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Abstract. Discrete Graphical Models (GMs) are widely used in Artifi-
cial Intelligence to describe complex systems through a joint function of
interest. Probabilistic GMs such as Markov Random Fields (MRFs) de-
fine a joint non-normalized probability distribution while deterministic
GMs such as Cost Function Networks (CFNs) define a joint cost function.
A typical query on GMs consists in finding the joint state that optimizes
this joint function, a problem denoted as the Maximum a Posteriori or
Weighted Constraint Satisfaction Problem respectively.
In practice, more than one function of interest may need to be optimized
at the same time. In this paper, we develop a two-phase scalarization
method for solving bi-objective discrete graphical model optimization,
with the aim of computing a set of non-dominated solutions — the Pareto
frontier — representing different compromises between two GM-defined
objectives. For this purpose, we introduce a dedicated higher-order con-
straint, which bounds the value of one GM-defined objective while min-
imizing another GM on the same variables. Discrete GM optimization
is NP-hard, and its bi-objective variants are even harder. We show how
existing GM global lower and upper bounds can be exploited to provide
anytime bounds of the exact Pareto frontier. We benchmark it on various
instances from Operations Research and Probabilistic Graphical Models.

Keywords: bi-objective combinatorial optimization · graphical model ·
constraint optimization · cost function network · exact methods.

1 Introduction

Many real problems require considering more than one objective. In protein
design [2], one may look for the most probable (minimum energy) amino acid
sequence given a target structure that also minimizes the complexity of the se-
quence [43], or which also optimizes its probability given another structure [42].
The same interest for multi-objective optimization exists in drug design [31, 27].
In the uncapacitated warehouse location problem, it is desirable to minimize the
setup costs of all facilities while minimizing the serving costs from these facil-
ities [25]. In frequency assignment problems, one typically wants to minimize
the number of different frequencies used but also their span (the maximum dif-
ference in frequencies) [10]. In all these cases, one objective can be compactly
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represented as one Graphical Model [14]. But the existence of multiple objectives
makes discrete optimization challenging [20]. Even classical polytime problems
such as the shortest path or assignment problems become NP-hard (to find a
non-dominated solution) or even possibly #P-hard, when a set of states having
non-dominated costs (the so-called Pareto frontier) is sought [16].

The hardness of these problems means that they often cannot be exhaustively
solved. In a single objective minimization case, most algorithms will deliver an
incumbent solution and a global lower bound, providing a desirable a posteri-
ori optimality gap. In this paper, we are interested in providing similar services
when two objectives, each defined by a Graphical Model, need to be simultane-
ously optimized under hard constraints. To exploit the efficiency of existing GM
solvers [3], we reduce the problem of computing non-dominated states to a series
of single GM optimization problems.

Our approach lies in the family of two-phase methods [40, 41, 16], where a
first phase identifies all the solutions that can be found by solving a linear com-
bination of both objectives (called supported non-dominated states). This phase
reduces to a dichotomic series of optimization of a single objective combining
the two original objectives linearly [4] that can can be directly solved by any
discrete GM optimization solver. To identify non-supported solutions that may
exist inside the convex envelope of supported solutions, a second phase requires
to optimize one objective while the other is bounded, an approach usually de-
noted as the ε-constraint method [16]. In our algorithm, for a proper anytime
behavior, every single objective resolution is bounded in CPU time, as is the
maximum number of non-dominated states produced. In its first phase, the al-
gorithm produces both incumbent solutions defining an upper-bounding set and
a set of lower-bounding half-spaces. When this first phase finishes, the second
phase enumerates non-supported solutions as well as additional lower-bounding
rectangular regions. These two sets offer both incumbent solutions (in the upper
bounding set) as well as an optimality gap that can be represented graphically
and computed as a ratio of surfaces.

2 Background and notations

Definition 1. A Bi-Objective GM (BO-GM) N is a tuple (X,D,F = F1

⋃
F2)

where X is the set of variables, D the finite domains of each variable and F
the set of potential functions. Each function fS ∈ F associates a cost c to every
assignment of the variables in its scope S ⊆ X. F1 and F2 define the two joint
functions (objectives) Fi(x) =

∑
fS∈Fi

fS(x|S) where x is a complete assign-
ment of X and x|S denotes the projection of x to variables S.

We assume that the functions fS ∈ F may take infinite values, represent-
ing forbidden states. In probabilistic GMs such as Markov Random Fields, a
joint function Fi(x) is used to define a joint probability distribution pi(X =
x) ∝ exp(−Fi(x)) and the cost Fi(x) is called an energy. Minimizing Fi(x) is
equivalent to maximizing pi(x) (infinite energies define zero probabilities).
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For any state x, we denote by F̈ (x) the pair of costs (F1(x), F2(x)). Given
two pairs of costs or bi-costs c = (c1, c2) and c′ = (c′1, c

′
2), we say that c weakly

dominates c′, denoted as c ≼ c′, iff ∀i, ci ≤ c′i. c dominates c′, denoted as c ≺ c′

iff c ≼ c′ and ∃i, ci < c′i. This can be extended to states where x ≺ x′ iff
F̈ (x) ≺ F̈ (x′). We denote by P the set of all states with non-dominated bi-costs
or efficient assignments. The image F̈ (P ) is a set of non-dominated bi-costs of
states called the Pareto frontier. An efficient state x such that F̈ (x) = (c1, c2)

is said to be supported if ∃λ1, λ2 ∈ R+2 such that ∀c′ ∈ F̈ (P ), λ1c1 + λ2c2 ≤
λ1c

′
1 + λ2c

′
2. The bi-costs of supported efficient assignments are known to lie

on the frontier of the convex envelope of F (P ). They are said to be extreme
when located at extreme points of the convex envelope. On the other hand, non-
supported efficient assignments have costs in the interior of this convex envelope.

The Bi-Objective GM Optimization Problem (BO-GMO) is to find a set E
of efficient states such that F̈ (E) = F̈ (P ). In the worst case, the set F̈ (P ) (and
therefore E) can have a size that grows exponentially with the number of vari-
ables. Finding a single efficient state is NP-hard while counting the number of
elements in F̈ (P ) is #P -hard [14, 16]. Exploring the complete Pareto front is
therefore challenging and quickly infeasible. However, as in single GM optimiza-
tion, the Pareto front can be approximated by a lower and upper bound. The
global ideal cost, defined as the pair ι = (minx∈P F1(x),minx∈P F2(x)) defines
a bi-cost that weakly dominates the bi-cost of any state.

More generally, we define a lower-bound set L as any closed subset of R2

such that all states have a cost that is weakly dominated by some element of L
and is dominated by some element of the interior of L. By definition, the union
of two lower-bound sets is also a lower-bound set. In this paper, we consider
lower-bound sets defined as the union of simple polygonal regions (half-spaces
or rectangles). An upper bound set is a set U of bi-costs such that any efficient
state weakly dominates some element of U .

3 A Two-phase method for Bi-Objective GM
Optimization

Multi-objective optimization problems can be reduced to a series of single-
objective optimization problems, using so-called scalarization techniques. As our
method follows the two-phase scheme, it relies on two types of scalarizations. The
overall search algorithm is described as Algorithm 1 and its different phases are
outlined in Figure 1 and presented in detail below.

3.1 First phase

In the first phase, we focus on linear scalarization, which consists of aggregating
objectives into a weighted sum. This technique ensures that the optimal solution
of the resulting problem is a supported efficient solution for the original prob-
lem [16]. Moreover, as the linearly scalarized problem corresponds precisely to
a GM, it can be solved by ready-to-use solvers. We assume we have a discrete
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GM optimizer which is called by Solve (N,⊤, t) where N is a GM, ⊤ is a global
upper bound (the solver will only report solutions of cost lower than ⊤) and
t is a time-limit. In all cases, the solver returns a pair (x, lb) where x is the
best state identified in the time budget and lb is a global lower bound on the
joint function defined by N . The difference in cost between lb and the cost of x
defines a possibly non-zero optimality gap. When there is provably no solutions,
the solver returns x = ∅ and lb = ⊤.

Definition 2. Given a BO-GM (X,D,F = F1

⋃
F2) and two multipliers λ1, λ2 ∈

R2, its (λ1, λ2)-scalarized GM is a GM (X,D,F = λ1F1 + λ2F2) with a single
objective F = λ1

∑
fS∈F1

fS + λ2

∑
fS∈F2

fS.

When a linear scalarization of a given GM is solved, the single-objective
lower bound returned by the solver defines a half-space lower bound set over
feasible bi-costs, guaranteed to contain no feasible bi-cost. Let λ1, λ2 ∈ R2 and
lb be a lower bound on the optimum of the (λ1, λ2)-scalarized GM, we know
that lb ≤ λ1F1(x)+λ2F2(x) and the half-space λ1c1 +λ2c2 ≤ lb defines a lower
bound set.

To identify supported efficient states, we use the dichotomic enumeration ap-
proach [4]. We maintain a heap Q1 of lexicographically sorted pairs of supported
states. Q1 is initialized with a pair (x∗

1,x
∗
2) containing extreme states that re-

spectively minimize F1 and F2. At each iteration, we extract a pair of supported
states (x1,x2) and check if a new improved (extreme) supported state between
x1 and x2 exists (see Figure 1(a)) by solving the (λ1, λ2)-scalarization of the BO-
GM for λ1 = F2(x1)− F2(x2) and λ2 = F1(x2)− F1(x1) with an upper bound
of λ1F1(x1) + λ2F2(x1). To focus the exploration on the sparsest regions of the
Pareto frontier, we choose (x1,x2) such that ||F (x1)−F (x2)|| is maximum. An
optimal solution x of the problem, if any, results in new supported pairs (x1,x)
and (x,x2) added in Q1 for further exploration (Figure 1(b)). Whether the new
state is efficient or not, it is added in U as part of the upper bound set. However,
when there is provably no solution, (x1,x2) is stored for phase 2. In all cases,
the lower bound l found together with the multipliers λ1, λ2 represent a lower
bounding half-space which is stored as a triple ⟨λ1, λ2, l⟩ in a growing list L1

(Figure 1(c)). The algorithm proceeds until Q1 is emptied. If all sub-problems
have been solved to optimality, the convex envelope of P is determined.

3.2 Second phase

The linear scalarization method, however, cannot identify non-supported effi-
cient states and may potentially miss supported non-extreme efficient solutions.
In two-phase algorithms, starting from the pairs of supported efficient states
pushed in Q2 during the first phase, the second phase explores all pairs to
identify possibly non-supported states that may exist in between. This requires
restricting the search to a polygonal region where we can optimize one objective
(say F1) and bound the other objective F2 to reside between F2(x2) and F2(x1).
Additionally, an upper bound requires F1 not to be worse than F1(x2). Contrar-
ily to the first phase, a lower bound l on the optimum of this constrained problem
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Fig. 1. (a, left) In phase 1, given two efficient solutions (x1, x2), obj = λ1F1 + λ2F2 is
minimized. (b, center-left) If a supported efficient solution x is found, one recursively
considers two new subproblems given by (x1, x) and (x, x2). (c, center-right) if no
solution is found, the half-space region depicted in light cyan defines a lower-bounding
space. (d, right) In phase 2, after (c), objective F1 is minimized with a bounding
constraint on F2 (i.e., efficient solutions are searched inside the rectangle given by x1,
x2 and their nadir point ν). Any lower bound l of this problem defines a forbidden
rectangle region (light gray). The union of half-space and rectangle regions defines
a lower bounding set. If an efficient solution x is found, then the method explores
the subproblem given by (x, x2). Each solution found defines a region of dominated
solutions.

does not define a lower bounding half-space. It instead excludes all bi-costs in
the interior of the rectangle defined by 0 ≤ c1 ≤ l and F2(x2) ≤ c2 ≤ F2(x1).
This region is added as a triple (l, F2(x2), F2(x1)) to the set L2 of second-phase
lower-bounding regions. The new solution x, if any, is added to U . Moreover,
similarly to phase 1, when optimality has been proven, the remaining interval
pair (x,x2) is inserted in the list Q2 of pairs of efficient states for exhaustive
search (Figure 1(d)).

In the end, the union of the lower-bounding regions in L defines a lower-
bounding polygon. Similarly, each upper-bound set defined by a bi-cost F̈ (u)
with u ∈ U excludes a top-right quadrant with a corner in F̈ (u) and their
union defines an upper-bounding polygon. All our polygons are quadrangles,
and their union can be computed in time O(n log n) where n is the number
of regions [33, Chapter 7]. The surfaces sL and sU of the lower and upper
bounding regions can be computed using the Shoelace formula [9]. Together
with the overall surface so of the rectangle defined by the global ideal point with
coordinates (F1(x

∗
1), F2(x

∗
2)) and the opposite (F1(x

∗
2), F2(x

∗
1)) they define a

Pareto optimality gap as 1 − sL+sU
so

. Eventually, the states in U with a bi-cost
that lies on the frontier defined by sL are known to be efficient.

Theorem 1. Algorithm 1 is correct and has a bounded time complexity.

Proof. Correctness follows from the exactly identified lower bounding regions,
found by an exact solving method (Solve) in phases 1 and 2. The algorithm
outputs a guaranteed Pareto optimality gap in time bounded by m × t (input
parameters m and t).
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Function TwoPhase(N, t,m)
L1 := ∅; L2 := ∅; U := ∅; Q1 := ∅; Q2 := ∅;
/* Solve F1 within time t, store upper & lower bound */

1 x∗
1, l1 := Solve((X,D,F1),∞, t);

2 L1.push(⟨1, 0, l1⟩);
3 U.push(x∗

1);
/* Solve F2 within time t, store upper & lower bound */

4 x∗
2, l2 := Solve((X,D,F2),∞, t);

5 L1.push(⟨0, 1, l2⟩);
6 U.push(x∗

2);
/* Proceed if F1 and F2 have been solved to optimality */
if x∗

1 ̸= ∅ ∧ x∗
2 ̸= ∅ ∧ l1 = F1(x

∗
1) ∧ l2 = F2(x

∗
2) then

Q1 := {(x∗
1,x

∗
2)}

7 while Q1 ̸= ∅ and |L1| ≤ m do
/* Bisect by (λ1, λ2)-scalarization and store bounds */
(x1, x2) := pop-best(Q1);
λ1 := F2(x1)− F2(x2); λ2 := F1(x2)− F1(x1);
⊤ := λ1F1(x1) + λ2F2(x1) ;

8 x, l := Solve((X,D, (λ1F1 + λ2F2)),⊤, t);
9 L1.push(⟨λ1, λ2, l⟩) ;

10 U.push(x) ;
/* Push in Q1 only if solved to optimality */
if x ̸= ∅ and l = λ1F1(x) + λ2F2(x) then

11 Q1.push((x1, x)) ; Q1.push((x, x2)) ;
/* Push in Q2 when there is provably no solution */
if x = ∅ and l = ⊤ then

12 Q2.push((x1, x2))
/* Phase 2 if all phase 1 problems solved to optimality */

13 if |Q2| ̸= |U | − 1 then return L1, L2, U ;
14 while Q2 ̸= ∅ and |L1|+ |L2| ≤ m do

(x1, x2) := pop-best(Q2);
/* Optimize F1 with a bounding constraint on F2 */

15 x, l := Solve((X,D,F1

⋃
(F2(x2) + 1 ≤ F2 < F2(x1))), F1(x2), t) ;

16 L2.push(⟨l, F2(x2), F2(x1)⟩) ;
17 U.push(x) ;
18 if x ̸= ∅ and l = F1(x) then Q2.push((x, x2));

return L1, L2, U
Algorithm 1: Two-phase method. N is the BO-GM to optimize, t is a max-
imum CPU-time for any execution of Solve and m the maximum number of
calls to Solve.
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4 The higher-order GM bounding constraint

To optimize F1 while constraining F2, a dedicated bounding constraint needs
to be added to the discrete GM solver. The corresponding higher-order GM
bounding hard constraint takes as input a GM N = (X,D,F ) and two costs lb
and ub such that lb < ub. It enforces lb ≤ F (x) < ub for all assignments x of X.

To enforce this constraint during branch and bound search, since solving
N would be NP-hard, we rely on polynomial time convergent message passing
algorithms, also known as equivalence preserving soft local consistencies [13,
14]. We use soft local consistencies such as EDAC [19, 13]. When enforced on a
GM N , soft arc consistencies produce a lower-bound lbN (xi, a) on the joint cost
F if variable xi is assigned state a, for every state a of every variable xi. To
enforce F (x) < ub, one can simply prune any state a for any variable xi such
that lbN (xi, a) ≥ ub. Since these lower bounds eventually become exact on fully
assigned GMs, this guarantees that no solution violating F (x) < ub will ever be
produced while pruning branches as soon as lower bounds allow for.

To enforce lb ≤ F (x), we build the GM denoted as −N = (X,D,−F )
simply by taking the opposite finite costs in every cost function, i.e., ∀fS ∈ F
of N , we have f ′

S ∈ −F in −N such that ∀x : f ′
S(x) = −fS(x) if fS(x) < ∞

else f ′
S(x) = ∞. To enforce lb ≤ F (x), we prune a state a for a variable xi

as soon as the lower bound lb−N (xi, a) ≥ −lb. For the same reason as above,
this guarantees that no solution violating lb ≤ F (x) will ever be produced while
pruning branches.

Interestingly, if N does not contain any infinite cost (∀fS ∈ F , fS(x) < ∞),
if the current lower bound of N is greater than lb and the current lower bound of
−N is strictly greater than −ub then the higher-order GM bounding constraint
is always satisfied and can be ignored. This is checked after every variable as-
signment during branch and bound search. Notice that any state removal in
the subproblem N (resp. −N) is informed/channeled in −N (resp. N) and in
the main problem optimizing F1 and vice versa. By doing so, we synchronize
domains between the different GMs sharing the same variables.

When adding the higher-order GM bounding constraint, after having tried to
decompose all non-unary cost functions into a sum of unary cost functions [17],
we check if N contains only unary cost functions. In this case, the objective
is linear and the higher-order GM bounding constraint can be replaced by two
generalized linear constraints, without introducing any extra variables [30].

For variable ordering heuristics, we use the weighted-degree heuristic dom
wdeg [8].

For each higher-order GM bounding constraint, we maintain counters of conflicts
for all the non-unary cost functions inside the sub-problems N and −N . Their
sum gives a conflict weight associated with every variable in the scope of the
higher-order GM bounding constraint, used to compute the dom

wdeg heuristic.
It is important to note, as indicated in [23], that mono-objective preprocess-

ing techniques that do not preserve all optimal solutions cannot be used safely
in such a multi-objective optimization. This is the case for bounded variable
elimination [26] and dominance rules [18] which need to be deactivated when
the higher-order GM bounding constraint is processed.
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5 Related works

While systematic multi-objective optimization has been well explored in (inte-
ger) Linear Programming [16], there is far less algorithmic work for GMs. The
C-semiring framework with a partial order [7] can in principle represent such
problems, but algorithms are restricted to min-max instead of min-sum problems
in MRFs and CFNs and no implementation is available. More closely to what
we propose, MO-MBE [35] is a multi-objective mini-bucket-elimination based
higher-order constraint that computes a set of non-dominated solutions. How-
ever, the algorithm requires initial upper bounds on the optimum and has space
complexity in O(edz−1

∏p−1
j=1(ubj)) and time complexity in O(edz

∏p−1
j=1(ub

2
j ))

with e cost functions, p objectives, maximum bucket size z and initial upper
bounds ubi. This limits the approach to problems with small known initial up-
per bounds ubj . The algorithm is not incremental and is used as a constraint
in a constraint programming context. In the same context, dedicated Pareto
constraints have been developed using either a support-based algorithm or a
multi-valued decision diagram to filter dominated solutions in a multi-objective
branch and bound [21, 28]. Instead, our two-phase approach is based on single-
objective B&B and the bounding constraint helps to reason about costs.

The introduction of a bounding constraint on a function defined by a Graph-
ical Model, similar to our higher-order GM bounding constraint, has been ex-
plored for stochastic GMs [34] but the proposed bounds are not used for exact
bi-objective search.

Compared to the original two-phase method [40, 41], instead of depth-first
search, we used (hybrid) best-first branch and bound methods that offer any-
time global lower bounds [1], allowing to produce an anytime Pareto front gap
on difficult instances.1 The main novelty of our approach is to provide an any-
time Pareto front bounding within a generic two-phase method for (stochastic)
graphical models for the first time. The higher-order bounding constraint for
discrete GM optimization is another contribution.

6 Computational experiments

We implemented the two-phase method and the higher-order GM bounding con-
straint in C++ using the GM optimization solver toulbar2, winner of several
medals in constraint programming (XCSP3 2022 and 2023) and probabilistic
graphical model (UAI’2022) competitions. 2345 We used the Hybrid-Best First

1 In phase 2, we did not use a combination of objectives as in Test 3 with u3 bound [41]
but used only one objective to optimize and prune search nodes (see Fig 1.d obj
arrow). A comparison of these two bounding approaches remains to be done.

2 https://forgemia.inra.fr/samuel.buchet/tb2_twophase in release branch.
3 https://github.com/toulbar2/toulbar2 in master branch from version 1.2.1 including

a dedicated linear constraint propagation method [30].
4 https://xcsp.org/competitions
5 https://uaicompetition.github.io/uci-2022
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Search branch and bound method [1] with default parameters (function Solve in
Algorithm 1). Additional preprocessing techniques (Virtual Arc Consistency [13]
and Virtual Pairwise Consistency [29]) were also considered.

As a baseline competitive approach, we also implemented the two-phase
method replacing toulbar2 by the state-of-the-art commercial integer linear
programming solver cplex (version 22.1.1.0). We used default parameters ex-
cept for tolerance MIP gaps set to zero to ensure a complete search. The two
objectives were linearized using the local polytope [13] formulation (aka the tuple
encoding in [22], providing tighter bounds than a direct linear encoding):

min
∑

f{xi}∈F

a∈Di

f{xi}(a)xi:a +
∑

fS∈F,|S|>1
τ∈ℓ(S)

fS(τ)yS:τ (1)

s.t. ∀xi ∈ X,
∑
a∈Di

xi:a = 1 (2)

∀fS ∈ F, |S| > 1, xi ∈ S, a ∈ Di,
∑

τ∈ℓ(S)
τ |{xi}=a

yS:τ = xi:a (3)

where xi:a is a Boolean 0/1 variable taking value 1 if xi = a, similarly, yS:τ is a
non-negative continuous variable taking value 1 if tuple τ ∈ ℓ(S) is chosen (ℓ(S)
representing the Cartesian product of domains in S). The objective function (1)
minimizes the sum of the linear and nonlinear cost functions in one criterion
(F1 or F2), while constraints (2) enforce that each variable must be assigned
to exactly one value and constraints (3) enforce that the assignments of vari-
ables and tuples are compatible.6 After linearization, expressing the bounding
constraint on the second criterion becomes trivial. We just have to replace the
objective function (1) with two linear constraints using the lower and upper
bounds defined in TwoPhase (line 15).

Experiments were run on a single core of an Intel Xeon E5-2680 v3 2.5GHz
processor with 128GB of RAM, using Linux Debian 6.1.52-1 operating system.
The CPU time limit of Solve is t = 30 seconds per call (except for Protein where
t = 300 and SetCover where t = 3, 600) with a maximum number of Solve calls
m = 1, 000 (except for Knapsack where m = 2, 000). The total CPU time limit
is 1 hour.

6.1 Benchmarks

We experimented on six benchmarks. We took four existing benchmarks from
the multi-objective literature in Operations Research. We added two benchmarks

6 Further simplifications are made on the model, as done in [22]. First, original GM
variables with a domain size of 2 are translated into a single Boolean 0/1 variable
and no constraint (2). Secondly, a more-compact direct encoding of hard constraints
is used. For every forbidden tuple τ in fS, we have

∑
xi∈S(1− xi:τ |{xi}) ≥ 1.
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coming from Graphical Models. The first five have at least one linear objec-
tive function (F1 or F2), allowing to replace the GM bounding constraint with
linear constraints. The last benchmark has nonlinear objective functions and
constraints. All benchmarks, sources, and results are made publicly available. 7

Bi-objective vertex cover problem. In the weighted vertex cover problem
(VertexCover), the aim is to select a subset of vertices with a minimum total
weight in order to cover at least one extremity of every edge in a given graph.
We followed the same protocol as in [36], generating random graphs with N
vertices having two associated random costs cij ∈ [0, C], i ∈ {1, 2} for every
vertex j ∈ {1, . . . , N}, and E edges (randomly selected among N(N−1)

2 possible
ones). In the GM, there is a 0/1 variable xj for every vertex j and two cost
functions f i

j , i ∈ {1, 2} with f i
j(0) = 0, f i

j(1) = cij , representing the 2 objectives.
For every edge (k, l), a hard constraint enforces that xk or xl is equal to one. We
tested on 25 samples for every parameter combination of N ∈ {60, 70, 80, 90},
E ∈ {95, 250, 500, 950}, and C = 4, resulting in 400 bi-objective instances.

Bi-objective set cover problem. A related problem is the weighted set cover
problem (SetCover). Here, the aim is to select a subset of elements with mini-
mum total weight such that all the sets of a given list are covered by at least one
of the selected elements. We took 120 randomly-generated instances from [24]
composed of 5 instances for each combination of the following parameters: num-
ber of elements N ∈ {100, 150, 200}, number of sets M ∈ {20, 40, 60, 80}, fixed
set cardinality C ∈ {5, 10}.89 The integer cost values were chosen uniformly at
random in the range [1, 100]. In the GM, there is a 0/1 variable xj for every
element j and two cost functions f i

j , i ∈ {1, 2} with f i
j(0) = 0, f i

j(1) = cij , repre-
senting the 2 objectives. A hard constraint/clause is used to represent the fact
that at least one element is selected in every set.

Bi-objective knapsack problem. The Knapsack problem is to select a subset
of items such that the total weight of the selected items is less than a given ca-
pacity and the total profit associated to the items is maximized. Following [41],
we generated 20 bi-objective instances with N = 300 items ; weights wj and
profits pij (uncorrelated) being randomly chosen in [1, 100], and the capacity

W =
∑N

j=1 wj

2 . In the GM, there is a 0/1 variable xj for every item and two
cost functions f i

j , i ∈ {1, 2} with f i
j(0) = pij , f

i
j(1) = 0, representing the 2 objec-

tives in minimization. A hard linear constraint is added to enforce the capacity
constraint.

7 https://forgemia.inra.fr/samuel.buchet/tb2_twophase (release branch).
8 https://bitbucket.org/coreo-group/bioptsat
9 The current version of toulbar2 could not tackle large cardinality sets occurring in

the fixed element probability set benchmark (SetCovering-EP) of [24].
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Bi-objective warehouse location problem. The goal of the uncapacitated
warehouse or facility location problem (Warehouse) is to open a subset of N
warehouses to fulfill the demands of M stores. Each store must be served by
one warehouse. Following [5], in every objective i ∈ {1, 2}, we add a random
cost oij ∈ [C, 2C] for opening warehouse j. In the first objective, the cost c1jk for
serving store k by warehouse j is the Manhattan distance between k and l, stores
and warehouses being randomly placed in a square of side C. In the 2nd objective,
the corresponding cost c2jk is randomly chosen in [1, C]. In the GM, there are N
0/1 variables for the warehouses and M variables with domain size N indicating
which warehouse serves each store. Hard constraints ensure consistency between
the two sets of variables [19]. Bi-objective linear cost functions associated with
warehouses (resp. stores) are f i

j with f i
j(0) = 0, f i

j(1) = oij (resp. f i
k with f i

k(j) =

cijk). We tested on 20 samples for N = 6,M = 30.

Bi-objective computational protein design problem. Our main motiva-
tion is to solve the bi-criteria problem (Protein) of designing a protein with
minimum energy and a minimum number of different amino acid types, as done
heuristically in [43]. We used a data set of 109 protein backbones from [43, 32,
38] for benchmarking. The first objective is defined by a Deep Learned decom-
posable protein design scoring function [15] and the second one is the number
of different values used (a straightforward decomposition of NValue [6] as a GM
using one extra Boolean variable Ba per value a, constrained to take value 1 —
with associated cost 1 — if one variable uses a). This benchmark contains 109
instances with n ∈ [42, 100] amino acid positions, d = 20 domain values, and
e ∈ [643, 2275] (non-linear) cost functions.

Bi-objective UAI’2022 benchmark. Last, we experimented with UAI’2022
Final Evaluation MMAP benchmark (UAI2022).10 From the initial 100 instances,
we kept those that were solved by toulbar2 in less than 600 seconds. As in [34],
the second objective of each instance is obtained by adding Gaussian noise
N (µ = 0, σ = 0.1) to the original functions (in the exponential/probability do-
main), truncating to non-negative numbers.11 After the removal of instances with
no solution, we obtained 26 instances with n ∈ [225, 1997] variables, d ∈ [2, 21]
domain size, e ∈ [578, 3334] cost functions per objective, and max. arity 5.

6.2 Experimental Results

We present a summary of our comparative results in Table 1.12 The comparison
measure is the number of instances completely solved per class of benchmark.
10 https://www.ics.uci.edu/ dechter/uaicompetition/2022/FinalBenchmarks/MMAP.zip
11 Zero probabilities lead to forbidden tuples after the required − log(·) transform.
12 Detailed results are available in Supplementary Materi-

als. See https://forgemia.inra.fr/samuel.buchet/tb2_twophase/-
/tree/release/results/supplementals.pdf.
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Table 1. For each of the 6 benchmark classes, number of solved instances per method
(in parenthesis, average CPU-time in seconds when all instances have been solved).
Tested methods are toulbar2: two-phase method using toulbar2 ; tb2 no kp: two-
phase method using toulbar2 without transforming the GM bounding constraint into
linear constraints ; tb2 no pre: two-phase method using toulbar2 without extra pre-
processing techniques ; cplex: two-phase method using cplex ; RL: results from [36] ; J:
from [24] ; C: results from [11]; BS: from [5]. N/A: method not applicable or result not
available.

Benchmark # toulbar2 tb2 no kp tb2 no pre cplex RL/J/C/BS
VertexCover 400 400 (3.1s) 400(0.5s) N/A 400 (1.6s) RL: 400(10.2s)
SetCover 120 44 N/A N/A 120(47.3s) J: 40
Knapsack 20 0 N/A N/A 20 (40.2s) C: 20 (41.7s)
Warehouse 20 20 (2.5s) 20 (33.6s) N/A 20 (4.8s) BS: 20 (186.0s)
Protein 109 66 69 46 0 N/A
UAI2022 26 26(23.8s) N/A 18 21 N/A

The solving task is to find a single representative state for each point of the
exact Pareto front. To break ties when all the instances are solved, we use the
average CPU-time.

We compare our two-phase method (TwoPhase using toulbar2) with the same
method using cplex and with other approaches when directly available:

– for VertexCover, a multi-objective depth-first branch and bound (MO-BB)
using multi-objective minibucket elimination (MO-MBMOMBE) (experiments
were made on a Pentium IV at 3GHz with 2GB) [36] ;

– for SetCover, a Max-SAT based hybrid method between core-guided and
SAT-UNSAT search methods (MSHybrid) [24] (experiments made on Intel
Xeon E5-2670 at 2.6GHz with 64GB and 1.5-hour CPU-time limit) ;

– for Knapsack, a two-phase method including dedicated instance preprocess-
ing and where the second phase is a branch and bound with an adaptive
branching heuristic (UCB) [11, 12] (experiments made on Intel Xeon E5620
at 2.40GHz with 6GB) ;

– for Warehouse, a multi-objective hybrid branch and bound combined with
scalarization and using Bensolve/GLPK for solving the linear relaxations
(M2.1.1.2) (experiments made on an Intel i7-8700 at 3.2GHz with 32GB) [5].

Notice that some reported experimental results (VertexCover, Warehouse) were
performed on older machines, so the comparison should be taken with caution.

For two of the Operations Research benchmarks, TwoPhase using toulbar2
has similar performance as TwoPhase using cplex, toulbar2 being twice faster
(resp. slower) on Warehouse (resp. VertexCover). However, it is clearly domi-
nated by cplex on SetCover and Knapsack. Still, it remains faster than dedi-
cated multi-objective branch and bound approaches, being 3.3 (resp. 74) times
faster than MO-MBMOMBE (resp. M2.1.1.2) on VertexCover (resp. Warehouse).
It also solves more SetCover instances than Max-SAT MSHybrid in less CPU-
time (we set a 1-hour limit instead of 1.5 hours for MSHybrid to compensate
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for the difference in CPU frequencies). On Knapsack, TwoPhase using cplex is
as efficient as a dedicated multi-objective branch and bound (UCB B&B [11]).

For Graphical Model benchmarks, TwoPhase using toulbar2 got much su-
perior performance than with cplex. It solves 63% of the Protein benchmark
whereas none were solved by cplex in less than 300 seconds per internal Solve
call. The largest solved instance by our approach contains 99 amino-acids. 13

The GM bounding constraint allows us to solve all the 26 UAI’2022 selected
instances within the local 30-second CPU-time limit. In comparison, TwoPhase
using cplex could solve only 21 instances. Using a longer 300-second time limit
(detailed results in supplementary materials), TwoPhase using cplex was able
to solve all the 26 instances requiring x7 more time (166.1 seconds) than with
toulbar2 (23.8 seconds) on average. We noticed that cplex can still be faster (up
to 2.7 times) than toulbar2 for 6 instances (Grids_26, or_chain_8/22/41/60,
pedigree1) showing that both approaches can be worthwhile for this benchmark.

Impact of the GM bounding constraint. We tested the impact of removing
the transformation of the GM bounding constraint into linear constraints when
one of the original objectives is linear.14 The fourth column in Table 1 shows the
effect. Surprisingly, it improves the results on VertexCover (being x6.2 faster with
x11.75 fewer search nodes in Phase 2) and Protein (solving optimally 3 more in-
stances) whereas it significantly deteriorates on Warehouse. This behavior shows
the complex interactions between the cost functions on the performance of the
solver.

Impact of the preprocessing. We also tested the impact of preprocessing
techniques. In the Protein benchmark, applying virtual arc consistency (VAC) [13]
in preprocessing was shown to be effective [39]. It solves 66 instances instead of
46 without enforcing VAC. 15 Another stronger preprocessing already used in the
UAI’2022 competition is to apply virtual pairwise consistency (VPWC) with ad-
ditional zero-cost ternary cost functions [29] (options -A -pwc=-1 -t=1). Because
this preprocessing can be quite time-consuming (2× 0.48 seconds on average for
UAI2022, up to 5.3 seconds on or_chain_41), we applied it on every objective
only once before the two-phase method starts.16 On UAI2022, using VPWC al-
lows to solve 8 more instances than without it. We applied these preprocessing
techniques on the GM benchmarks in the following part.

Two-phase method analysis and anytime Pareto fronts. In Table 2 we
report a more detailed analysis of TwoPhase using toulbar2. We compared the
13 2pko_0009_multi having 15 states in the Pareto front found in 1,723 seconds with

37 Solve calls
14 We could not test it for SetCover and Knapack due to a limitation in toulbar2.
15 We also tested running VAC (option -A) in preprocessing at every Solve, instead of

only once on the quadratic objective before running the two-phase method, but it
solved optimally one less instance (65).

16 CPU-times reported in Tables 1 and 2 do not include this preprocessing time.
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Table 2. For each of the 6 benchmarks, number of tested instances, average CPU-time
(seconds) and fraction spent in phase 1, average number of efficient states and fraction
found in phase 1, average number of calls to Solve and fraction in phase 1, number of
problems solved to optimality (full Pareto front) and after phase 1 (supported Pareto
front), and final optimality gap.

Benchmark # Time (s) p1% Sols p1% Solve # p1% opt opt1 gap%
VertexCover 400 3.1 5.6 8.0 57.2 16.0 59.8 400 400 0.000
SetCover 120 2411.1 5.6 28.9 38.5 46.3 46.3 44 119 1.462
Knapsack 20 2040.7 0.1 486.1 10.6 669.4 15.4 0 20 0.276
Warehouse 20 2.5 3.0 97.8 17.8 135.5 25.1 20 20 0.000
Protein 109 1334.5 82.5 12.7 84.6 32.1 67.9 66 73 14.766
UAI2022 26 23.8 6.8 14.0 45.5 24.9 47.8 26 26 0.000

first and second phases in terms of CPU-time spent, number of Pareto assign-
ments found, and number of Solve calls. The ratio of supported efficient states
was around 50% except for Warehouse (17.8%), Knapsack (10.6%), and Protein
(85%). Knapsack had also the largest total number of efficient states (up to 851
for n = 300 items, average optimality gap of 0.276).

Protein is the only benchmark class where phase 1 takes more time and
Solve than phase 2 (which finds two non-supported efficient states on average).
The Pareto front of real protein dpbbss_multi (solved in 244.3 seconds by our
approach) is given in Fig. 2 (Left). Two solutions of dpbbss_multi with F2 =
6 or 5 look very attractive compared to the F2 = 7 identified in [43]. Fig. 2
also shows the pareto front boundings of an UAI Promedas instance solved to
optimality (Center) and partially (Right), highlighting the anytime behaviour of
the method.

Fig. 2. Three examples of Pareto front bounding: (Left) Protein dpbbss_multi (opti-
mal front), (Center) UAI2022 Promedas or_chain_60.fg.Q0.5.I3 (optimal), and
(Right) UAI2022 Promedas or_chain_60.fg.Q0.5.I3 (optimality gap of 5.164%).
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7 Conclusion

In this paper, motivated by the resolution of bi-objective protein design prob-
lems [43], we introduce an original anytime multi-objective two-phase method for
solving discrete probabilistic and deterministic Graphical Models optimization
problems. Our algorithm relies on a new higher-order GM bounding constraint
exploiting Soft Arc Consistencies, a family of convergent message passing al-
gorithms initially introduced for solving the Weighted Constraint Satisfaction
Problem [37, 13]. Our experimental study, using a variety of real protein design
problems as well as Operations Research and UAI’2022 evaluation benchmarks
shows that our approach can outperform the state-of-the-art ILP solver CPLEX.
At the crossroad of Probabilistic Reasoning and Operations Research, our algo-
rithm offers a first effective answer to bi-objective discrete Graphical Model
optimization, a family of problems that could possibly further benefit from ad-
ditional multi-objective OR technology [20].
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