and whose initial individuals ran-domly landed on unfavorable sites, could be excluded from the community.

As most results remained qualitatively unchanged across the different alternatives for simu-lating mortality and fecundity, we present below the results for the deterministic mortality andthe abundance-dependent fecundity only, and refer the reader to Appendix 1 for the other alter-natives.
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1.4. Experimental setup and analyses
For each model of individual performance and number of observed environmental dimen-sions, we used ten different Environment × Species optima (E × S ) configurations, each pre-scribed randomly. Within each E ×S configurations, ten simulations differing only in their initialconditions (location of the initial individuals) were run. Each simulation of community dynamicswas run for 10,000 generations (Table 1). The ten E × S configurations were the same acrossmodels of individual performance and number of observed environmental dimensions and theten initial conditions were the same across E × S configurations. In total, this led to 3,300 simu-lations.

Table 1 – Experimental setup.
Experimental setting Number Comments
Model of individual performance 3 Perfect knowledge, Imperfect knowledgewithout uIV, Imperfect knowledge withuIV
Number of observed environmentaldimensions nobs 0 to 15 Except for the Perfect knowledge model
E × S configuration 10 The same configurations were usedacross the models of individualperformance and number of observedenvironmental dimensions
Initial conditions 10 Determined by the locations of the 10individuals per species within thelandscape
Generations 10000 Sufficiently long so that changes in thecommunity are very slow

In order to compare simulation outputs, we studied several aspects of final communities: (1)community diversity, (2) the similarity in community composition between simulations, and (3)site sorting. Community diversity was estimated using species richness and the Hill-Shannondiversity index (Roswell et al., 2021). Similarity in community composition was estimated as thepairwise percentage similarity of final species abundances between pairs of simulations. For twovectors of species abundances A = (a1, ... , aj , ... , aJ) and B = (b1, ... , bj , ... , bJ), the percentagesimilarity was computed as

(Eq.5) PS =
2 × ∑J

j=1min(aj , bj)∑
aj +

∑
bj

To quantify site sorting, we computed for each simulation the final community mean per-formance as the performance obtained with the Perfect knowledge model, averaged across allindividuals at the end of the simulation. This community mean performance thus correspondedto the strength of the environmental filtering in community assembly, i.e. the site sorting: thehigher the mean performance, the stronger the effect of the environment on community assem-bly.
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2. Results

2.1. Final community diversity

Final community diversity, both in terms of species richness and Hill-Shannon index, waslower with unstructured IV than with the Perfect knowledge model whatever the number of ob-served environmental dimensions, i.e.whatever the relative importance of structured vs unstruc-tured IV (Fig. 3A and B). This diversity increased with the number of observed dimensions. Inmost cases, adding unstructured IV reduced the community diversity with respect to the corre-sponding Imperfect knowledgemodel without uIV (Fig. 3C and D). However, this effect varied withthe number of observed dimensions (but see in case of alternative mortality implementation, Ap-pendix 1): below 50% of explained variance (i.e. up to three observed environmental dimensions,Fig. 2), adding unstructured IV resulted in a higher or similar diversity than with the Imperfectknowledge models without uIV (but see in case of alternative mortality implementation, Appendix1). This difference first decreased and then increased as the number of observed dimensionsincreased, while staying negative from 3 to 15 observed dimensions.

Figure 2 – Observed IV depending on the level of knowledge of the environment. Eachpoint represents the unstructured IV inferred for one species, and each colour represents an E ×Sconfiguration (twenty points per colour for the twenty species). Unstructured IV was inferred us-ing a statistical model (Eq.2) taking 0 to 15, out of 15, dimensions into account to fit the perfor-mance provided by the Perfect knowledge model; the pink points, curve and ribbon correspond tothe mean and standard deviation of the R2 of these statistical models (computed over the tendifferent configurations for each number of observed dimensions). As expected, observed unstruc-tured IV decreased with the number of observed dimensions, i.e. with the level of knowledge ofthe environment.
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Figure 3 – Effect of the structure of individual variation on community diversity. Eachpoint represents the diversity, either computed as the species richness – left panels – or the Hill-Shannon diversity index – right panels – of a final simulated community. Each colour represents an
E × S configuration (ten points per color, for the ten initial conditions). The horizontal axis corre-sponds to the number of observed environmental dimensions, which is proportional to the ratio ofstructured and unstructured IV in the performance models. Each number of observed dimensionscorresponds to a level of explained variance in individual performance (see Fig. 2) depicted withthe pink arrow at the bottom. The top panels show the final community diversity obtained with theImperfect knowledge models with uIV (0 to 15 observed dimensions) and with the Perfect knowledgemodel (PK, red, far right). This is useful to examine our first question (Fig. 1C, arrow 1). The bottompanels show the difference in the final community diversity obtained with the Imperfect knowl-edge models with and without uIV. Points that are above zero (horizontal dashed line) correspondto a higher diversity when adding unstructured IV. This is useful to examine our second question(Fig. 1C, arrows 2 and 3), by comparing the effect of adding unstructured IV at different levels ofknowledge of the environment. The Imperfect knowledge models with uIV never reached the diver-sity obtained with the Perfect knowledge model (A and B). Moreover, adding unstructured IV as arandom noise had an effect on community diversity that varied with the number of observed envi-ronmental dimensions (C and D). Results shown here were obtained with a deterministic mortalityand an abundance-dependent fecundity (see main text).

2.2. Final community composition
Similarity (as measured by PS, Eq.5) of the Imperfect knowledge models with uIV with the Per-fect knowledge modelwas lowwhen few environmental dimensions were observed, i.e.when therelative importance of structured (vs unstructured) IV was low. This similarity increased with thenumber of observed dimensions (from 0.55 to 0.9, Fig. 4A). Adding unstructured IV increasedthe similarity with the Perfect knowledge model at low numbers of observed dimensions (from0 to 2 dimensions, i.e. below 50% explained variance) but decreased it at higher numbers ofobserved dimensions, with respect to the corresponding Imperfect knowledge model without uIV
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(Fig. 4C, but see in case of alternative mortality implementation, Appendix 1). This negative ef-fect became stronger (from 3 to 8 observed dimensions) before becoming weaker (from 9 to 15observed dimensions). See Appendix 2 for the similarity within models.

Figure 4 – Effect of individual variation on the similarity in final species abundances be-tween models and on the site sorting. Each colour represents an E × S configuration. For thesimilarity - left panels -, each point represents the pairwise percentage similarity (PS) in the finalspecies abundances between two simulations with the same E × S configuration and the sameinitial conditions (ten points per color), but obtained using the Perfect knowledge model on the onehand and one of the Imperfect knowledge models on the other hand. For the site sorting - right pan-els -, each point represents the community mean performance of the final communities. This meanperformance was calculated with the Perfect knowledge model and averaged across all individualsat the end of the simulation. The top panels show these two metrics for communities simulatedwith the Imperfect knowledge models with uIV (0 to 15 observed dimensions) and with the Perfectknowledge model (PK, red, far right). The bottom panels show the difference in these metrics forcommunities obtainedwith the Imperfect knowledgemodels with andwithout unstructured IV. Pointsthat are above zero (horizontal dashed line) correspond to a higher similarity or mean performancewhen adding unstructured IV, respectively. The similarity between the Perfect knowledgemodel andthe Imperfect knowledgemodels with uIV was lowwith few observed dimensions and increasedwiththe number of observed dimensions (A). The effect of adding unstructured IV to Imperfect knowl-edge models on the similarity with the Perfect knowledge model varied with the number of observedenvironmental dimensions (C). The mean performance obtained for communities simulated withthe Imperfect knowledge models with uIV as well as its difference with the Imperfect knowledge mod-els without uIV varied with the number of observed dimensions (B, D). Results shown here wereobtained with a deterministic mortality and an abundance-dependent fecundity (see main text).
The mean performance of communities simulated with the Imperfect knowledge models withuIV increased with the number of observed dimensions (except between 14 and 15 observeddimensions), i.e. with the relative importance of structured and unstructured IV (Fig. 4B). Belowten observed dimensions, it remained lower than that of the communities simulated with the
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Perfect knowledge model, but was higher above ten observed dimensions. Adding unstructuredIV decreased the mean performance of the final species community from zero to six observeddimensions but increased it at higher numbers of observed dimensions, with respect to the cor-responding Imperfect knowledge model without uIV (Fig. 4D). This difference increased with thenumber of observed dimensions, except between 14 and 15 observed dimensions.
3. Discussion

3.1. Random unstructured individual variability generates communities with lower diversitythat are dissimilar from communities generated with structured individual variability
Ecologists often have only access to an imperfect characterisation of all the environmentaldimensions that actually lead to individual variation, be it due to some overlooked dimensions orvariables, or a monitoring at a scale coarser than the one of the variation that actually influencesindividuals. This mischaracterisation can result in an observed but unexplained intraspecific vari-ability in data. To account for it in community dynamics models, it has often been (implicitly)assumed that some unstructured variation could be added to the explained part of variationto reach the actual observed total variation. To test this assumption, in our simulation exper-iment, we varied the level of knowledge of the environment and incorporated the remaining(unexplained) variability in individual performance as unstructured noise, thus varying the ratioof structured and unstructured IV. Using a modelling experiment, we showed that this differencein the nature of IV can have strong consequences on community structure and composition.Within our modelling framework, and compared to the reference communities simulatedwith a 15-dimensional individual performance, the communities simulated with a performanceestimated with fewer dimensions and to which the remaining variance was added as a randomnoise were less diverse (see also Appendix 3 for further explanation on simulated species rich-ness). Beyond the community diversity per se, community composition was dissimilar from thereference when the number of observed dimensions was low, i.e. when the relative importanceof structured vs unstructured IV was low: the strength of environmental filtering in shaping com-munity assembly was too low to generate species abundances similar to the one of the referencecommunities. As the relative importance of structured IV increased, both the strength of envi-ronmental filtering and the similarity of the final species abundances with the reference onesincreased.While the intercepts included in the Imperfect knowledge models resulted in a species hier-archy leading to a drop in species richness at low numbers of observed dimensions, this effectquickly weakened as the number of observed dimensions increased. Overall this effect alonedid not explain the observed patterns and our results were qualitatively robust to the use of adistance rather than a quadratic function in Imperfect knowledge models (see Reviews).Finally, random intraspecific variability is not a good substitute for species response to un-observed environmental dimensions for studying community dynamics. Moreover, interpretingobserved IV as unstructured differences in conspecifics’ response to the environment can leadto misinterpretations regarding the ecological mechanisms driving the community dynamics. Itwould mistake the response of species to environmental variation (a niche mechanism) withrandom variability (typically a neutral mechanism, i.e. affecting all species in the same way), andpresent IV as a coexistencemechanism per sewithout taking into account the species-specific re-sponses to environmental variations in high dimensions fromwhich IV can actually result. Hence,maintaining the variance observed among individuals is not sufficient to capture the communitydynamics, the structure and nature of this individual variability is also critical.

3.2. The effect of adding a random IV depends on the relative importance of structured vsunstructured individual variability
Previous modelling studies that explored the role of IV on community dynamics usually didnot maintain the total level of variance among individuals. They typically compared communitieswith and without additional random variability, for the same level of explained individual varia-tion (Imperfect knowledge model without uIV vs Imperfect knowledge model with uIV). Our results
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showed that the effect of adding a random IV depends on the level of explained variance, i.e. inour case on the number of observed dimensions.When structured IV accounted for less than 50% of the total individual variation, the addi-tion of a random unstructured variation increased community diversity in our simulations. Thispositive effect was due to the inversions in competitive hierarchy produced by adding a randomvariation of relatively high variance to individual performance; it allowed more species to bemaintained in the community although there were few theoretical winners (i.e. species that arethe best performing somewhere in the landscape) because of the projection of their niches onfew environmental dimensions. Similarly, when the proportion of structured IV was low, addingunstructured IV increased the similarity of the simulated final species abundances with the oneof the reference communities. This increase in similarity was however for a great part due tothe higher number of species reached when adding unstructured IV (the higher number of zeroabundances with the Imperfect knowledge models without uIV decreases the estimated similaritywith the abundances obtained with the Perfect knowledge model).When the proportion of structured IV increased, this positive effect of adding random IV oncommunity diversity vanished and was even reversed (but see in case of alternative mortality im-plementation, Appendix 1). This is because the destabilisation of the niche partitioning betweenspecies - due to unstructured IV - decreased. Indeed, as expected, the lower unstructured IVwas (i.e. the higher the number of observed dimensions), the greater community mean perfor-mance (i.e. site sorting) was in comparison to the communities simulated without unstructuredIV (see Appendix 3 for further explanation on the absolute differences in community mean per-formance). This negative effect first increased but then decreased with the number of observedenvironmental dimensions, because the magnitude (and therefore the effect) of the added un-structured IV became lower. Finally, adding unstructured IV in models is most likely to movesimulated community composition away from the reference (here represented by the so-calledPerfect knowledge model), because this type of variation blurs the species differences that are (al-though imperfectly) captured with the observed dimensions. In other words, adding randomnessdoes not compensates for lack of knowledge and can even blur the limited knowledge obtainedfrom field data, although this is not the case at a very low level of knowledge of the environment.Previous modelling studies that tested the effect of adding intraspecific variability on speciescoexistence provided contrasting results (Courbaud et al., 2012; Crawford et al., 2019; Hart etal., 2016; Lichstein et al., 2007; Uriarte and Menge, 2018; Vieilledent et al., 2010). Stump etal. (2022) proposed a framework to explain part of these discrepancies, by differentiating thenature of the traits - niche vs hierarchical traits – on which variation was added. While our vir-tual experiment only considered additional variability in a hierarchical trait (performance) sensuStump et al. (2022), our results here evidenced an additional source of discrepancies when test-ing the effect of adding a random variability on community dynamics: the relative importanceof explained and structured vs unexplained and unstructured individual variance. Overall bothfeatures, the nature of the traits and its link with performance on the one hand, and its structureor source of variation on the other hand, can explain these contrasting results. Future studiesshould thus pay great attention to each of these aspects when testing its effect on communitiesand move away from the systematic approach of adding an unstructured noise.
3.3. Accounting for a high-dimensional environment in community dynamics models

Most previous modelling studies have modelled IV as a random noise around species means(Courbaud et al., 2012; Crawford et al., 2019; Hart et al., 2016; Lichstein et al., 2007; Uriarteand Menge, 2018; Vieilledent et al., 2010), and did not represent environmental variations thatgenerate individual variation (e.g. Courbaud et al. 2012; Lichstein et al. 2007), or did so in a waythat does not mirror multidimensional variation: Uriarte and Menge (2018) provided two differ-ent habitats, Vieilledent et al. (2010) used site effects at a much larger scale than individuals,Crawford et al. (2019) represented biotic interactions with resources that are constant throughspace and time, and while Banitz (2019) is the first to test the consequences of IV resultingfrom a spatially-structured environmental index, coexistence relied on trade-offs and randomdisturbances in a one-dimensional environment. Our results, although inevitably dependent on
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some modelling choices, provided evidence that using independent random draws is not a suit-able approach to represent environmentally-driven intraspecific variability in most cases (Girard-Tercieux et al., 2023). To do so, environment-species interactions should be better taken intoaccount in models.
3.3.1. Improving the knowledge of the environment: a costly but worthy endeavour. The environ-ment can vary in many ways, even if the number of resources is limited, as it is likely the case(Craine, 2009). Indeed, many other biotic and abiotic variables can influence the ability to useavailable resources and individual performance (e.g. soil microbiome and texture, micro-climate,pathogens, Averill et al. 2022; Fortunel et al. 2018). Moreover, species can partition the sameenvironmental variable (e.g. light) by responding non-linearly to it (e.g.with different light-perfor-mance slopes at different light levels), further increasing the dimensionality of their responses toenvironmental variation in space and time. As monitoring environmental variables and speciesresponses at fine spatio-temporal scales remains difficult and costly despite technological ad-vances and continuous effort in the field (Estes et al., 2018), part of the environmental variationthat influences individuals’ attributes is typically not properly measured in ecological studies.Our results suggest that improving the characterisation of environmental variation by moni-toring additional independent environmental variables (i.e.moving to the right in Fig. 2, 3, and 4)is a worthy endeavour. Using one dimension out of 15, 41% of the variation in individual perfor-mance is accounted for. The corresponding simulated communities, in absence of any additionalrandom variation, reached less than half the species richness of the communities simulated withthe actual 15-dimensional individual performance (median of 4 vs 18, Fig. S4.1) with relativelydissimilar community composition (median of similarity in abundance of 0.43 vs 0.95, median ofmean performance of 1.15 vs 1.54, Fig. S4.2). Adding a second dimension allowed to increasethe proportion of explained variance in individual performance to 46%, and simulated speciesrichness to a median of 7, with more realistic communities (median of similarity in abundancesof 0.59 and median of mean performance of 1.19). The identification of the most influential en-vironmental variables or dimensions in species responses using ecological knowledge (Bartlettet al., 2016; Rüger et al., 2009; Soong et al., 2020) is of course valuable to optimise and prioritisethese efforts in the field.Another way to improve the characterisation of the environment could be to better capturethe spatio-temporal structure of the already monitored variables (De Frenne et al., 2021; Esteset al., 2018; Tymen et al., 2017; Zellweger et al., 2019), i.e. to monitor them at finer scales inspace and time. In our simulation, where we focused on spatial variation, the scale of the envi-ronmental variation was the same as the individual (prescribed by the grid mesh size) across allmodels of individual performance. Testing the effect of degrading the resolution of the observedenvironmental variation in the case of an imperfect characterisation of the environment couldbe explored in the future. Finally, improving the characterisation of species responses to a fewmajor environmental variables can also enable to better reveal the realised niche partitioningoperating within communities. While niche partitioning is more easily achieved with a high num-ber of environmental dimensions, high level of coexistence can also be reached with only oneaxis if it is well partitioned among species (e.g. Detto et al. 2022; Hurtt and Pacala 1995), thusbuilding a high-dimensional space where each species can perform better somewhere. This is inagreement with several studies that showed significant improvement in the similarity of simu-lated communities with the reference by only adding a second dimension to species responsesin community models (Falster et al., 2017; Rüger et al., 2020).
3.3.2. Structuring variation: a first step towards accurate representation of multidimensionality. Ourvirtual experiment builds on an extreme case in which conspecific individuals have exactly thesame response to environmental variation and where performance is completely determined byenvironmental factors, which is unlikely to be the case under the joint effect of environmentaland genetic variation in the field, as well as the effect of neutral mechanisms. Partitioning ob-served IV between genetically-driven, environmentally-driven and unexplained IV using existingdata, would be a first step to better understand the nature of IV and to provide hypotheses re-garding the resulting structure of IV. This is the goal of many G × E studies and meta-analyses
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encompassing several ecosystems (e.g. Napier et al. 2023; Nicotra et al. 2010). However, whilethe intraspecific variation that is added in models as a noise around species means is not struc-tured in space and time, IV, whether it is environmentally- or genetically-driven or both, is actu-ally highly likely to be structured in space and time (Girard-Tercieux et al., 2023). This structurecould appear in space when IV results from spatially-structured environmental variables or fromlimited dispersion or local adaptation (Marrot et al., 2021; Schmitt et al., 2021;Westerband et al.,2021). As shown here for spatial variation, this has profound consequences on the propertiesof the simulated community. Importantly, whatever its source, the spatio-temporal structure ofindividual variation is an emergent property of conspecific individuals responding more similarlyto the environment than heterospecifics locally (Clark, 2010; Girard-Tercieux et al., 2023), animportant condition for stable species coexistence (Chesson, 2000).Observed or inferred IV, whatever its source (genetic, environmental or an interaction of both,Westerband et al. 2021), can be structured at the individual scale ("individual variability") usingindividual effects when one individual is repeatedly observed at one site (Clark et al., 2003). Suchindividual effects are then typically randomly attributed to individuals in the landscape however(e.g. Clark et al. 2007), which is almost equivalent to adding a random noise. Alternatively, thespatial structure of individual effects could be conserved when injected in a model of communitydynamics so that a part of observed IV is spatially structured. Pioneer studies have started toexplore some aspects of the spatial structure of IV (Banitz, 2019; Purves and Vanderwel, 2014;Uriarte and Menge, 2018), and future work should further explore this direction to generaliseits use in community dynamics models. Another source of environmental variation that was nottackled in this study is temporal variation. This variation is often structured, at different temporalscales (seasons, years, El Niño/La Niña events, etc.) and this structure should be accounted forin models by expliciting those temporal scales after detection in the data.Overall, our results suggest that it is crucial to explore the structure of observed IV in realcommunities to better understand its impact on diversity and community dynamics.
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