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Original Articles 

Spatial heterogeneity of natural and socio-economic features shape that of 
ecosystem services. A large-scale study on the Yangtze River economic 
Belt, China 

Zeyang Xie a,b, Liujie He a, Zhun Mao c, Wei Wan a,b, Xu Song a, Zhijian Wu a, Han Liang a, 
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A B S T R A C T   

Investigating large-scale spatial patterns of ecosystem services (ESs) and their underlying drivers can greatly 
contribute to policies-making and regional sustainability development. With water yield (WY), soil conservation 
(SC), and carbon sequestration (CS) as representative ESs, we aim to quantify their spatial patterns in the Yangtze 
River Economic Belt, China, and to identify their driving factors, and to formulate sound environmental man
agement strategies. Spatial geography and socioeconomic data from 2000 to 2020 were mined and a range of 
research methods, including multiscale geographic weighted regression, self-organizing maps, and linear 
discriminant analysis, were employed for such a purpose. Annual average WY, SC, and CS were 403 mm, 9897 
t⋅km− 1, and 1071 g⋅CO2⋅m− 2. The three ESs examined exhibit spatial heterogeneity. WY exhibited significant 
patterns of variation along the north–south gradient, while SC and CS exhibited significant variation along the 
topographic gradient. In the context of high correlation of driving factors among ESs, WY and SC exhibited a 
greater sensitivity to natural factors (such as precipitation), while CS demonstrated a height sensitivity to human 
activities in addition to vegetation cover. Spatial heterogeneity is pronounced among the main driving factors of 
ESs. Three threshold equations were established to describe the manner in which driving factors of different 
regional ecosystem services undergo transformations, equations possessed a high level of credibility in this study 
(coincidence > 80 %). This study reveals spatial variations in ecosystem services and their natural and socio- 
economic drivers. More specifically, we quantitatively validated the threshold in the expression of ecosystem 
service drivers, establishing a strong scientific foundation for regional ecosystem conservation and management.   

1. Introduction 

Ecosystem services (ESs), play an important role in the survival and 
development of humankind (Comberti et al., 2015). Thus, humans need 
to pay sufficient attention to the maintaining ESs in their decision- 
making for sustainable development (Costanza et al., 1997). 

Studying the spatial patterns of ESs is of great importance in 
balancing regional economic development and environmental protec
tion (Gret-Regamey et al., 2017). At present, ESs are often characterized 
using the spatial mapping of ESs across different gradients (Yang et al., 
2020). Some studies have explored the spatial distribution of ESs across 
gradients of altitude (Gomes et al., 2020), terrain (Wu et al., 2022a), 

land-sea (Liu et al., 2020), and aridity (Garcia-Palacios et al., 2018). 
However, most studies focus on a single gradient, which is usually a 
natural one. Few studies have considered ES changes over multiple 
gradients (Ma et al., 2021). Compared to natural gradients, socio- 
economic gradients have received less attention, although they are 
sometimes considered in several studies on ES changes along an 
urban–rural gradient (Gonzalez-Garcia et al., 2020; Kroll et al., 2012). 
These studies revealed a significant impact of human activities on ESs. 
Therefore, all these results suggest the importance of incorporating a 
multitude of gradients ranging from natural to social-economic ones for 
a better understanding of the spatial distribution of ESs. 

Identifying driving forces of ESs are a central issue in ESs research 
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and a prerequisite for their sustainable use (Hernandez-Blanco et al., 
2022). Existing studies have found that land use and land cover change 
(LUCC) (Song and Deng, 2017), climate (Berdugo et al., 2020), topog
raphy (Ma et al., 2021; Zhang et al., 2022; Zhang and Hu, 2021), and 
policies (Bai et al., 2016; Bardgett et al., 2021; Tang et al., 2022; Tedesco 
et al., 2023), could profoundly modify regional ES patterns. Moreover, 
these drivers themselves can equally show complex spatial patterns (Fu 
et al., 2013; Zhao et al., 2023). (He et al., 2019). Accordingly, the spatial 
heterogeneity of ESs can be the consequence of the combined effects of 
multiple drivers in space. Therefore, it is of great meaningfulness to 
quantify the spatial patterns of both ESs and potential drivers and then 
to have them coupled. Yet, so far, many studies studying the relationship 
between ESs and drivers did not adequately consider spatial patterns of 
ES drivers. To explore ES drivers, these studies rely on diverse ap
proaches, including correlation coefficients (Hu et al., 2023; Rötzer 
et al., 2019), the coefficient of sensitivity (Kreuter et al., 2001; Sanchez- 
Canales et al., 2012), variance (Lin and Yun, 2023; Xiao and Ouyang, 
2019; Zhang et al., 2018), and Ordinary Least Squares (OLS) (Chen et al., 
2022; Liu et al., 2021). Although these approaches are simple and easy 
to implement, they present technical difficulties when it comes to taking 
into account the spatial heterogeneity of ES factors. 

To consider the spatial patterns of the ES drivers, more sophisticated 
modelling approaches have been elaborated as alternatives, such as 
Geographically Weighted Regressions (GWR) (Ahmed et al., 2017; Sun 
et al., 2020; Yang et al., 2021), a Geodetector (Hu et al., 2021; Hu et al., 
2022a; Li et al., 2022a), and a Multiscale Geographic Weighted 
Regression (MGWR) (Liu et al., 2022). Compared with those simple 
approaches, e.g., OLS or GWR, MGWR offers greater explanatory power 
and a higher goodness of fit (Pang et al., 2022; Xue et al., 2023). In these 
more sophisticated approaches, spatially heterogeneous ES drivers can 
originate from different pools of factors which can be either natural or 
social-economic ones. However, few studies have used these latter 
methods to elucidate large-scale spatial patterns of ESs with spatially 
complex drivers. 

The Yangtze River Economic Belt (YEB) (The State Council Infor
mation Office of the People’s Republic of China, 2020), a region that 
comprehensively considers the administrative units of the Yangtze River 
Basin and a compound area composed of natural geography and eco
nomic social spaces (Li et al., 2022b; Zhao and Zhao, 2023). The YEB is 
one of China’s regions with the highest economic, population, and 
human activities. There are imbalances in the ecological environment 
(Bao et al., 2020; Tan et al., 2023), economic development (Wang et al., 
2022a; Xiang et al., 2019), industrial layouts (Tang et al., 2019; Yuan 
et al., 2022), and coupling between various elements (Li et al., 2022c). 
The YEB spans approximately 10 latitudes and includes both subtropical 
and temperate climates, with elevations ranging from 0 to 5500 m. At 
the same time, WY, SC, and CS form the foundation for regional devel
opment and are generally believed to benefit around 400 million people. 
In 2020, WY alone provided the region with 2645.1 billion m3 of water 
resources (Liu et al., 2022a). SC contributes around 34.67 million 
hectares of healthy arable land (Abdul-Rahim et al., 2018), and the re
gion’s potential for CS is expected to be substantial due to its favorable 
vegetation coverage (Tian et al., 2022). Thus, the ESs value of this region 
accounts for 45.77 % of that of the country (Xie et al., 2015). Yet, due to 
the complexity of the region itself and diversity of methods, diagnoses 
on ES drivers of the YEB are usually inconsistent among studies. For 
example, water yield (WY) indicated precipitation as the main driver 
(Wang et al., 2022d), while others suggested this to be the Digital 
Elevation Model (DEM) (Wang et al., 2023); the effect of temperature on 
WY was found to be both negative (Wei et al., 2022) and positive (Yin 
et al., 2020). It is therefore necessary to enrich the evidence and validate 
these diagnoses by carrying out additional studies. 

In this study, YEB is selected as our case study with a county-level 
resolution for the quantification of ESs and factors as potential ES 
drivers. We aim to: (1) quantify the spatial distribution of ESs (WY, SC, 
CS) from 2000 to 2020 and assess their spatial heterogeneity across five 

gradients (in terms of both natural and socio-economic aspects). (2) 
explore the main drivers of the ESs by quantifying the patterns of 
different factors and having them coupled with ES patterns; and (3) 
clarify the sensitivity of the ESs to different drivers and find the 
threshold for the transformation of the main driving factors. As such, 
this research contributes to the study of spatial heterogeneity and 
variation characteristics of ESs at different scales in the YEB, as well as 
the establishment of the links between multiple driving factors, which 
ultimately helps us to develop a more scientific and reasonable ecolog
ical protection strategy system for the YEB. 

2. Methods and materials 

2.1. Study area 

The YEB uses water as a carrier and link, connecting the upper, 
middle, and lower reaches; the eastern, middle, and western regions; the 
left and right banks; and the main tributaries, forming a holistic and 
open natural ecosystem. The YEB has a wide range, with an area of 
approximately 2.05 × 106 km2, located between 21◦8′–35◦1′N and 
97◦3′–121◦6′E (Fig. 1). Natural and geographic conditions differ from 
province to province. Mean annual precipitation is high in the west and 
low in the east, with approximately 1000–1600 mm. Altitude gradually 
decreases from the coast to the interior, and the difference is relatively 
large (4–2000 m). The proportion of forest gradually decreases from 
south to north, from 55 % to 11 %. 

The YEB is one of three major national strategic development areas 
in China and an inland river economic belt with global influence that 
includes 11 provinces and cities and more than 1,000 counties and cit
ies. In 2020, the gross domestic product (GDP) of this region reached 
47.1 trillion CNY and its population reached 790 million people, ac
counting for 46.4 % and 56.5 % of the country, respectively. There are 
60 cities with populations of more than one million people in the YEB. 
Policies focus on crossing administrative regions and coordinating 
regional development. However, huge differences can be found 
throughout the YEB in terms of development of resources, environment, 
transport, and industrial bases. According to statistics for the upper, 
middle, and lower reaches, GDP per capita in the middle and upper 
regions is only 60.3 % and 49.2 % that of the lower regions. The gap 
among the levels of basic public service in regions is pronounced. 

2.2. Data sources 

The main data used in this study included land use and land cover 
(LULC), DEM, the Normalized difference vegetation index (NDVI), net 
primary productivity (NPP), precipitation (Pre), temperature (Tem), 
evapotranspiration, soil properties, and socio-economic data. The data 
sources are summarized in Table 1. Prior to analysis, all data were 
resampled into a 1 km resolution raster dataset. 

2.3. Ecosystem service evaluation 

Three main ESs were selected, namely the WY, SC, and CS, and 
corresponding models were used to quantify them. The study years were 
2000, 2005, 2010, 2015, and 2020. The grid scale in the calculation 
process was 1 km, and the calculation results were counted for each 
counties of the YEB. 

WY refers to the capacity of annual water supply for industrial pro
duction, agricultural activities, and human consumption. In this study, 
the Annual Water Yield model in InVEST (version 3.11.0, USA) was used 
to quantify the WY supply, expressed as Eqs. (1)–(5): 

Yxi =

(

1 −
AETxi

Px

)

× Px (1)  

where Yxi represents the annual water yield in mm for pixel x in an area 
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with a LULC classification i; AETxi represents the actual evapotranspi
ration in mm for pixel x in an area with LULC classification i; Px repre
sents the annual precipitation in mm for pixel x (Table 1). 

AETxi

Px
= 1+

PETxi

Px
−

[

1 +

(
AETxi

Px

)ω ]1/ω

(2)  

where AETxj
Px 

reflects the dimensionless water balance (Zhang et al., 2001); 
PETxi is potential evapotranspiration for pixel x in an area with LULC 
classification i; ω is a nonphysical empirical fitting parameter that 
characterizes the land surface properties of catchments, dimensionless, 
estimated following the approach proposed by (Donohue et al., 2012) as 
in Eq. (3): 

ω = Z
AWC

P
+ 1.25 (3)  

where AWC is the volumetric (mm) plant available water content 
calculated using Eq. (4); Z is an empirical constant with a value of 15. 

AWC = Min( layerdepth, rootdepth )⋅PAWC (4)  

where layerdepth is the soil depth at which root penetration is inhibited, 
estimated using soil depth; rootdepth is often given as the depth at which 
95 % of a vegetation type’s root biomass occurs, estimated using soil 
depth (Table 1); PAWC is the plant available water capacity, dimen
sionless, calculate using Eq. (5): 

Fig. 1. Location of the study area.  
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PAWC = 54.509 − 0.132 ms − 0.03(ms)
2
− 0.55 msilt − 0.006(msilt)

2

− 0.738 mc + 0.007(mc)
2
− 2.688orgC + 0.501(orgC)2 (5)  

where mc represents the percentage (%) of clay particles (<0.002 mm); 
msilt represents the percentage of silt particles (0.002–0.05 mm); ms 
represents the percentage of sand particles (0.05–2 mm); orgC represents 
the percentage of organic carbon in the soil. All were estimated using 
soil property data (Table 1). 

SC was quantified using the RUSLE model in InVEST, expressed as 
Eqs. (6)–(9): 

SCx = Rx × Kx × Lx × Sx × (1 − Cx × Px) (6)  

where SCx represents the soil conservation on pixel x per year, t⋅a− 1; Rx 
is the rainfall erosivity factor, dimensionless, on pixel x; Kx is the soil 
erodibility factor, dimensionless, on pixel x; Lx is the slope length factor, 
dimensionless, on pixel x; Sx is the slope steepness factor, dimensionless, 
on pixel x; Cx is the cover management factor on pixel x, dimensionless, 
dependent on the LULC, referencing multiple studies (Kong et al., 2018; 
Rao et al., 2016); Pi represents the factor for conservation practices, 
dependent on LULC, referencing multiple studies (Xu et al., 2018). 

Calculation R refers to the work of Zhang et al. (Zhang et al., 2002), 
expressed as Eqs. (7)–(8): 

R =
∑24

j=1
Mj (7)  

M = α
∑K

d=1
Pβ

i (8)  

where M is the half monthly rainfall erosivity, mm⋅hm–2⋅h–1⋅a–1; Pi 
represents the erosive rainfall within half a month (rainfall ≥ 12 mm, 
otherwise considered as 0) in mm, estimated using daily rainfall data 
(Table 1); j represents the half months per year, with values of 24, 
dimensionless; d represents the days of a half month; K depends on the 
number of days, dimensionless; α and β are coefficients taken from other 
studies (Sun et al., 2011), with values of 0.39 and 1.72, dimensionless. 

Calculation K refers to the work of (Williams et al., 1989), expressed 
as Eq. (9): 

K = {0.2 + 0.3exp [ − 0.0256ms × (1 − mslit) ]} × [mslit/(mc + mslit)]
0.3

×{1 − 0.25orgC/[orgC + exp(3.72 − 2.85orgC)]}

×{1 − 0.7(1 − ms/100)/{(1 − ms/100) + exp[− 5.51 + 22.9(1 − ms/100)]}}
(9)  

where mc represents the percentage (%) of clay particles (<0.002 mm); 
msilt represents the percentage of silt particles (0.002–0.05 mm); ms 
represents the percentage of sand particles (0.05–2 mm); orgC represents 
the percentage of organic carbon in the soil estimated using soil property 
data (Table 1). 

L and S were calculated using Eqs. (10)–(12): 

S =

⎧
⎪⎪⎨

⎪⎪⎩

10.8sinθ + 0.03 θ⩽5◦

16.8sinθ − 0.50 5◦

< θ⩽10◦

20.204sinθ − 1.2404 10◦

< θ⩽25◦

29.585sinθ − 5.6079 θ > 25◦

(10)  

L =

(
λ

22.13

)m

(11)  

m =

⎧
⎪⎪⎨

⎪⎪⎩

0.2 θ⩽1◦

0.3 1◦

< θ⩽3◦

0.4 3◦

< θ⩽5◦

0.5 θ > 5◦

(12)  

where θ is the slope angle, λ is the horizontal distance of the slope length 
(m), m is a slope-length exponent. 

CS refers to the process of vegetation absorbing carbon dioxide 
through photosynthesis. Therefore, the amount of carbon fixation can be 
determined according to the process of photosynthesis and the 
assumption that 1.63 g of carbon dioxide is consumed to produce 1 g of 
carbon dioxide, expressed as in Eq. (13): 

CSi = 1.63 × A × NPP (13)  

where CSi is the annual fixed amount of CS, t⋅a− 1; A is the area in km2; 
NPP is Net Primary Production (Table 1), t⋅km− 2⋅a− 1. 

2.4. Gradient delineation 

The YEB consists of internal variations in the ecological environment 
and economic development, constituting different gradients. The dis
tribution of ESs across these gradients helps identify spatial differences 
in ESs. Five gradients were established based on socio-economic and 
geographic considerations (Table 2): CE (economic circle), CD (DEM), CS 
(Slope), CU-D (from upstream to downstream of the Yangtze River), CR 
(banks of the Yangtze River). 

2.5. Analysis of driving factors 

This study mainly used the MGWR method, a regression model for 
analyzing geospatial data, to study the spatial heterogeneity of the 
driving factors of ESs in the YEB (Liu et al., 2022b). Different spatial 
smoothing levels for each variable can more effectively solve the model 
error caused by changes in different spatial data (Ahmed et al., 2017). 
This could more effectively explain the spatial interactions between ESs 
and their driving factors. The model can be expressed as in Eqs. (14)– 
(15): 

Yi = β0(ui, vi)+
∑

k
βbwk(ui, vi)Xik + εi (14)  

εi ∼ N
(
0, σ2I

)
, i = 1, 2,⋯, n (15)  

where yi is the response variable (ESs) at spatial position (ui, vi); Xik is the 
explanatory variable at spatial position (ui, vi); β0 (ui, vi) is the intercept 
term of the regression relationship. The coefficient βbwk (ui, vi) is a 
continuous function of the spatial position (ui, vi). βbwk in bwk represents 

Table 1 
Data descriptions and sources.  

Data Description Data source 

LULC Land use and land cover in 
2000, 2005, 2010, 2015, 
and 2020 with a 30 m 
spatial resolution 

Resources and Environment 
Sciences (https://www.resdc. 
cn) 

DEM The digital elevation model 
with a 150 m spatial 
resolution 

Resources and Environment 
Sciences (https://www.resdc. 
cn) 

NDVI Annual NDVI from 2000 to 
2020 with a 1000 m spatial 
resolution 

Resources and Environment 
Sciences (https://www.resdc. 
cn) 

NPP NPP from 2000 to 2020 
with a 1000 m spatial 
resolution 

Resources and Environment 
Sciences (https://www.resdc. 
cn) 

Precipitation The multi-year average 
value obtained by 
interpolating the data of 
each site 

The China Meteorological 
Data Service Center（htt 
ps://data.cma.cn） 

Temperature 
Evapotranspiration 

Soil property data Soil depth and the content 
of sand, silt, clay, and 
organic carbon. 

Food and Agriculture 
Organization (FAO) 

Socio economic GDP, population, industrial 
output value from 2000 to 
2020 

China County Statistical 
Yearbook and Local statistical 
yearbooks of YEB（htt 
ps://data.cnki.net)  
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the optimal bandwidth of the kth independent variable, and εi is an in
dependent random error term. 

The analysis framework of driving factors was as follows: (1) The 
Evaluation index system of driving factors is selected by referring to the 
previous research papers and considering the natural economic condi
tions of the YEB, establishing and building a database of driving factors 
with reference to relevant existing studies (Table 3). (2) Use Pearson’s 
correlation to quantify the relationships between different ESs and 

driving factors and select the higher driving factors. (3) Use MGWR to 
analyze spatial heterogeneity in the highly correlated driving factors of 
each ESs. 

2.6. Cluster distribution characteristics of driving factors 

The YEB can be divided into regions according to the main driving 
factors. In order to better describe the differences of natural economic 
characteristics among different main driving factors. This study quan
tifies the natural economic characteristics of different regions. A self- 
organizing map (SOM) was used to perform clustering analysis of 
driving factors, which encompass various conditions that influence 
ecosystems, including natural ecology and socio-economic factors. 
Clustering was implemented using the R package “kohonen” (Wehrens 
and Kruisselbrink, 2018) (R version 4.1.2). Different ecological and 
social factors were selected for the different ESs to capture their unique 
characteristics. Three main environmental factors were chosen, namely 
the NDVI, Human Influence Index (HAI) (Huang et al., 2019), and 
Terrain Niche Index (TNI) (Tong et al., 2016). HAI and TNI were 
calculated using Eqs. (16)–(17): 

HAI =

(
∑3

i=0
Ai × Pi

)

(16)  

where i represents the LULC grading index for level i, A is the area, and Pi 
represents the LULC proportion. The different land use types and their 
grading indices were cropland (2), forest (1), water area (1), grassland 
(1), and construction land (3). 

TNI = log
[(

E
Em

+ 1
)

×

(
S

Sm
+ 1
)]

(17)  

where E and S represent the elevation and slope of the grids, respec
tively; Em and Sm represent the average elevation and slope of the study 
area, respectively. 

2.7. Threshold effect analysis of driving factors 

In the study of ESs, it is believed that the change in ESs reflects the 
existence of a threshold effect (Rial et al., 2004). In terms of driving 
factors of ESs, changes in the main driving factors also conform to this 
theory. To identify the existence of driving factor transformation 
thresholds, a supervised classification using Linear Discriminant Anal
ysis (LDA) was conducted on the factors (related to MGWR partition), 
which was implemented using the R package “MASS” (Venables and 
Ripley, 2002). 

3. Results 

3.1. Spatial patterns of ecosystem services 

Using counties as statistical units, the average functional values of 
ESs per unit area from 2000 to 2020 were as follows: 403 mm for WY; 
9897 t⋅km− 2 for SC; 1071 g⋅CO2⋅m− 2 for CS, respectively. Pronounced 
spatial heterogeneity was observed among three ESs (Fig. 2, Fig. A1). 
WY (Fig. 2a) was significantly lower in the north and west areas of the 
Yangtze River than the south and east. The spatial distribution of SC 
(Fig. 2b) showed that high values were mainly distributed on plateaus or 
in hilly areas, with the largest SC values found in the western region. In 
certain low mountainous and hilly regions of the southern area, there 
are also areas where SC was relatively high. Overall, the spatial distri
bution of SC showed a pattern similar to that of the region’s topography I 
and that of CS. The highest values of SC were concentrated in the high- 
elevation areas (around the Yungui Plateau), while low-value areas were 
mainly flat regions (e.g., the Sichuan Basin, and Poyang Lake Plain). The 
high-elevation areas (e.g., western Sichuan Plateau) corresponded to 

Table 2 
Gradient partitioning method.  

Grading 
code 

Classification 
standard 

Classification method Meaning 

CE Economic circle Gradually expanding 
outwards from the three 
major economic circles 
(Chengdu in the 
Chengdu–Chongqing circle, 
Wuhan in the middle 
reaches of the Yangtze River 
city circle, and Shanghai in 
the Yangtze River Delta city 
cluster) 

Distance from 
large urban 
agglomerations. 

CD DEM Elevations and gradients are 
graded according to natural 
breakpoints. 

Different 
topographic relief 
gradients. 

CS Slope 

CU-D Upstream to 
downstream of 
the Yangtze 
River 

The river basin is graded 
from top to bottom, and the 
county of the river basin is 
assigned a value. 

Spatial pattern 
from west to east. 

CR Banks of the 
Yangtze River 

Extending north to south 
along the main body of the 
Yangtze River, which flows 
through the central YEB 
region, extending to both 
sides of the river north to 
south. 

Distance from the 
Yangtze River. 

Note: CD and CS were divided into 11 gradients using 10-point intervals, CD: 50 
m, 150 m, 400 m, 600 m, 900 m, 1200 m, 1500 m, 1800 m, 2400 m, and 3200 m; 
CS: 1◦, 2◦, 3◦, 5◦, 7◦, 9◦, 11◦, 14◦, 17◦, and 20◦. 

Table 3 
Evaluation index system of driving factors.  

Types Code Driving factors Reference 

Natural Tem Temperature (℃) (Hu et al., 
2022a) Pre Precipitation (mm) 

ET Evapotranspiration (mm) (Huang et al., 
2022) 

NDVI NDVI (Liu et al., 
2022a) DEM Average elevation (m) 

Slope Average slope (m) (Huang et al., 
2022) 

Geology Tsand Proportion of sand (%) (Liu et al., 
2022a) Tsilt Proportion of silt (%) 

Tclay Proportion of clay (%) 
Toc Proportion of organic matter (%) 

Ecological PCL Proportion of cropland (%) (Li et al., 2022c) 
PWL Proportion of woodland (%) 
PGL Proportion of grassland (%) 
PWS Proportion of waters (%) 
PCS Proportion of construction land (%) 

Economic RD Population density (%) (Li et al., 2016) 
GPR GDP per unit area (RMB) (Wang et al., 

2022a) 
FIAV The output value of the primary 

industry (RMB) 
(Ni et al., 2022) 

SIAV The output value of the secondary 
industry (RMB) 

TIAV The output value of the tertiary industry 
(RMB) 

NL Night light (Zhao et al., 
2020) 

Note: The study unit was identical for each county in the YEB. 
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areas of low SC values (Fig. 2c). 

3.2. Gradient distribution of ecosystem services 

WY increased with the gradients of CE, CD, and CS, but decreased 
with the gradients of CU-D and CR. SC showed a downward trend in the 
CE, CD, and CS gradients, an upward trend in the CU-D gradient, and a 
single-peak curve change in the CR (Fig. 3e.2). CS showed an upward 
trend under the CE gradient and a downward trend under the CU-D 
gradient. The CD and CS gradients showed a single-peak curve that first 
increased and then decreased, while the CR gradient showed a single- 
peak curve that first decreased and then increased (Fig. 3e.3). 
Compared with SC and CS, the change trend of WY on each gradient was 
almost opposite, and the response to the CR gradient change was more 
pronounced. For SC and CS, the change in the terrain gradient and the 
difference between the low and high terrain gradients were evident. The 
rate of increase in SC becomes greater with an increase in CD, and CS. SC 
and CS had their minimum values in the region near the Yangtze River, 
which were approximately in the N1–S1 range (Fig. 3e.2 and Fig. 3e.3). 

3.3. Driving factors of ecosystem services 

WY was negatively correlated with SC (-0.12) and CS (-0.29), and SC 
was positively correlated with CS (+0.40). WY was positively correlated 
with meteorological factors (Pre) and economic indicators (NL) and 
negatively correlated with topographic factors (DEM, Slope). The in
dicators related to SC and natural ecology were mainly positively 
correlated (NDVI, DEM, Slope, PWL, and PGL), whereas those related to 
human activities were mainly negatively correlated (PCL). Similar pat
terns were found for CS and SC. In general, natural factors (NDVI, DEM, 
Slope), whereas the social-economic indicators (PCL, PWS, and NL) were 
negatively correlated with services. The top six driving factors for ESs 
based on the magnitudes of their correlation values are presented in 

Supplementary Data (Table A2). 
ANOVA reveals the contribution of the highly correlated driving 

factors on ESs (Table 4). Main contributing indicators were as follows: 
Pre (55.30 %), Tem (18.36 %), DEM (14.32 %); SC: DEM (52.60 %), 
Slope (21.50 %), NDVI (18.60 %) for WY; DEM (52.60 %), Slope (21.50 
%), NDVI (18.60 %) for SC; NDVI (83.10 %), DEM (10.80 %), Slope 
(4.80 %) for CS. The results indicate that factors exhibiting high corre
lation typically exhibited higher contribution rates. However, within 
indicators showing similar levels of correlation, certain factors emerged 
as dominant contributors. For instance, NDVI contributes more than 80 
% to the CS, significantly surpassing other highly correlated factors such 
as DEM and Slope. 

3.4. Spatial distribution of driving factors 

Using the AIC, AICC, and R2 to test the OLS and MGWR models, the 
results showed that the MGWR model more effectively described the 
driving patterns of ESs factors in the YEB (Table 5). The specific process 
and description of MGWR are placed in Additional File 1 and Fig. A4 of 
the Supplementary Data. 

The main driving factors of WY could be divided into seven cate
gories (Fig. 4a): M1 (DEM and Tem), M2 (DEM and Slope), M3 (DEM and 
Pre), M4 (DEM and NL), M5 (Pre and Tem), M6 (Pre and DEM), and M7 
(Pre and NL). According to WY, the YEB could be divided into two parts 
based on the first main driving factor. The first region, located in the 
eastern and central areas, was primarily driven by DEM (M1, M2, M3, 
and M4). The second region, located in the western area, had Pre as the 
main driving factor (M5, M6, and M7). However, based on spatial pat
terns, they could be divided into three regions. The first consisted of M1 
and M2, which were concentrated in the eastern region; the second 
consisted of M5 and M7, which were concentrated in the western part. 
M3, M4, and M6 were transitional areas between these two main re
gions, with fragmented spatial patterns. 

Fig. 2. Annual average ESs from 2000 to 2020. (a) spatial distribution of the annual mean value of water yield; (b) spatial distribution of the annual mean value of 
soil conservation; and (c) spatial distribution of the annual mean value of carbon sequestration. 
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Fig. 3. Distribution of ecosystems on different gradients. The gradient types are respectively: (a) circle of economics; (b) circle of DEM; (c) circle of Slope; (d) circle of 
upstream to downstream of the Yangtze River; (e) circle of banks of the Yangtze River. The red circles represent outliers, the red lines represent the fitted curve, 
shadow regions represent 95 % confidence intervals. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 

Z. Xie et al.                                                                                                                                                                                                                                       



Ecological Indicators 159 (2024) 111729

8

The main driving factors of SC could be divided into four categories 
(Fig. 4b): M1 (NDVI and Slope), M2 (NDVI and PWL), M3 (Slope and 
PWL), and M4 (Slope and PGL). The primary drivers were represented 
by M3 and M4, with M3 occupying most of the YEB and M4 mainly 
distributed in parts of the Jiangxi, Hunan, and Sichuan provinces and 
Chongqing Municipality. Regions M1 and M2 were concentrated in the 
southern part of Yunnan Province and the central part of Sichuan 
Province. 

The main driving factors of CS could be divided into four categories 
(Fig. 4c): M1 (NDVI and DEM), M2 (NDVI and Slope), M3 (NDVI and 
PWL), and M4 (NDVI and NL). The primary factor in each region was the 
NDVI, and based on secondary driving factors, they could be divided 
into two types. M1 and M2 were mainly related to terrain factors and 
primarily distributed in the western part of the YEB. Further, there was a 
focus on the southern part of Hunan Province, Guizhou Province, 
Chongqing Municipality, the northern part of Sichuan Province, and 
Yunnan Province. M3 and M4 were mainly influenced by land cover and 
socio-economic factors and primarily distributed in the eastern part of 
the YEB and the southern part of Sichuan Province. 

3.5. Cluster analysis of driving factors 

To determine the association between the spatial heterogeneity of 
driving factors of ESs and their clustering characteristics, a cluster 
analysis each ESs driving factor was carried out. TNI, NDVI, HAI, and 
other indicators were selected to represent the terrain, ecology, and 
human activities in the region. Specific driving factors were selected for 
each ESs (Table A2), with Pre selected for WY, PWL for SC, and NL for 
CS. 

The clustering results for WY exhibited different characteristics 
(Fig. A5). B1 indicated a high NDVI, TNI and low human impacts; B2 
showed high NDVI; B3 showed high human impacts; and B4 showed 
high precipitation and high NDVI. The clustering results could be 
divided into three regions, similar to the MGWR classification results 
(Fig. 4). The clustering results of M1 and M2 differed significantly from 

those of M5, M6, and M7, whereas the clustering results of M3 and M4 
were intermediate. In M1 and M2, B4 and B2 were more prevalent. M3 
and M4 represented transitional zones between the other two regions 
and had a fragmented distribution pattern. M5, M6, and M7 were 
located in the western region, where the clustering results were domi
nated by B1 and B2. The prevalence of B1 clustering gradually decreased 
in M5, M7, and M6, whereas that of B2 gradually increased. 

The characteristics of the four clustering results of SC were as fol
lows. B1 indicated high forest coverage and high NDVI; B2 showed high 
NDVI; B3 showed high anthropogenic influence; and B4 showed high 
TNI and NDVI. The statistical results clearly fell into two main categories 
and were consistent with the MGWR classification results (Fig. 4). M1 
and M2 were primarily composed of B4, whereas M3 and M4 were 
composed of B1 and B2. 

The spatial distribution of CS, divided by its secondary driving factor, 
exhibited a clear east to west pattern. M1 and M3, the two categories 
with the largest percentage area in the MGWR classification results 
(Fig. 4), also differed greatly in their clustering results (Fig. A5). In M1, 
the main clustering type was B4; however, some regions were also 
classified as B1. Compared with the other categories, M3 had a higher 
proportion of B1 and moderate proportions of B2 and B3. Topographic 
factors in this region were not prominent, indicating a greater influence 
of anthropogenic factors. 

4. Discussion 

4.1. Result of ESs 

The accounting results of ecosystem services are affected by many 
factors. The results of other researchers are selected for comparison to 
determine the availability and reliability of the ESs accounting results. 
The WY results obtained in this study were consistent with the actual 
runoff in the Yangtze River Basin, with a difference of 20 % (8.2 × 1011 

m3 compared with 9.85 × 1011 m3, respectively) (China National Bureau 
of Statistics, 2021). The disparities in the results can be attributed to 
differences in the spatial extent and inconsistencies in the statistical 
timeframe. The calculated SC results in this study were in basic agree
ment with the findings of previous research conducted in the same re
gion (Wu et al., 2018), with a 6 % difference (2.02 × 1010 t compared 
with 1.88 × 1010 t, respectively). The calculated CS results were 
consistent with the findings of a previous study conducted in the same 
region (WU et al., 2021), with a 15 % difference (1071 g⋅CO2⋅m− 2 

compared with 903.35 g⋅CO2⋅m− 2, respectively). We speculate that 
discrepancies in data sources and study period (2010–2015) contributed 
to the observed differences in the original data. 

4.2. Driving mechanisms of ecosystem services 

WY exhibited a pattern of higher values in the southeast and lower 
values in the northwest (Hu et al., 2022c). Regions with higher WY 

Table 4 
Contribution of highly correlated driving factors.  

WY Driving 
Factor 

Pre Tem DEM NL Slope PGL 

Contribution 55.30 
% 

18.36 
% 

14.32 
% 

7.62 
% 

4.34 
% 

0.06 
% 

SC Driving 
factor 

DEM Slope NDVI PGL PWL PCL 

Contribution 52.60 
% 

21.50 
% 

18.60 
% 

6.00 
% 

0.90 
% 

0.30 
% 

CS Driving 
Factor 

NDVI DEM Slope PCL PWS NL 

Contribution 83.10 
% 

10.80 
% 

4.80 % 1.10 
% 

0.00 
% 

0.20 
%  

Table 5 
Parameters for the MGWR model.  

WY SC CS 

Verification indicators OLS MGWR Verification indicators OLS MGWR Verification indicators OLS MGWR 
AIC 815.01 3.18 AIC 2658.02 2256.88 AIC 1292.78 − 1284.03 
AICC 817.15 112.72 AICC 2660.19 2281.48 AICC 1294.95 − 1214.72 
R2 0.88 0.95 R2 0.31 0.61 R2 0.81 0.99 
DF Bandwidth t (95 %) DF Bandwidth t (95 %) DF Bandwidth t (95 %) 
Intercept 43 3.09 Intercept 1069 2.00 Intercept 43 3.22 
Tem 43 3.16 NDVI 57 3.23 NDVI 43 3.28 
DEM 43 3.07 DEM 1069 2.01 DEM 43 3.22 
Slope 43 3.19 Slope 969 2.07 Slope 1063 1.99 
Pre 43 3.15 PCL 1069 1.99 PWL 43 3.27 
PGL 43 3.21 PWL 43 3.36 PWS 377 2.41 
NL 43 3.21 PGL 1069 2.04 NL 605 2.15 

Note: The top half of the table is the comparison of MGWR and OLS models, and the bottom half is the bandwidth and t-tests for different drivers. 
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tended to coincide with areas of high human activity, such as provincial 
capitals, as indicated in Fig. 3. Local studies within the YEB, such as 
those in the Xiangjiang (Wang et al., 2023c) and Weihe river basins (Wu 
et al., 2022a), have also confirmed a decreasing trend in WY, as shown in 
the CE (Fig. 3). The main factors influencing WY were Pre (55.30 %), 
Tem (18.36 %), DEM (14.32 %), and NL (7.52 %). These findings were 
consistent with those of other studies (Wang et al., 2021) indicating Pre 
as the dominant factor influencing the spatial distribution of WY (Wang 
et al., 2023). Specifically, Pre affects the regional water input and sur
face hydrological processes, leading to changes in runoff and influencing 
the WY spatial distribution (Wang et al., 2022c). The impact of Tem and 
WY in the YEB was positively correlated, which was consistent with 
research at the national level (Gong et al., 2017). However, Tem can 
increase evapotranspiration and decrease runoff (Su and Fu, 2013; Wei 
et al., 2022). Thus, the combined effects of Tem and factors such as Pre 
and DEM can result in the opposite effect of Tem in the YEB. Existing 
research has indicated a positive correlation between Tem and WY in 
regions with ample precipitation, such as Guizhou with 1630 mm in 
2020 (Wang et al., 2023), while a negative correlation is observed in 
drier areas like the Shule River Basin, which received 47–63 mm of 
precipitation (Wei et al., 2022). Our study generally aligns with these 

findings, as the YEB has abundant precipitation (1392 mm, 2020) and 
demonstrates a positive relationship (Fig. A3). Terrain factors incorpo
rate the influence of human activities (NL) on the spatial distribution of 
WY at a smaller scale (Sun et al., 2021). They can affect precipitation, 
temperature, and other conditions, resulting in human activity being 
concentrated in low altitude and slope areas. Factors such as accelerated 
urbanization have also altered the underlying surface, increased surface 
impermeability and enhanced WY (Khzr et al., 2022). In addition, the 
terrain affects runoff flow, causing it to accumulate in flat areas. 

The spatial distribution pattern of SC was generally a low in the east 
and high in the west, showing a gradual increase with an increase in CD 
(Fig. 3b.1) and CS (Fig. 3c.1). Variations along these two gradients were 
more regular and exhibited higher levels of dispersion. The contribu
tions of high correlation driving factors to SC (Table 4) indicated that 
topographic factors accounted for approximately 74.1 % of the variance 
and served as the dominant driving factors of the spatial distribution of 
SC (Xiao et al., 2017). This conclusion is consistent with existing 
research on the Yangtze and Yellow River basins (Fang et al., 2021). 
Slope is an important factor that affects runoff, with higher slopes 
having a greater potential for soil erosion (Yan et al., 2018). Moreover, 
regions with higher slopes tend to have less human activity and greater 
vegetation cover. DEM is one of the main factors influencing the spatial 
distribution of SC (Chen et al., 2023), and variations in multiple con
ditions, such as human activities and weather, along the vertical 
gradient lead to differences in vegetation cover at different altitudes 
(Chen et al., 2023; Liu et al., 2007), resulting in greater vegetation 
growth at higher altitudes and higher soil retention capacity. The NDVI 
is also seen as a direct influencing factor (Liu et al., 2022c) because 
higher vegetation cover could mitigate soil erosion through factors such 
as a reduced impact of raindrops, lower surface runoff velocity, stable 
soil particles, and increased soil water holding capacity. Therefore, it 
had a positive correlation with SC. 

CS exhibited a spatial pattern with higher values in the south and 
west and lower values in the north and east, except for the Sichuan 
Basin, where CS was relatively low. The main driving factors with a high 
correlation with CS were the NDVI, DEM, Slope, and PCL, among which 
the NDVI was the most significant factor (Table 4), explaining 83.1 % of 
the variance; topographic factors accounted for 15.6 %. Thus, the NDVI, 
influenced by factors such as meteorological conditions, topography, 
and human activity (Li, 2022), played a dominant role in the spatial 
distribution of CS. Precipitation had a positive effect on the NDVI, 
because higher precipitation meets plant growth needs. In turn, tem
perature had a negative impact on the NDVI because regions with higher 
temperatures are more suitable for human habitation, and excessive 
human activity can lead to a decrease in the NDVI (Han and Xu, 2013). 
The gradient boxplot of the DEM (Figs. 3-b.4) indicated a two-stage 
distribution pattern for CS. In the first stage, as human impacts gradu
ally decreased, CS increased. With the increase of DEM, unfavorable 
natural conditions, such as decrease in temperature and precipitation, 
impede vegetation growth (Chen et al., 2020), resulting in a decrease in 
CS (Zhang et al., 2020). Therefore, the Sichuan Basin (200–700 m) with 
a lower DEM and the western Sichuan Plateau (4000–4500 m) exhibited 
lower CS. Compared with other ESs, CS was more significantly affected 
by human activities, with larger differences in various gradients of land- 
use changes (CE) (Fig. 3a.3) and higher Pearson correlation coefficients. 

4.3. Spatial differences in ecosystem service driving factors 

The main driving factors of WY showed significant spatial variation, 
with China’s topographic boundary (second and first gradients) as the 
dividing line. In the eastern region, the DEM was the main driving fac
tor, whereas in the western region, Pre was the main driving factor, with 
a transitional zone near the boundary. The contribution of the two 
factors was 73.66 % (Table 4). The results of the majority of scholars also 
concluded that precipitation is considered to be the most important 
factor affecting WY (Fig. 4). However, topography could affect the 

Fig. 4. Spatial distribution of the main driving factors. Figures shows the 
spatial distribution of the main driving factors for each region, figure a is water 
yield, figure b is soil conservation, figure c is carbon sequestration. M1-M7 
represents regions of the same primary driver (The partition process in Sup
plementary Data Fig. A4). 
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importance of precipitation in driving WY (Dai and Wang, 2020). In our 
study, the clustering results of WY (Fig. A5) indicated that regions with 
suitable ecological conditions (B2) and higher precipitation (B4) were 
mainly driven by DEM, whereas regions with lower human impacts, 

higher vegetation cover (B1, B2), and insufficient precipitation (B1, B2) 
were mainly driven by Pre. The main reason for this phenomenon was 
that precipitation and topography were negatively correlated. Most 
areas of the YEB, which had a high DEM, were strongly influenced by the 

Fig. 5. Linear Discriminant Analysis of driving factors. Based on the previous partitioning method, the zoning results of the MGWR for each ecosystem service were 
divided into two regions, C1 and C2. For WY, C1 (M1 & M2 & M3 & M4), C2 (M5 & M6 & M7); for SC, C1 (M1 & M2) and C1 (M3 & M4); and for CS, C1 (M1 and M2) 
and C1 (M3 & M4). The threshold of the transformation of the drivers is shown in the formula. The conformity rates with the zoning results of MGWR are: WY (84.76 
%), SC (86.53 %), SC (80.04 %). The results of the other papers are plotted on a graph, where red points indicate agreement with the findings of this paper and blue 
points indicate disagreement. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. Zoning management of ecosystem conservation.  
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plateau mountain climate, with less precipitation and more evaporation. 
Therefore, Pre became the determining factor of WY. In contrast, in the 
eastern region, which is influenced by the monsoon climate, precipita
tion is abundant, and DEM performed a greater impact on the distri
bution of WY in the region. The results of the linear discriminant 
analysis (Fig. 5a) indicated that the higher the precipitation, the greater 
the likelihood that the DEM is the main driving factor, whereas areas 
with higher DEM were mainly driven by Pre. This conclusion is consis
tent with the results of the MGWR model (Fig. 4), and the consistency 
between the two zoning methods was approximately 86.53 % (Fig. 5a). 
To ensure the robustness of these findings, we conducted a compre
hensive review of all available reference related to the driving factors of 
WY. We meticulously compiled and recalculated their results (Fig. 5a, 
detailed data available in Table A3). Researchers’ findings not only 
depict the temporal variations of WY’s primary driving factors but also 
align with our proposed transition threshold curve in 70 % of cases. For 
instance, Wu et al. (2023) revealed that in the Pearl River region, with 
changing precipitation values, the primary driving factor for WY tran
sitions from DEM to Pre. 

The NDVI, Slope, and DEM are the main factors affecting SC (Wang 
et al., 2022b), and the primary driving factor of these remains contro
versial. The combined contribution of the factors is 92.70 % (Table 4). 
Some researchers have suggested that slope is the main driving factor 
(Hu et al., 2022b; Li, 2022), while other studies have attributed this to 
the NDVI (Mu et al., 2022). In this study, SC clustering results were 
statistically significant (Fig. A5). In areas where the NDVI was the main 
driving factor, there were more clusters with a high terrain gradient, and 
the corresponding NDVI was the main factor in the cluster. The primary 
driving factor was the terrain factor, that is, the slope. This pattern is 
consistent with research on the Pearl River Delta region (Liu et al., 
2022c), mainly because the slope can affect the CS capacity of the region 
by affecting runoff and surface vegetation. Most regions where the NDVI 
is the main driving factor are plateaus, such as the Yunnan-Guizhou 
Plateau, where vegetation cover is low and the impact of vegetation 
changes is greater. The results of the linear discriminant analysis 
(Fig. 5b) indicated that the larger the TNI value in an area, the greater 
the likelihood that the NDVI is the main driving factor; the higher the 
NDVI in an area, the more likely it is that the slope is the main driving 
factor. This conclusion is consistent with the results of the MGWR model 
(Fig. 4a), with the consistency between the two zoning methods being 
approximately 84.76 % (Fig. 5b). We have also made exhaustive efforts 
to systematically review literatures on SC driving factors in Fig. 5b (also 
see Table A2). Researchers’ findings similarly demonstrate changes in 
the primary driving factors for SC, with 66.7 % of results aligning with 
our proposed transition threshold curve. We conducted a thorough 
analysis of studies that exhibited discrepancies, e.g., Rong et al. (2022), 
and found that these discrepancies were typically associated with 
larger-scale investigations. Larger-scale studies often average the values 
of TNI due to computational precision issues, which constitutes a pri
mary reason for discrepancies with the results presented in this study. 

The MGWR results for CS (Fig. 4c) indicated that the main driving 
factor of CS is the NDVI (Ge et al., 2021; Ye et al., 2022). Using the 
second main driving factors as the classification basis, the YEB was 
divided into two regions: the western region mainly driven by topog
raphy (DEM and Slope) and the eastern region mainly driven by human 
activities (PWL and NL). However, there has been a lack of discussion 
regarding the main driving factors of CS. The impact of human activity 
in the Pearl River Delta region is greater than that of topography (Liu 
et al., 2022c), whereas research in northeastern China yielded the 
opposite results (Sun et al., 2018). The clustering results of CS (Fig. 5c) 
indicated that clustering in the western region was mainly characterized 
by a high TNI and NDVI, whereas in the eastern region, human activities 
(B2) and a high NDVI (B1) had a relatively larger effect. This was 
consistent with the regional characteristics of the Pearl River Delta in 
northeastern China. Further, linear discriminant analysis (Fig. 5c) 
showed that the higher the TNI value in an area, the greater the 

likelihood that the NDVI is the main driving factor, whereas the higher 
the HAI value in an area, the more likely it is that human activities are 
the main driving factor. This conclusion is consistent with the results of 
the MGWR model, with the consistency between the two zoning 
methods being approximately 80.04 % (Fig. 5a). Previous research 
studies have corroborated the primary driving factor transition pattern 
presented in this paper, with a concurrence rate of 66.7 % (Fig. 5c, 
Table A3). For instance, Wu et al. (2023), who conducted a similar study 
in Pearl River Delta of China, observed that with the increasing intensity 
of human activities (HAI), anthropogenic factors gradually supplant 
topography (TNI) as the predominant drivers influencing SC. 

4.4. Ecosystem service management advice 

ESs can serve as vehicles for shaping the value of natural resources 
through spatial planning and provide a cognitive foundation for value 
shaping in spatial planning (Carpenter et al., 2009). The spatial het
erogeneity of the impacts on ESs reflects comprehensive differences in 
regional conditions, such as ecological and socio-economic factors. 
Therefore, to achieve sustainability of the ecosystem’s provisioning ca
pacity in the YEB, optimize the regional industrial layout, and promote 
coordinated development among regions, the spatial layout of driving 
factors should be the primary basis for spatial planning, considering the 
differences in ESs. This will help propose spatial planning and corre
sponding management measures for the YEB. To divide the counties in 
the YEB, a zoning method should be used. Regions with similar main 
driving factors of ESs should be merged, and the three ESs can be divided 
into different zones. After overlaying the three zones, ecosystem con
servation management zones for the YEB can be generated (Fig. 6) and 
management strategies based on the characteristics of each zone can be 
proposed. The specific partitioning strategy is shown below: First, the 
YEB is divided into multiple regions based on the primary driving factors 
of ecosystem services. Specifically, WY is divided into three regions: 1 
(M1 & M2), 2 (M3 & M4 & M6), and 3 (M5 & M7), with Region 2 serving 
as a transitional zone; SC is divided into two regions: 1 (M1 & M2) and 2 
(M3 & M4); CS is divided into three regions: 1 (M1), 2 (M2 & M3), and 3 
(M4). Finally, we overlay the respective regions and label the overlaid 
areas in the order of WY, SC, and CS, using the following numbers for 
each region: 121 (Ecological protection region), 122 (Ecological 
Enhancement region), 123 (Human activity support region), 221 
(Complex ecological region), 311 (Green economic region), 321 
(Ecological transition region), and 322 (Ecological compensation 
region). 

The characteristics and policy priorities of each region are as follows. 
Ecological transition region is an area of excessive transition from the 
Yangtze River Economic Belt to the northern plateau region. The 
ecosystem in this area is gradually becoming fragile, so emphasis is 
placed on protecting vegetation coverage, which were also acknowl
edged by literature (Yang et al., 2021). Ecological compensation re
gion, PWL affects the SC and CS of the region, so the region is dominated 
by forest construction and ecological conservation. Green economic 
region is ecologically sound and has the basis for the transformation of 
good ecology into regional economic development and the imple
mentation of conservation and development policies. Studies in this 
region (Yunnan Province) indicate that the development of ecotourism 
in this area promotes the integrated development of ecology and econ
omy (Zhu et al., 2023). Complex ecological region is influenced by 
multiple factors, and the ecological situation is complex. Policies focus 
on protecting the region’s biodiversity. Ecological protection region: 
Due to terrain factors, soil erosion is severe in this region, and a sig
nificant amount of ESs is needed. Therefore, emphasis is placed on 
regional security construction. Research in this region (Jiangxi Prov
ince) shows that soil and water conservation measures aid in mitigating 
water and soil erosion in the region (Tu et al., 2018). Human activity 
support region, human activities are important influencing factors in 
this region, and the supply capacity of WY is also high. Therefore, 
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attention is paid to water source and environmental protection, as well 
as planned and efficient land use. Ecological enhancement region: this 
region is an important grain production area, and the primary influ
encing factor of ESs is PWL. Therefore, the balance between agricultural 
development and forest construction is emphasized, as well as the pro
tection of ecological redlines and cultivated land redlines. 

4.5. Limitation and prospect 

There are limitations and uncertainties in the models and results of 
ESs calculations, and although this study chose the InVEST model, 
which is the most widely used model in the world (Kareiva et al., 2011), 
and searched for a number of studies to localize the parameters, the 
impacts of regional variability on large scales should not be ignored (Ren 
et al., 2022). This study focuses more on spatial scale variability and less 
on temporal scale changes, on the one hand, because the 20-year study 
timeframe is still relatively short, and the magnitude of land use changes 
in the overall region is small, and the regularity of climate change is not 
yet strong, on the other hand, for the Yangtze River Economic Belt as a 
special region, the spatial variability of ecosystem services caused by the 
variability of the natural and social elements is more significant. In the 
future, longer time span data and regionally different parameters can be 
used to study climate change or land use change within the same region. 

5. Conclusion 

ESs have been considered in large-scale policy decision making, but 
there is a high level of spatial heterogeneity in ESs and their driving 
factors. This affects the applicability of policies to various regions to a 
certain extent. This study used geospatial and panel data and classical 
models to quantify WY, SC, and SC as well as the primary driving factors. 
As one of the rare studies that considered drivers transformation pat
terns, we found that the YBE showed spatial heterogeneity of ESs and 
drivers, and this can be quantified. The YEB showed spatial heteroge
neity in ESs and driving factors and there was consistency in its layout 
from the perspective of spatial distribution patterns. Therefore, a spatial 
division of ESs management was proposed based on the spatial division 
of driving factors, and the characteristic management strategies of each 
region were constructed. This is likely to have a forward-looking effect 
on the quantitative implementation of ecosystem zoning management, 
policy economy, and environmental protection policies in the region and 
provide a reference for the sustainable use of regional and global eco
systems. Additionally, it is worthwhile to highlight the methodological 
novelty used in this present study. The first, we showed the high interest 
of using self-organizing maps (SOM) in depicting both ESs and their 
drivers at large geographical scale. Second, we showed the appropri
ateness of the Linear Discriminant Analysis method in determining 
thresholds of driving factor transitions and generating threshold curves 
(Fig. 5). Using these methods in conjunction will be greatly helpful for a 
better understanding of large-scale ESs patterns and underlying mech
anisms in future studies. 

CRediT authorship contribution statement 

Zeyang Xie: Conceptualization, Formal analysis, Methodology, 
Validation, Visualization, Writing – original draft. Liujie He: Data 
curation, Validation. Zhun Mao: Conceptualization, Supervision, 
Writing – review & editing. Wei Wan: Funding acquisition, Project 
administration, Visualization. Xu Song: Methodology. Zhijian Wu: 
Methodology. Han Liang: Methodology. Jing Liu: Data curation. Bofu 
Zheng: Funding acquisition, Investigation, Methodology. Jinqi Zhu: 
Conceptualization, Supervision, Writing – review & editing. 

Declaration of competing interest 

The authors declare that they have no known competing financial 

interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data availability 

Data will be made available on request. 

Acknowledgement 

This work was supported by the National Natural Science Foundation 
of China (32201626, 42301091), the Key Research and Development 
Program of Jiangxi Province (20223BBG74S01, 20223BBG71013). 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ecolind.2024.111729. 

References 

Abdul-Rahim, A.S., Sun, C.L., Noraida, A.W., 2018. The impact of soil and water 
conservation on agricultural economic growth and rural poverty reduction in china. 
Sustainability 10 (12). https://doi.org/10.3390/su10124444. 

Ahmed, M., Abd-Elrahman, A., Escobedo, F.J., Cropper, W.P., Martin, T.A., Timilsina, N., 
2017. Spatially-explicit modeling of multi-scale drivers of aboveground forest 
biomass and water yield in watersheds of the southeastern united states. J. Environ. 
Manage. 199, 158–171. https://doi.org/10.1016/j.jenvman.2017.05.013. 

Bai, Y., Jiang, B., Wang, M., Li, H., Alatalo, J.M., Huang, S.F., 2016. New ecological 
redline policy (erp) to secure ecosystem services in china. Land Use Policy 55, 
348–351. https://doi.org/10.1016/j.landusepol.2015.09.002. 

Bao, H.J., Wang, C.C., Han, L., Wu, S.H., Lou, L.M., Xu, B.G., Liu, Y.F., 2020. Resources 
and environmental pressure, carrying capacity, and governance: a case study of 
yangtze river economic belt. Sustainability 12 (4). https://doi.org/10.3390/ 
su12041576. 

Bardgett, R.D., Bullock, J.M., Lavorel, S., Manning, P., Schaffner, U., Ostle, N., 
Chomel, M., Durigan, G., Fry, E.L., Johnson, D., Lavallee, J.M., Le Provost, G., 
Luo, S., Png, K., Sankaran, M., Hou, X.Y., Zhou, H.K., Ma, L., Ren, W.B., Li, X.L., 
Ding, Y., Li, Y.H., Shi, H.X., 2021. Combatting global grassland degradation. Nat. 
Rev. Earth Environ. 2 (10), 720–735. https://doi.org/10.1038/s43017-021-00207-2. 

Berdugo, M., Delgado-Baquerizo, M., Soliveres, S., Hernandez-Clemente, R., Zhao, Y.C., 
Gaitan, J.J., Gross, N., Saiz, H., Maire, V., Lehman, A., Rillig, M.C., Sole, R.V., 
Maestre, F.T., 2020. Global ecosystem thresholds driven by aridity. Science 367 
(6479), 787. https://doi.org/10.1126/science.aay5958. 

Carpenter, S.R., Mooney, H.A., Agard, J., Capistrano, D., Defries, R.S., Diaz, S., Dietz, T., 
Duraiappah, A.K., Oteng-Yeboah, A., Pereira, H.M., Perrings, C., Reid, W.V., 
Sarukhan, J., Scholes, R.J., Whyte, A., 2009. Science for managing ecosystem 
services: beyond the millennium ecosystem assessment. Proc. Natl. Acad. Sci. u. s. a. 
106 (5), 1305–1312. https://doi.org/10.1073/pnas.0808772106. 

Chen, W., Bian, J., Zhong, M., Zeng, J., Liang, J., Zeng, Y., 2022. Impact of traffic 
accessibility on ecosystem health: a case study of the middle reaches of the yangtze 
river urban agglomerations. Acta Ecologica Sinica 42 (14), 5721–5733. 

Chen, S.S., Ma, M.H., Wu, S.J., Tang, Q.Q., Wen, Z.F., 2023. Topography intensifies 
variations in the effect of human activities on forest npp across altitude and slope 
gradients. Environ. Dev. 45 https://doi.org/10.1016/j.envdev.2023.100826. 

Chen, T., Xia, J., Zou, L., Hong, S., 2020. Quantifying the influences of natural factors 
and human activities on ndvi changes in the hanjiang river basin, china. Remote 
Sens. 12 (22) https://doi.org/10.3390/rs12223780. 

China National Bureau of Statistics, 2021. 《statistical yearbook of yangtze river 
economic zone 2020》. China Statistics Press. https://doi.org/10.38715/y.cnki. 
ycjjd.2022.000001. 

Comberti, C., Thornton, T.F., Echeverria, V.W., Patterson, T., 2015. Ecosystem services 
or services to ecosystems? Valuing cultivation and reciprocal relationships between 
humans and ecosystems. Glob. Environ. Change-Human Policy Dimens. 34, 
247–262. https://doi.org/10.1016/j.gloenvcha.2015.07.007. 

Costanza, R., Darge, R., Degroot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., 
Naeem, S., Oneill, R.V., Paruelo, J., Raskin, R.G., Sutton, P., Vandenbelt, M., 1997. 
The value of the world’s ecosystem services and natural capital. Nature 387 (6630), 
253–260. https://doi.org/10.1038/387253a0. 

Dai, E.F., Wang, Y.H., 2020. Attribution analysis for water yield service based on the 
geographical detector method: a case study of the hengduan mountain region. 
J. Geogr. Sci. 30 (6), 1005–1020. https://doi.org/10.1007/s11442-020-1767-y. 

Donohue, R.J., Roderick, M.L., Mcvicar, T.R., 2012. Roots, storms and soil pores: 
incorporating key ecohydrological processes into budyko’s hydrological model. 
J. Hydrol. 436–437, 35–50. https://doi.org/10.1016/j.jhydrol.2012.02.033. 

Fang, L.L., Wang, L.C., Chen, W.X., Sun, J., Cao, Q., Wang, S.Q., Wang, L.Z., 2021. 
Identifying the impacts of natural and human factors on ecosystem service in the 
yangtze and yellow river basins. J. Clean. Prod. 314 https://doi.org/10.1016/j. 
jclepro.2021.127995. 

Z. Xie et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.ecolind.2024.111729
https://doi.org/10.1016/j.ecolind.2024.111729
https://doi.org/10.3390/su10124444
https://doi.org/10.1016/j.jenvman.2017.05.013
https://doi.org/10.1016/j.landusepol.2015.09.002
https://doi.org/10.3390/su12041576
https://doi.org/10.3390/su12041576
https://doi.org/10.1038/s43017-021-00207-2
https://doi.org/10.1126/science.aay5958
https://doi.org/10.1073/pnas.0808772106
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0040
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0040
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0040
https://doi.org/10.1016/j.envdev.2023.100826
https://doi.org/10.3390/rs12223780
https://doi.org/10.38715/y.cnki.ycjjd.2022.000001
https://doi.org/10.38715/y.cnki.ycjjd.2022.000001
https://doi.org/10.1016/j.gloenvcha.2015.07.007
https://doi.org/10.1038/387253a0
https://doi.org/10.1007/s11442-020-1767-y
https://doi.org/10.1016/j.jhydrol.2012.02.033
https://doi.org/10.1016/j.jclepro.2021.127995
https://doi.org/10.1016/j.jclepro.2021.127995


Ecological Indicators 159 (2024) 111729

13

Fu, B.J., Wang, S., Su, C.H., Forsius, M., 2013. Linking ecosystem processes and 
ecosystem services. Curr. Opin. Environ. Sustain. 5 (1), 4–10. https://doi.org/ 
10.1016/j.cosust.2012.12.002. 

Garcia-Palacios, P., Gross, N., Gaitan, J., Maestre, F.T., 2018. Climate mediates the 
biodiversity-ecosystem stability relationship globally. Proc. Natl. Acad. Sci. u. s. a. 
115 (33), 8400–8405. https://doi.org/10.1073/pnas.1800425115. 

Ge, W.Y., Deng, L.Q., Wang, F., Han, J.Q., 2021. Quantifying the contributions of human 
activities and climate change to vegetation net primary productivity dynamics in 
china from 2001 to 2016. Sci. Total Environ. 773 https://doi.org/10.1016/j. 
scitotenv.2021.145648. 

Gomes, L.C., Bianchi, F., Cardoso, I.M., Fernandes, E.I., Schulte, R., 2020. Land use 
change drives the spatio-temporal variation of ecosystem services and their 
interactions along an altitudinal gradient in brazil. Landsc. Ecol. 35 (7), 1571–1586. 
https://doi.org/10.1007/s10980-020-01037-1. 

Gong, S., Xiao, Y., Zheng, H., Xiao, Y., Ouyang, Z., 2017. Spatial patterns of ecosystem 
water conservation in china and its impact factors analysis. Acta Ecologica Sinica 37 
(7), 2455–2462. 

Gonzalez-Garcia, A., Palomo, I., Gonzalez, J.A., Lopez, C.A., Montes, C., 2020. 
Quantifying spatial supply-demand mismatches in ecosystem services provides 
insights for land-use planning. Land Use Policy 94. https://doi.org/10.1016/j. 
landusepol.2020.104493. 

Gret-Regamey, A., Altwegg, J., Siren, E.A., van Strien, M.J., Weibel, B., 2017. Integrating 
ecosystem services into spatial planning-a spatial decision support tool. Landsc. 
Urban Plan. 165, 206–219. https://doi.org/10.1016/j.landurbplan.2016.05.003. 

Han, G.F., Xu, J.H., 2013. Land surface phenology and land surface temperature changes 
along an urban-rural gradient in yangtze river delta, china. Environ. Manage. 52 (1), 
234–249. https://doi.org/10.1007/s00267-013-0097-6. 

He, J.H., Pan, Z.Z., Liu, D.F., Guo, X.N., 2019. Exploring the regional differences of 
ecosystem health and its driving factors in china. Sci. Total Environ. 673, 553–564. 
https://doi.org/10.1016/j.scitotenv.2019.03.465. 

Hernandez-Blanco, M., Costanza, R., Chen, H.J., Degroot, D., Jarvis, D., Kubiszewski, I., 
Montoya, J., Sangha, K., Stoeckl, N., Turner, K., Van’T Hoff, V., 2022. Ecosystem 
health, ecosystem services, and the well-being of humans and the rest of nature. 
Glob. Change Biol. 28 (17), 5027–5040. https://doi.org/10.1111/gcb.16281. 

Hu, X., Hou, Y., Li, D., Hua, T., Marchi, M., Urrego, P.F.J., Huang, B., Zhao, W., 
Cherubini, F., 2023. Changes in multiple ecosystem services and their influencing 
factors in nordic countries. Ecol. Indic. 146, 109847 https://doi.org/10.1016/j. 
ecolind.2022.109847. 

Hu, B., Kang, F., Han, H., Cheng, X., Li, Z., 2021. Exploring drivers of ecosystem services 
variation from a geospatial perspective: insights from china’s shanxi province. Ecol. 
Indic. 131, 108188 https://doi.org/10.1016/j.ecolind.2021.108188. 

Hu, C.G., Wang, Z.Y., Li, J.M., Liu, H., Sun, D.Q., 2022a. Quantifying the temporal and 
spatial patterns of ecosystem services and exploring the spatial differentiation of 
driving factors: a case study of sichuan basin, china. Front. Environ. Sci. 10 https:// 
doi.org/10.3389/fenvs.2022.927818. 

Hu, W., Yang, R., Jia, G., Yin, Z., Li, Y., Shen, S., Li, G., 2022c. Response of water yield 
function to land use change and its driving factors in the yangtze river basin. Acta 
Ecologica Sinica 42 (17), 7011–7027. 

Hu, J., Zhang, J., Li, Y., 2022b. Exploring the spatial and temporal driving mechanisms of 
landscape patterns on habitat quality in a city undergoing rapid urbanization based 
on gtwr and mgwr: the case of nanjing, china. Ecol. Indic. 143, 109333 https://doi. 
org/10.1016/j.ecolind.2022.109333. 

Huang, M., Fang, B., Yue, W., Feng, S., 2019. Spatial differentiation of ecosystem service 
values and its geographical detection in chaohu basin during 1995–2017. Geogr. 
Res. 38 (11), 2790–2803. 

Huang, Y., Feng, T., Niu, S.F., Hao, D.S., Gan, X.Y., Zhou, B., 2022. Integrating the effects 
of driving forces on ecosystem services into ecological management: a case study 
from sichuan province, china. PLoS One 17 (6). https://doi.org/10.1371/journal. 
pone.0270365. 

Kareiva, P., Tallis, H., Ricketts, T., Daily, G., Polasky, S., 2011. Natural capital: theory & 
practice of mapping ecosystem services. Oxford University Press, Oxford.  

Khzr, B.O., Ibrahim, G., Hamid, A.A., Ail, S.A., 2022. Runoff estimation using scs-cn and 
gis techniques in the sulaymaniyah sub-basin of the kurdistan region of iraq. 
Environ. Dev. Sustain. 24 (2), 2640–2655. https://doi.org/10.1007/s10668-021- 
01549-z. 

Kong, L.Q., Zheng, H., Rao, E.M., Xiao, Y., Ouyang, Z.Y., Li, C., 2018. Evaluating indirect 
and direct effects of eco-restoration policy on soil conservation service in yangtze 
river basin. Sci. Total Environ. 631–632, 887–894. https://doi.org/10.1016/j. 
scitotenv.2018.03.117. 

Kreuter, U.P., Harris, H.G., Matlock, M.D., Lacey, R.E., 2001. Change in ecosystem 
service values in the san antonio area, texas. Ecol. Econ. 39 (3), 333–346. https:// 
doi.org/10.1016/S0921-8009(01)00250-6. 

Kroll, F., Muller, F., Haase, D., Fohrer, N., 2012. Rural-urban gradient analysis of 
ecosystem services supply and demand dynamics. Land Use Policy 29 (3), 521–535. 
https://doi.org/10.1016/j.landusepol.2011.07.008. 

Li, J.H., 2022. Identification of ecosystem services supply and demand and driving 
factors in taihu lake basin. Environ. Sci. Pollut. Res. 29 (20), 29735–29745. https:// 
doi.org/10.1007/s11356-021-17263-2. 

Li, Z.Z., Hu, B.A., Qin, Y.Y., Cheng, X.Q., 2022c. Drivers of spatiotemporal disparities in 
the supply-demand budget of ecosystem services: a case study in the beijing-tianjin- 
hebei urban agglomeration, china. Front. Environ. Sci. 10 https://doi.org/10.3389/ 
fenvs.2022.955876. 

Li, T.N., Li, D.Z., Liang, D.L., Huang, S.M., 2022a. Coupling coordination degree of 
ecological-economic and its influencing factors in the counties of yangtze river 
economic belt. Sustainability 14 (22). https://doi.org/10.3390/su142215467. 

Li, Y., Liu, W., Feng, Q., Zhu, M., Zhang, J., Yang, L., Yin, X., 2022b. Spatiotemporal 
dynamics and driving factors of ecosystem services value in the hexi regions, 
northwest china. Sustainability 14 (21), 14164. https://doi.org/10.3390/ 
su142114164. 

Li, F., Zhang, S.W., Yang, J.C., Bu, K., Wang, Q., Tang, J.M., Chang, L.P., 2016. The 
effects of population density changes on ecosystem services value: a case study in 
western jilin, china. Ecol. Indic. 61, 328–337. https://doi.org/10.1016/j. 
ecolind.2015.09.033. 

Lin, H.W., Yun, H., 2023. Spatiotemporal dynamics of ecosystem services driven by 
human modification over the past seven decades: a case study of sihu agricultural 
watershed, china. Land 12, (3). https://doi.org/10.3390/land12030577. 

Liu, J.G., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., 
Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., 
Redman, C.L., Schneider, S.H., Taylor, W.W., 2007. Complexity of coupled human 
and natural systems. Science 317 (5844), 1513–1516. https://doi.org/10.1126/ 
science.1144004. 

Liu, Y.B., Hou, X.Y., Li, X.W., Song, B.Y., Wang, C., 2020. Assessing and predicting 
changes in ecosystem service values based on land use/cover change in the bohai rim 
coastal zone. Ecol. Indic. 111 https://doi.org/10.1016/j.ecolind.2019.106004. 

Liu, J., Wang, J., Dai, J., Zhai, T., Li, Z., 2021. The relationship between supply and 
demand of ecosystem services and its spatio-temporal variation in the yellow river 
basin. Journal of Natural Resources 36 (1), 148–161. 

Liu, S.J., Wang, Z.J., Wu, W., Yu, L.F., 2022b. Effects of landscape pattern change on 
ecosystem services and its interactions in karst cities: a case study of guiyang city in 
china. Ecol. Indic. 145 https://doi.org/10.1016/j.ecolind.2022.109646. 

Liu, H.Y., Xiao, W.F., Zhu, J.H., Zeng, L.X., Li, Q., 2022a. Urbanization intensifies the 
mismatch between the supply and demand of regional ecosystem services: a large- 
scale case of the yangtze river economic belt in china. Remote Sens. 14 (20) https:// 
doi.org/10.3390/rs14205147. 

Liu, W., Zhan, J.Y., Zhao, F., Wang, C., Zhang, F., Teng, Y.M., Chu, X., Kumi, M.A., 
2022c. Spatio-temporal variations of ecosystem services and their drivers in the 
pearl river delta, china. J. Clean. Prod. 337 https://doi.org/10.1016/j. 
jclepro.2022.130466. 

Ma, S., Qiao, Y.P., Wang, L.J., Zhang, J.C., 2021. Terrain gradient variations in 
ecosystem services of different vegetation types in mountainous regions: vegetation 
resource conservation and sustainable development. For. Ecol. Manage. 482 https:// 
doi.org/10.1016/j.foreco.2020.118856. 

Mu, X.L., Qiu, J.L., Cao, B.W., Cai, S.R., Niu, K.L., Yang, X.K., 2022. Mapping soil erosion 
dynamics (1990–2020) in the pearl river basin. Remote Sens. 14 (23) https://doi. 
org/10.3390/rs14235949. 

Ni, R., Wang, F.E., Yu, J., 2022. Spatiotemporal changes in sustainable development and 
its driving force in the yangtze river delta region, china. J. Clean. Prod. 379 https:// 
doi.org/10.1016/j.jclepro.2022.134751. 

Pang, R.Q., Hu, N., Zhou, J.R., Sun, D.Q., Ye, H.Y., 2022. Study on eco-environmental 
effects of land-use transitions and their influencing factors in the central and 
southern liaoning urban agglomeration: a production-living-ecological perspective. 
Land 11 (6). https://doi.org/10.3390/land11060937. 

Rao, E.M., Xiao, Y., Ouyang, Z.Y., Zheng, H., 2016. Changes in ecosystem service of soil 
conservation between 2000 and 2010 and its driving factors in southwestern china. 
Chin. Geogr. Sci. 26 (2), 165–173. https://doi.org/10.1007/s11769-015-0759-9. 

Ren, B., Wang, Q., Zhang, R., Zhou, X., Wu, X., Zhang, Q., 2022. Assessment of ecosystem 
services: spatio-temporal analysis and the spatial response of influencing factors in 
hainan province. Sustainability 14 (15). https://doi.org/10.3390/su14159145. 

Rial, J.A., Pielke, R.A., Beniston, M., Claussen, M., Canadell, J., Cox, P., Held, H., De 
Noblet-Ducoudre, N., Prinn, R., Reynolds, J.F., Salas, J.D., 2004. Nonlinearities, 
feedbacks and critical thresholds within the earth’s climate system. Clim. Change 65 
(1–2), 11–38. https://doi.org/10.1023/B:CLIM.0000037493.89489.3f. 

Rong, Y.J., Li, K., Guo, J.W., Zheng, L.F., Luo, Y., Yan, Y., Wang, C.X., Zhao, C.L., 
Shang, X., Wang, Z.T., 2022. Multi-scale spatio-temporal analysis of soil 
conservation service based on mgwr model: a case of beijing-tianjin-hebei, china. 
Ecol. Indic. 139. 

Rötzer, T., Rahman, M.A., Moser-Reischl, A., Pauleit, S., Pretzsch, H., 2019. Process 
based simulation of tree growth and ecosystem services of urban trees under present 
and future climate conditions. Sci. Total Environ. 676, 651–664. https://doi.org/ 
10.1016/j.scitotenv.2019.04.235. 

Sanchez-Canales, M., Benito, A.L., Passuello, A., Terrado, M., Ziv, G., Acuna, V., 
Schuhmacher, M., Elorza, F.J., 2012. Sensitivity analysis of ecosystem service 
valuation in a mediterranean watershed. Sci. Total Environ. 440, 140–153. https:// 
doi.org/10.1016/j.scitotenv.2012.07.071. 

Song, W., Deng, X.Z., 2017. Land-use/land-cover change and ecosystem service provision 
in china. Sci. Total Environ. 576, 705–719. https://doi.org/10.1016/j. 
scitotenv.2016.07.078. 

Su, C., Fu, B., 2013. Evolution of ecosystem services in the chinese loess plateau under 
climatic and land use changes. Glob. Planet. Change 101, 119–128. https://doi.org/ 
10.1016/j.gloplacha.2012.12.014. 

Sun, L., Li, Z.J., Zhang, K., Jiang, T.T., 2021. Impacts of precipitation and topographic 
conditions on the model simulation in the north of china. Water Supply 21 (3), 
1025–1035. https://doi.org/10.2166/ws.2020.284. 

Sun, X., Tang, H.J., Yang, P., Hu, G., Liu, Z.H., Wu, J.G., 2020. Spatiotemporal patterns 
and drivers of ecosystem service supply and demand across the conterminous united 
states: a multiscale analysis. Sci. Total Environ. 703 https://doi.org/10.1016/j. 
scitotenv.2019.135005. 

Sun, Q., Wang, C., Zhao, J., Zheng, J., Chen, J., 2011. Research evolution of rainfall 
erosivity(r)in china. Chinese Agricultural Science Bulletin 27 (4), 1–5. 

Z. Xie et al.                                                                                                                                                                                                                                       

https://doi.org/10.1016/j.cosust.2012.12.002
https://doi.org/10.1016/j.cosust.2012.12.002
https://doi.org/10.1073/pnas.1800425115
https://doi.org/10.1016/j.scitotenv.2021.145648
https://doi.org/10.1016/j.scitotenv.2021.145648
https://doi.org/10.1007/s10980-020-01037-1
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0105
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0105
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0105
https://doi.org/10.1016/j.landusepol.2020.104493
https://doi.org/10.1016/j.landusepol.2020.104493
https://doi.org/10.1016/j.landurbplan.2016.05.003
https://doi.org/10.1007/s00267-013-0097-6
https://doi.org/10.1016/j.scitotenv.2019.03.465
https://doi.org/10.1111/gcb.16281
https://doi.org/10.1016/j.ecolind.2022.109847
https://doi.org/10.1016/j.ecolind.2022.109847
https://doi.org/10.1016/j.ecolind.2021.108188
https://doi.org/10.3389/fenvs.2022.927818
https://doi.org/10.3389/fenvs.2022.927818
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0150
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0150
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0150
https://doi.org/10.1016/j.ecolind.2022.109333
https://doi.org/10.1016/j.ecolind.2022.109333
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0160
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0160
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0160
https://doi.org/10.1371/journal.pone.0270365
https://doi.org/10.1371/journal.pone.0270365
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0170
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0170
https://doi.org/10.1007/s10668-021-01549-z
https://doi.org/10.1007/s10668-021-01549-z
https://doi.org/10.1016/j.scitotenv.2018.03.117
https://doi.org/10.1016/j.scitotenv.2018.03.117
https://doi.org/10.1016/S0921-8009(01)00250-6
https://doi.org/10.1016/S0921-8009(01)00250-6
https://doi.org/10.1016/j.landusepol.2011.07.008
https://doi.org/10.1007/s11356-021-17263-2
https://doi.org/10.1007/s11356-021-17263-2
https://doi.org/10.3389/fenvs.2022.955876
https://doi.org/10.3389/fenvs.2022.955876
https://doi.org/10.3390/su142215467
https://doi.org/10.3390/su142114164
https://doi.org/10.3390/su142114164
https://doi.org/10.1016/j.ecolind.2015.09.033
https://doi.org/10.1016/j.ecolind.2015.09.033
https://doi.org/10.3390/land12030577
https://doi.org/10.1126/science.1144004
https://doi.org/10.1126/science.1144004
https://doi.org/10.1016/j.ecolind.2019.106004
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0235
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0235
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0235
https://doi.org/10.1016/j.ecolind.2022.109646
https://doi.org/10.3390/rs14205147
https://doi.org/10.3390/rs14205147
https://doi.org/10.1016/j.jclepro.2022.130466
https://doi.org/10.1016/j.jclepro.2022.130466
https://doi.org/10.1016/j.foreco.2020.118856
https://doi.org/10.1016/j.foreco.2020.118856
https://doi.org/10.3390/rs14235949
https://doi.org/10.3390/rs14235949
https://doi.org/10.1016/j.jclepro.2022.134751
https://doi.org/10.1016/j.jclepro.2022.134751
https://doi.org/10.3390/land11060937
https://doi.org/10.1007/s11769-015-0759-9
https://doi.org/10.3390/su14159145
https://doi.org/10.1023/B:CLIM.0000037493.89489.3f
http://refhub.elsevier.com/S1470-160X(24)00186-9/opthKQSngJAWJ
http://refhub.elsevier.com/S1470-160X(24)00186-9/opthKQSngJAWJ
http://refhub.elsevier.com/S1470-160X(24)00186-9/opthKQSngJAWJ
http://refhub.elsevier.com/S1470-160X(24)00186-9/opthKQSngJAWJ
https://doi.org/10.1016/j.scitotenv.2019.04.235
https://doi.org/10.1016/j.scitotenv.2019.04.235
https://doi.org/10.1016/j.scitotenv.2012.07.071
https://doi.org/10.1016/j.scitotenv.2012.07.071
https://doi.org/10.1016/j.scitotenv.2016.07.078
https://doi.org/10.1016/j.scitotenv.2016.07.078
https://doi.org/10.1016/j.gloplacha.2012.12.014
https://doi.org/10.1016/j.gloplacha.2012.12.014
https://doi.org/10.2166/ws.2020.284
https://doi.org/10.1016/j.scitotenv.2019.135005
https://doi.org/10.1016/j.scitotenv.2019.135005
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0320
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0320


Ecological Indicators 159 (2024) 111729

14

Sun, B., Zhao, H., Lu, F., Wang, X., 2018. Spatial and temporal patterns of carbon 
sequestration in the northeastern forest regions and its impact factors analysis. Acta 
Ecologica Sinica 38 (14), 4975–4983. 

Tan, F.F., Wang, F.Y., Niu, Z.Y., 2023. Multiscale disparity and spatial pattern of 
comprehensive carrying capacity in the yangtze river economic belt, china. Ecol. 
Indic. 148 https://doi.org/10.1016/j.ecolind.2023.110119. 

Tang, Y.S., Tang, J.H., Yu, X.H., Qiu, L.F., Wang, J.Y., Hou, X.R., Chen, D.X., 2022. Land 
ecological protection polices improve ecosystem services: a case study of lishui, 
china. Front. Environ. Sci. 10 https://doi.org/10.3389/fenvs.2022.973524. 

Tang, D.C., Zhang, Y., Bethel, B.J., 2019. An analysis of disparities and driving factors of 
carbon emissions in the yangtze river economic belt. Sustainability 11 (8). https:// 
doi.org/10.3390/su11082362. 

Tedesco, A.M., Brancalion, P., Hepburn, M., Walji, K., Wilson, K.A., Possingham, H.P., 
Dean, A.J., Nugent, N., Elias-Trostmann, K., Perez-Hammerle, K.V., Rhodes, J.R., 
2023. The role of incentive mechanisms in promoting forest restoration. Philos. 
Trans. R. Soc. B-Biol. Sci. 378 (1867). https://doi.org/10.1098/rstb.2021.0088. 

The State Council Information Office of the People’s Republic of China, 2020. The state 
council of the people’s republic of china has published english translations of 61 
commonly used keywords of major national strategies. accessed 2023-12-26. http:// 
www.scio.gov.cn/zdgz/gzdt1/202308/t20230816_750811.html. 

Tian, H.L., Zhu, J.H., Jian, Z.J., Ou, Q.X., He, X., Chen, X.Y., Li, C.Y., Li, Q., Liu, H.Y., 
Huang, G.S., Xiao, W.F., 2022. The carbon neutral potential of forests in the yangtze 
river economic belt of china. Forests 13 (5). https://doi.org/10.3390/f13050721. 

Tong, X.W., Wang, K.L., Brandt, M., Yue, Y.M., Liao, C.J., Fensholt, R., 2016. Assessing 
future vegetation trends and restoration prospects in the karst regions of southwest 
china. Remote Sens. 8 (5) https://doi.org/10.3390/rs8050357. 

Tu, A.G., Xie, S.H., Yu, Z.B., Li, Y., Nie, X.F., 2018. Long-term effect of soil and water 
conservation measures on runoff, sediment and their relationship in an orchard on 
sloping red soil of southern china. PLoS One 13 (9). https://doi.org/10.1371/ 
journal.pone.0203669. 

Venables, W.N., Ripley, B.D., 2002. Modern applied statistics with s. Springer. 
Wang, Y.Z., Zou, H., Duan, X.J., Wang, L.Q., 2022. Coordinated evolution and 

influencing factors of population and economy in the yangtze river economic belt. 
INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC 
HEALTH 19 (21). https://doi.org/10.3390/ijerph192114395. 

Wang, L.J., Ma, S., Jiang, J., Zhao, Y.G., Zhang, J.C., 2021. Spatiotemporal variation in 
ecosystem services and their drivers among different landscape heterogeneity units 
and terrain gradients in the southern hill and mountain belt, china. Remote Sens. 13 
(7) https://doi.org/10.3390/rs13071375. 

Wang, L.J., Gong, J.W., Ma, S., Wu, S., Zhang, X.M., Jiang, J., 2022a. Ecosystem service 
supply-demand and socioecological drivers at different spatial scales in zhejiang 
province, china. Ecol. Indic. 140 https://doi.org/10.1016/j.ecolind.2022.109058. 

Wang, Z.M., Li, Q.Z., Liu, L., Zhao, H.L., Ru, H.E., Wu, J.P., Deng, Y.L., 2023c. 
Spatiotemporal evolution and attribution analysis of water yield in the xiangjiang 
river basin (xrb) based on the invest model. Water 15, (3). https://doi.org/10.3390/ 
w15030514. 

Wang, D., Tian, Y., Zhang, Y., Huang, L., Tao, J., Yang, Y., Lin, J., Zhang, Q., 2023. 
Evaluation and quantitative attribution analysis of water yield services in the peak- 
cluster depression basins in southwest of guangxi, china. Chin. Geogr. Sci. 33 (1), 
116–130. https://doi.org/10.1007/s11769-023-1329-1. 

Wang, Y.X., Wang, H.M., Liu, G., Zhang, J.X., Fang, Z., 2022c. Factors driving water yield 
ecosystem services in the yellow river economic belt, china: spatial heterogeneity 
and spatial spillover perspectives. J. Environ. Manage. 317 https://doi.org/10.1016/ 
j.jenvman.2022.115477. 

Wang, X.Z., Wu, J.Z., Liu, Y.L., Hai, X.Y., Shanguan, Z.P., Deng, L., 2022b. Driving factors 
of ecosystem services and their spatiotemporal change assessment based on land use 
types in the loess plateau. J. Environ. Manage. 311 https://doi.org/10.1016/j. 
jenvman.2022.114835. 

Wehrens, R., Kruisselbrink, J., 2018. Flexible self-organizing maps in kohonen 3.0. 
J. Stat. Softw. 87 (7), 1–18. https://doi.org/10.18637/iss.v087.i07. 

Wei, P., Wu, M., Jia, Y., Gao, Y., Xu, H., Liu, Z., Chen, S., 2022. Spatiotemporal variation 
of water yield in the upstream regions of the shule river basin using the invest model. 
Acta Ecologica Sinica 42 (15), 6418–6429. 

Williams, J.R., Jones, C.A., Kiniry, J.R., Spanel, D.A., 1989. The epic crop growth-model. 
TRANSACTIONS OF THE ASAE 32 (2), 497–511. 

Wu, J.S., Fan, X.N., Li, K.Y., Wu, Y.W., 2023. Assessment of ecosystem service flow and 
optimization of spatial pattern of supply and demand matching in pearl river delta, 
china. Ecol. Indic. 153 https://doi.org/10.1016/j.ecolind.2023.110452. 

Wu, C.X., Qiu, D.X., Gao, P., Mu, X.M., Zhao, G.J., 2022a. Application of the invest model 
for assessing water yield and its response to precipitation and land use in the weihe 
river basin, china. J. Arid Land 14 (4), 426–440. https://doi.org/10.1007/s40333- 
022-0013-0. 

Wu, D., Zou, C., Cao, W., Liu, L., 2018. Analysis of the ecosystem soil conservation 
function based on the major function-oriented zones across the yangtze river 
economic belt, china. Sustainability 10 (10), 3425. https://doi.org/10.3390/ 
su10103425. 

Wu, D., Zou, C.X., Lin, N.F., Xu, M.J., 2021. Tradeoffs and synergies among ecosystem 
services in the yangtze river economic belt, china. Environmental Ecology 3 (09), 
1–7. 

Xiang, H.L., Yang, J., Liu, X., Lee, J., 2019. Balancing population distribution and 
sustainable economic development in yangtze river economic belt of china. 
Sustainability 11 (12). https://doi.org/10.3390/su11123320. 

Xiao, Q., Hu, D., Xiao, Y., 2017. Assessing changes in soil conservation ecosystem 
services and causal factors in the three gorges reservoir region of china. J. Clean. 
Prod. 163, S172–S180. https://doi.org/10.1016/j.jclepro.2016.09.012. 

Xiao, Y., Ouyang, Z.Y., 2019. Spatial-temporal patterns and driving forces of water 
retention service in china. Chin. Geogr. Sci. 29 (1), 100–111. https://doi.org/ 
10.1007/s11769-018-0984-0. 

Xie, G., Zhang, C., Zhang, C., Xiao, Y., Lu, C., 2015. The value of ecosystem services in 
china. Resources Science 37 (9), 1740–1746. 

Xu, X.B., Yang, G.S., Tan, Y., Liu, J.P., Hu, H.Z., 2018. Ecosystem services trade-offs and 
determinants in china’s yangtze river economic belt from 2000 to 2015. Sci. Total 
Environ. 634, 1601–1614. https://doi.org/10.1016/j.scitotenv.2018.04.046. 

Xue, C.L., Chen, X.H., Xue, L.R., Zhang, H.Q., Chen, J.P., Li, D.D., 2023. Modeling the 
spatially heterogeneous relationships between tradeoffs and synergies among 
ecosystem services and potential drivers considering geographic scale in bairin left 
banner, china. Sci. Total Environ. 855 https://doi.org/10.1016/j. 
scitotenv.2022.158834. 

Yan, Y.J., Dai, Q.H., Yuan, Y.F., Peng, X.D., Zhao, L.S., Yang, J., 2018. Effects of rainfall 
intensity on runoff and sediment yields on bare slopes in a karst area, sw china. 
Geoderma 330, 30–40. https://doi.org/10.1016/j.geoderma.2018.05.026. 

Yang, M.H., Gao, X.D., Zhao, X.N., Wu, P.T., 2021. Scale effect and spatially explicit 
drivers of interactions between ecosystem services-a case study from the loess 
plateau. Sci. Total Environ. 785 https://doi.org/10.1016/j.scitotenv.2021.147389. 

Yang, Y.Q., Jun, Z., Sui, X., He, X., 2020. Study of the spatial connection between 
urbanization and the ecosystem-a case study of central yunnan (china). PLoS One 15 
(9). https://doi.org/10.1371/journal.pone.0238192. 

Ye, X., Wang, Y., Pan, H., Bai, Y., Dong, D., Yao, H., 2022. Spatial-temporal variation and 
driving factors of vegetation net ecosystem productivity in qinghai province. Arid 
Zone Research 39 (5), 1673–1683. 

Yin, G., Wang, X., Zhang, X., Fu, Y., Hao, F., Hu, Q., 2020. Invest model-based estimation 
of water yield in north china and its sensitivities to climate variables. Water 12 (6). 
https://doi.org/10.3390/w12061692. 

Yuan, L., Li, R.Y., He, W.J., Wu, X., Kong, Y., Degefu, D.M., Ramsey, T.S., 2022. 
Coordination of the industrial-ecological economy in the yangtze river economic 
belt, china. Front. Environ. Sci. 10 https://doi.org/10.3389/fenvs.2022.882221. 

Zhang, L., Dawes, W.R., Walker, G.R., 2001. Response of mean annual 
evapotranspiration to vegetation changes at catchment scale. Water Resour. Res. 37 
(3), 701–708. https://doi.org/10.1029/2000WR900325. 

Zhang, L.G., Hu, N.K., 2021. Spatial variation and terrain gradient effect of ecosystem 
services in heihe river basin over the past 20 years. Sustainability 13 (20). https:// 
doi.org/10.3390/su132011271. 

Zhang, J., Shi, Y., Xian, C.F., Zhang, L., Zou, Z.Y., 2022. How urbanization affect the 
ecosystem health of tibet based on terrain gradients: a case study of shannan, china. 
Ecosyst. Health Sustain. 8 (1) https://doi.org/10.1080/20964129.2022.2097449. 

Zhang, M.Y., Wang, K.L., Liu, H.Y., Zhang, C.H., Yue, Y.M., Qi, X.K., 2018. Effect of 
ecological engineering projects on ecosystem services in a karst region: a case study 
of northwest guangxi, china. J. Clean. Prod. 183, 831–842. https://doi.org/10.1016/ 
j.jclepro.2018.02.102. 

Zhang, Y.X., Wang, Y.K., Fu, B., Dixit, A.M., Chaudhary, S., Wang, S., 2020. Impact of 
climatic factors on vegetation dynamics in the upper yangtze river basin in china. 
J Mt. Sci. 17 (5), 1235–1250. https://doi.org/10.1007/s11629-019-5649-7. 

Zhang, W., Xie, Y., Liu, B., 2002. Rainfall erosivity estimation using daily rainfall 
amounts. Scientia Geographica Sinica 22 (6), 705–711. 

Zhao, J.Y., Li, J.J., Zuo, L.L., Liu, G.H., Su, X.K., 2023. Interaction dynamics of multiple 
ecosystem services and abrupt changes of landscape patterns linked with watershed 
ecosystem regime shifts. Ecol. Indic. 150 https://doi.org/10.1016/j. 
ecolind.2023.110263. 

Zhao, Z., Zhang, Y., Pan, Y., Wu, J., Li, Z., 2020. Changes in human activity intensity and 
influence on ecosystem regulating services: a study of tibet based on night light data. 
Journal of Geo-Information Science 22 (7), 1544–1554. 

Zhao, J., Zhao, Y.L., 2023. Synergy/trade-offs and differential optimization of 
production, living, and ecological functions in the yangtze river economic belt, 
china. Ecol. Indic. 147 https://doi.org/10.1016/j.ecolind.2023.109925. 

Zhu, K., Zhou, Q., Cheng, Y.F., Zhang, Y.T., Li, T., Yan, X.Y., Alimov, A., Farmanov, E., 
David, L.D., 2023. Regional sustainability: pressures and responses of tourism 
economy and ecological environment in the yangtze river basin, china. Front. Ecol. 
Evol. 11 https://doi.org/10.3389/fevo.2023.1148868. 

Further reading 

Wu, J.H., Wang, G.Z., Chen, W.X., Pan, S.P., Zeng, J., 2022b. Terrain gradient variations 
in the ecosystem services value of the qinghai-tibet plateau, china. Glob. Ecol. 
Conserv. 34 https://doi.org/10.1016/j.gecco.2022.e02008. 

Z. Xie et al.                                                                                                                                                                                                                                       

http://refhub.elsevier.com/S1470-160X(24)00186-9/h0325
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0325
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0325
https://doi.org/10.1016/j.ecolind.2023.110119
https://doi.org/10.3389/fenvs.2022.973524
https://doi.org/10.3390/su11082362
https://doi.org/10.3390/su11082362
http://www.scio.gov.cn/zdgz/gzdt1/202308/t20230816_750811.html
http://www.scio.gov.cn/zdgz/gzdt1/202308/t20230816_750811.html
https://doi.org/10.3390/f13050721
https://doi.org/10.3390/rs8050357
https://doi.org/10.1371/journal.pone.0203669
https://doi.org/10.1371/journal.pone.0203669
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0370
https://doi.org/10.3390/rs13071375
https://doi.org/10.1016/j.ecolind.2022.109058
https://doi.org/10.3390/w15030514
https://doi.org/10.3390/w15030514
https://doi.org/10.1007/s11769-023-1329-1
https://doi.org/10.1016/j.jenvman.2022.115477
https://doi.org/10.1016/j.jenvman.2022.115477
https://doi.org/10.1016/j.jenvman.2022.114835
https://doi.org/10.1016/j.jenvman.2022.114835
https://doi.org/10.18637/iss.v087.i07
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0415
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0415
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0415
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0420
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0420
https://doi.org/10.1016/j.ecolind.2023.110452
https://doi.org/10.1007/s40333-022-0013-0
https://doi.org/10.1007/s40333-022-0013-0
https://doi.org/10.3390/su10103425
https://doi.org/10.3390/su10103425
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0440
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0440
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0440
https://doi.org/10.3390/su11123320
https://doi.org/10.1016/j.jclepro.2016.09.012
https://doi.org/10.1007/s11769-018-0984-0
https://doi.org/10.1007/s11769-018-0984-0
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0460
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0460
https://doi.org/10.1016/j.scitotenv.2018.04.046
https://doi.org/10.1016/j.scitotenv.2022.158834
https://doi.org/10.1016/j.scitotenv.2022.158834
https://doi.org/10.1016/j.geoderma.2018.05.026
https://doi.org/10.1016/j.scitotenv.2021.147389
https://doi.org/10.1371/journal.pone.0238192
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0490
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0490
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0490
https://doi.org/10.3390/w12061692
https://doi.org/10.3389/fenvs.2022.882221
https://doi.org/10.1029/2000WR900325
https://doi.org/10.3390/su132011271
https://doi.org/10.3390/su132011271
https://doi.org/10.1080/20964129.2022.2097449
https://doi.org/10.1016/j.jclepro.2018.02.102
https://doi.org/10.1016/j.jclepro.2018.02.102
https://doi.org/10.1007/s11629-019-5649-7
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0530
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0530
https://doi.org/10.1016/j.ecolind.2023.110263
https://doi.org/10.1016/j.ecolind.2023.110263
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0540
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0540
http://refhub.elsevier.com/S1470-160X(24)00186-9/h0540
https://doi.org/10.1016/j.ecolind.2023.109925
https://doi.org/10.3389/fevo.2023.1148868
https://doi.org/10.1016/j.gecco.2022.e02008

	Spatial heterogeneity of natural and socio-economic features shape that of ecosystem services. A large-scale study on the Y ...
	1 Introduction
	2 Methods and materials
	2.1 Study area
	2.2 Data sources
	2.3 Ecosystem service evaluation
	2.4 Gradient delineation
	2.5 Analysis of driving factors
	2.6 Cluster distribution characteristics of driving factors
	2.7 Threshold effect analysis of driving factors

	3 Results
	3.1 Spatial patterns of ecosystem services
	3.2 Gradient distribution of ecosystem services
	3.3 Driving factors of ecosystem services
	3.4 Spatial distribution of driving factors
	3.5 Cluster analysis of driving factors

	4 Discussion
	4.1 Result of ESs
	4.2 Driving mechanisms of ecosystem services
	4.3 Spatial differences in ecosystem service driving factors
	4.4 Ecosystem service management advice
	4.5 Limitation and prospect

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgement
	Appendix A Supplementary data
	References
	Further reading


