
HAL Id: hal-04562586
https://hal.inrae.fr/hal-04562586

Submitted on 29 Apr 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Unmanned aerial vehicle imagery prediction of sorghum
leaf area index under water stress, seeding density, and

nitrogen fertilization conditions in the Sahel
Joseph Sékou B. Dembele, Boubacar Gano, Modou Mbaye, Mohamed

Doumbia, Léonce Lamine Dembele, Mamoutou Kouressy, Niaba Teme, Michel
Vaksmann, Diaga Diouf, Alain Audebert

To cite this version:
Joseph Sékou B. Dembele, Boubacar Gano, Modou Mbaye, Mohamed Doumbia, Léonce Lamine Dem-
bele, et al.. Unmanned aerial vehicle imagery prediction of sorghum leaf area index under water
stress, seeding density, and nitrogen fertilization conditions in the Sahel. Agronomy Journal, In press,
�10.1002/agj2.21547�. �hal-04562586�

https://hal.inrae.fr/hal-04562586
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Received: 14 August 2023 Accepted: 12 January 2024

DOI: 10.1002/agj2.21547

O R I G I N A L A R T I C L E

S p e c i a l S e c t i o n : M a c h i n e L e a r n i n g i n A g r i c u l t u r e

Unmanned aerial vehicle imagery prediction of sorghum leaf area
index under water stress, seeding density, and nitrogen
fertilization conditions in the Sahel

Joseph Sékou B. Dembele1,2,3 Boubacar Gano1,3 Modou Mbaye1

Mohamed Doumbia2 Léonce Lamine Dembele2 Mamoutou Kouressy2 Niaba Teme2

Michel Vaksman2,4 Diaga Diouf3 Alain Audebert5

1Centre d’Etude Régional pour l’Amélioration de l’Adaptation à la Sécheresse (CERAAS), Institute Sénégalais de Recherches Agricoles (ISRA), Route de
Khombole, Thies, Senegal
2Institut d’Economie Rurale (IER), LABOSEP de Sotuba, Bamako, Mali
3Laboratoire Campus de Biotechnologies Végétales, Département de de Biologie Végétale, Faculté des Sciences et Techniques, Université Cheikh Anta Diop
(UCAD), Dakar-Fann, Dakar, Senegal
4CIRAD, UMR AGAP Institut, Montpellier, France
5UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France

Correspondence
Joseph Sékou B. Dembele, Centre d’Etude
Régional pour l’Amélioration de
l’Adaptation à la Sécheresse (CERAAS),
Institut Sénégalais de Recherches Agricoles
(ISRA), Route de Khombole, Thies, BP
3320, Senegal.
Email: joseph.dembele@yahoo.fr

Assigned to Associate Editor David Clay.

Funding information
CIRAD

Abstract
Sahelian Africa must meet the challenge of providing enough food to meet its grow-

ing population. Therefore, novel breeding and intensive production methods are

needed to mitigate this challenge. The objective of this study was to calibrate and

validate sorghum varieties leaf area index (LAI) values estimated from Unmanned

Aerial Vehicle (UAV) at different growing seasons in Senegal and Mali. To achieve

this objective, four experiments were conducted with 14 sorghum (sorghum bicolor)

varieties between 2017 and 2019. At the study sites, LAI was measured and crop

reflectance was measured with a multispectral camera mounted on a UAV. The study

showed that normalized difference vegetation index (NDVI) and simple ratio (SR)

were highly correlated to the area index. The results of validation model revealed

a better prediction of measured LAI from NDVI (R2 = 0.92) and SR (R2 = 0.89)

vegetation indices in 2019 dry season in Senegal. In addition, the LAI predictions

for Mali from NDVI (p < 0.01) and SR (p < 0.01) were highly correlated. Findings

showed that vegetation indices can be used to estimate LAI in Mali and Sahel.

Abbreviations: LAI, leaf area index; NDVI, normalized difference
vegetation index; SR, simple ratio; UAV, unmanned aerial vehicle.

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited and is not used for commercial purposes.
© 2024 The Authors. Agronomy Journal published by Wiley Periodicals LLC on behalf of American Society of Agronomy.

1 INTRODUCTION

Agricultural production must double to meet the world’s food
demand, which is expected to exceed 9 billion people before
2050 (Ray et al., 2013). Achieving this goal for sub-Saharan
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Africa will be very difficult (Mclntyre et al., 2009). In the
Sahelian region, low nitrogen availability, lack of resilient
improved varieties, adapted seeding density, and agronomic
practices are the major factors limiting sorghum (sorghum
bicolor) production (Gondal et al., 2017; Melaku et al., 2017;
Smale et al., 2018). Therefore, to increase the cereal produc-
tion per unit area, it is necessary to select varieties with high
yield potentials under adverse climatic conditions (Chawade
et al., 2018, 2019; Leakey et al., 2009). Breeding performant
varieties is probably the most effective way to increase crop
yields and solve the food security problem in the African-
Sahelian region. To speed up the breeding programs, breeders
must develop techniques to accurately collect traits of interest
to discriminate variation among cultivars (Wezel et al., 2014).

However, many breeding programs rely on laborious man-
ual plant height and leaf area index (LAI) data collection to
select cultivars for additional research (Chapman et al., 2014).
New phenotyping methods offer a non-destructive rapid
imagery-based phenotyping approach at low cost (Gracia-
Romero et al., 2017; Yang et al., 2017). These technologies
provided high-quality images to predict growth traits and
cereal yields under various growing conditions (water stress,
mineral fertilization, and seeding density) (Fiorani & Schurr,
2013; Gracia-Romero et al., 2018; Shafian et al., 2018). The
LAI is defined as the total leaf area per unit ground area. It
provides information that is crucial for understanding photo-
synthesis, evapotranspiration, primary production, mass, and
energy exchanges at different scales (Soudani et al., 2001).
The LAI is a key variable that is strongly associated with
crop canopy, crop growth, light energy interception, and grain
yield (Huang et al., 2016; Towers et al., 2019). According to
Jin et al. (2013), LAI is a phenotypic trait that best explains
crop yield (grain and straw) and is functionally related to
the spectral reflectance of the crop canopy. Previous work
demonstrated that remote sensing can be used to predict
LAI in maize (Zea mays L.) and wheat (Triticum aestivum
L.), but little research has been done on sorghum (Potgieter
et al., 2017). Therefore, this paper fills this gap, thus aimed
to calibrate and validate the LAI at different cropping sea-
sons using unmanned aerial vehicle (UAV)-based vegetation
indices in the Sahel. Specifically, we determined the relation-
ships between UAV-based normalized difference vegetation
indices (NDVI) and simple ratio (SR) with LAI for sorghum
cultivars under water stress, nitrogen fertilization, and seeding
density. We also studied the cultivars response under nitrogen
fertilization and seeding density.

2 MATERIALS AND METHODS

2.1 Study sites

Two calibration trials were conducted in the 2017 rainy and
2018 dry seasons (Figure 1A) at Bambey, Centre National
de Recherche Agronomique (CNRA) (14˚42′N; 16˚28′W),

Core Ideas
∙ Normalized difference vegetation index and simple

ratio were highly correlated to the leaf area index.
∙ Leaf area index was predicted from normalized

difference vegetation index and simple ratio.
∙ Diversity among varieties was studied from nor-

malized difference vegetation index and simple
ratio.

Senegal. Bambey climate is of the Sudano-Sahelian type,
characterized by a long dry season from November to June
and a short rainy season from July to October. The monthly
average temperature and cumulative annual rainfall in 2017
were 30˚C and 436.7 mm respectively. In 2018, the monthly
average temperature recorded during the dry season was 28˚C.
Experiments in 2017 rainy and 2018 dry seasons were con-
ducted on sandy loam soils (97.7%) with a high sand content
(Gano et al., 2021). For model validation, two experiments
were conducted in 2019 dry season at the CNRA of Bam-
bey in Senegal and 2018 rainy season at Station de Recherche
Agronomique de Sotuba (SRAS) in Mali (12˚39′ N; 07˚56′W)
(Figure 1B). The 2019 trial in Bambey was conducted on a
sandy-silty soil type (95.7%) with an average monthly temper-
ature of 29˚C. The climate of Sotuba is the Sudano-Sahelian
type with a rainy season from May to October according to the
crop zones. Sotuba’s cumulative annual rainfall and monthly
average temperature recorded in 2018 were 840 mm and 27˚C
respectively. Trial was conducted on a sandy-silty soil type
(96.84%) with a low clay content of 3.85% (Dembélé et al.,
2020).

2.2 Plant materials

In Bambey, 10 contrasted sorghum varieties for different
agro-morpho-physiological traits were used in 2017 rainy and
2018 dry seasons for model calibration. Varieties include
three hydrids (FADDA, PABLO, and NIELENI) and seven
open-pollinated improved cultivars (SOUMBA, GRINKAN,
SOUMALEMBA, JAKUMBE, SAMSORG17, FAOUROU,
and F20-20) (CEDEAO-UEMOA-CILSS, 2016; Gano et al.,
2021). These varieties originated from Mali, Nigeria, and
Senegal and represent the diversity of sorghum grown in West
Africa. For model validation, 10 sorghum varieties were con-
ducted in 2019 dry season in Bambey, Senegal, under different
water regimes (irrigated and stressed) for model calibration.
To test model validations in another environment, data were
collected in 2018 rainy season at Sotuba, Mali, under two
different seeding densities (26,600 plants ha−1 and 53,300
plants ha−1) and three nitrogen fertilization doses (0 kg ha−1,
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DEMBELE ET AL. 3

F I G U R E 1 Sites of the experiments. (A) Bambey (Senegal) in 2017 rainy and 2018 and 2019 dry seasons; (B) Sotuba (Mali) in 2018 rainy
season.

89 kg ha−1, and 178 kg ha−1) on eight reference sorghum vari-
eties for intensification, were used. Hybrid varieties used were
(FADDA and PABLO), open-pollinated varieties (SOUMBA,
GRINKAN, C2_007-03, C2_075-15, and A12-79) and the
local variety (TIEBILE) (Dembélé et al., 2021). Varieties
used across Bambey and Sotuba were FADDA, PABLO,
SOUMBA, and GRINKAN.

2.3 Experimental designs and trial
managements

2.3.1 Calibration trials

The experimental design used at Bambey in 2017 rainy sea-
son was a split-plot with nitrogen as main factor at three
levels (0 kg ha−1, 100 kg ha−1, and 200 kg ha−1) and 10
sorghum varieties replicated thrice. Sowing distances were
0.60 m between rows and 0.30 m between hills on the row.
Each plot was 4.5-m long and 6.60-m wide. Thinning was
performed 15 days after sowing to one plant per hill. Basal
application of 150 kg ha−1 granulated triple superphosphate
(0–45–0) was applied prior to sowing. Urea (46–0–0) was
applied in two splits, after thinning (50%) and before panicle
initiation (50%). In 2018 Bambey dry season trial, a split-plot
design with three replicates was used. There were two factors,
including water regime (irrigated and stressed) as main factor
and 10 sorghum varieties used in 2017. For non-stressed plots,
about 50 mm (2 by 25 mm) of plot was supplied per week
until physiological maturity. In stressed plots, the irrigation
was withheld 30 days after sowing at vegetative stage for 3
weeks. For mineral fertilization, 150 kg ha−1 of NPK (17–
17–17) was applied homogeneously after sowing and 50 kg

ha−1urea (46–0–0) was applied at panicle initiation period.
Two manual weedings were carried out in each experiment.

2.3.2 Validation trials

The 2019 dry season trial was a repeat of the 2018 dry sea-
son study in Bambey, Senegal. The 2018 rainy season trial
in Sotuba, Mali, was conducted following a split-split-plot
design with three factors and three replicates. Two seeding
densities (26,600 plants ha−1 and 53,300 plants ha−1) and
three nitrogen levels (0, 89, and 178 kg ha−1) were applied
on eight sorghum varieties in Mali. Sowing distances were
0.75 m between rows and 0.25 m (high) and 0.50 m (low)
density between hills on the row. Experimental unit was 18
m2 with six rows length of 4.5-m long and 4-m wide each.
The experimental soil was plowed to approximately 30-cm
depth. The sowing was done on June 18, 2018 and July 5,
2019 after a rainfall of about 30 mm at a rate of five to six
seeds per hill (i.e., 8–10 kg of seed ha−1). Thinning was per-
formed 15 days after sowing to one plant per hill (density:
26,600 plants ha−1 and density: 53,300 plants ha−1). Urea
(46–0–0) was applied 3 weeks after thinning (50%) and before
panicle initiation (50%). Basal application of 146 kg ha−1 of
phosphate naturel de Tilemsi (PNT) (0–31–0) granulated was
homogeneously made in all plots before sowing. Two manual
weedings were conducted in each experiment.

2.4 Field data collection

LAI measurements were conducted at late flowering (two
sampling dates) in 2017 and 2018 in Senegal. For model
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4 DEMBELE ET AL.

T A B L E 1 Periods of image acquisition by drone during the different experiments in Senegal and Mali.

Trials Stages Days after flight No. of plots
Rainy season 2017 (Senegal) Vegetative 35 90

Vegetative 49 90

Flowering 63 90

Flowering end 77 90

Maturity 91 90

Dry season 2018 (Senegal) Vegetative 40 60

Vegetative 47 60

Flowering 61 60

Flowering end 75 60

Maturity 89 60

Dry season 2019 (Senegal) Flowering 89 60

Rainy season 2018 (Mali) Maturity 100 144

F I G U R E 2 Drone (A), red, green, and blue (RGB) (B), and
multispectral (C) cameras used in the image capture during the
experiments in Senegal and Mali.

validation, LAI measurement was performed during flower-
ing in the 2019 dry season at Senegal and maturity during the
2018 rainy season in Mali. LAI was measured with a Sun-
scan Septometer (Delta-T Device Ltd.) following the method
of Wilhelm et al. (2000). All field LAI measurements were
immediately following the UAV flights (Table 1).

2.5 UAV data acquisition

Five UAV flights were conducted between crop emergence
and flowering in 2017, 2018, and 2019 in Senegal and Mali
(Table 1). The UAV (Figure 2A) was a hexacopter (FeHex-
acopterV2, Mikrokopter) equipped with two cameras, red,

green, blue (RGB) (Figure 2B) and multispectral (Figure 2C),
which were consecutively fixed on board at each flight. The
visible camera used was an RGB ILCE-6000 digital cam-
era (Sony Corporation) with a resolution of 24.3-megapixel
(6000 × 4000 pixels), equipped with a 60-mm focal length
lens. To minimize the blurring effect and noise in the images,
the camera was set on speed priority (1/1250 s) and auto ISO
mode. The images taken were recorded in JPEG format on a
secure digital (SD) memory card. The second camera was a
multispectral camera (www.hiphen-plant.com) equipped with
an 8-mm focal length lens and an integrated GNSS system.
The multispectral camera acquires 1280 × 960-pixel images
at six independent spectral bands (450, 530, 560, 675, 730,
and 850 nm) with a spectral resolution of 10 nm. Images were
stored in a Tag Image File Format (TIFF) format. The Kopter
Tools application software was used to automatically design
the flight plan and schedule the image capture to cover the
entire trial area and ensure an 80% overlap between images.
To reduce the effects of ambient light conditions, we lim-
ited flight to clear and cloudless days between 10:00 and
12:00 a.m. (Greenwich Mean Time) allowing plants shadow
effect reduction. Flight was made at an altitude of 25 m above
ground level with a speed of 4.5 m s−1. In this configu-
ration, we obtained a ground resolution of around 0.6 cm
pixel−1 for RGB camera and 2.7 cm pixel−1 for multispectral
camera. To obtain accurate reflectance values during image
processing, a radiometric calibration target, a carpet panel of
(2.5 m2) was placed horizontally on the ground 2 m from the
sorghum plants to limit proximity effects. Nine gray coloreds
ground control points (GCPs) were uniformly distributed at
different angles of the field area with fixed position for all
flights throughout the experiment and were surveyed using
Precis BX305 Real Time Kinematics (RTK) GNSS unit (Ter-
sus GNSS Inc.) (Gano et al., 2021; Jay et al., 2019; Roupsard
et al., 2020).
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DEMBELE ET AL. 5

2.6 Image processing and extraction of
vegetation indices

After UAV flights, the images were concatenated to generate
a geo-referenced ortho-image multilayer using Agisoft Photo-
Scan (PhotoScan Professional 1.4; Agisoft LLC). Radiomet-
ric calibration and geometric correction of the ortho-image
were done with the Agisoft PhotoScan software according
to Roupsard et al. (2020). The delimitation of plots on geo-
referenced ortho-image were conducted using geographic
information software QGIS (version 3.2), which allowed the
generation of a shapefile with geographical information of the
different plots. The extraction of each vegetation index aver-
age values for each elementary plot was conducted using the
R software (packages, Raster, sf). Plant indices computed for
this study were the NDVI and SR following the formulas of
Equations (1) and (2). Generated data were stored in CSV
format for comparison with field data (Rouse et al., 1973;
Gitelson & Merzlyak, 1998).

NDVI =
ρNIR − ρR
ρPIR + ρR

(1)

SR = ρNIR∕ρR (2)

2.7 Statistical analysis

Statistical analyses were performed using software R, ver-
sion 3.6.2 in environment (Venables et al., 2016). Regression
models were developed to calibrate and validate the LAI
using NDVI and SR vegetation indices calculated from UAV
images. The calibration involved data from 690 plots col-
lected in 2017 rainy and 2018 dry seasons in Senegal (field
and UAV data). A first model validation was performed
on LAI data from 60 plots collected at flowering in the
2019 dry season in Senegal. The second validation of the
model involved LAI data from 120 plots collected at maturity
in the 2018 rainy season in Mali. Coefficient of Deter-
mination (R2) and root mean square error (RMSE) were
calculated to assess the performance of regression models.
The R2 and RMSE were determined using the following
equations:

𝑅2 = 1 −
∑𝑛

𝑖=1(𝑦 − ŷ)2
∑𝑛

𝑖=1(𝑦 − ȳ)2
(3)

RMSE =

√√√√ 𝑛∑
𝑖=1

(
𝑦 − ŷ

)2
𝑛

(4)

where n is the number of observations; i is the ith measured
value; y is the measured value; ŷ is the estimated value by
UAV; and ȳ is the average of measured value.

Measured LAI and predicted LAI data calculated from
NDVI and SR in 2018 rainy season were subjected to anal-
ysis of variance (ANOVA) using the split-split-plot model
developed by Carmer et al. (1989). Treatments means were
separated using least significant difference (LSD) at the 5%
threshold of probability.

3 RESULTS

3.1 Model calibration

For model’s calibration purpose, we used data collected in
Senegal in 2017 rainy and 2018 dry seasons to depict the tem-
poral evolution of plant LAI trait and UAV derived indices to
seek for relationships.

3.1.1 Growth dynamics of LAI, NDVI, and
SR

LAI values increased gradually from first to fifth mea-
surement in 2017 rainy and 2018 dry, seasons in Senegal
(Figure 3). Maximum LAI values were reached at flowering
in 2017 (77 days after sowing [DAS]) and 2018 (75 days after
sowing, DAS) and decreased with leaf senescence in early
maturity (91 DAS in 2017 and 89 DAS in 2018). This reduc-
tion was more pronounced in 2017 rainy season compared to
2018 dry season (Figure 3). Overall, LAI value was higher
in dry season than in the rainy season. The NDVI and SR
vegetation indices in 2017 rainy season and 2018 dry sea-
son showed identical growth dynamics trends to those of LAI
evolution measured at different UAV flight dates. The peak
for NDVI and SR was obtained at the end of flowering in
both years experiments, but with slightly decreased in dry
season. However, a significant drop in NDVI and SR was
observed in rainy season (Figure 3). This result shows that
NDVI and SR vegetation indices evolution follows measured
LAI progression.

3.1.2 Relationship between vegetation
indices and LAI

A linear regression model was performed to establish rela-
tionships between vegetation indices and measured LAI
(Figure 4). The regression models used were significant at
the 1% threshold (Table 2). The NDVI showed a strong rela-
tionship (R2 = 0.72) with the measured LAI (Figure 4A) and
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6 DEMBELE ET AL.

F I G U R E 3 Evolution of leaf area index (LAI), normalized difference vegetation index (NDVI), and simple ratio (SR) at different measurement
dates (field and drone flight) in 2017 rainy and 2018 dry seasons in Bambey, Senegal.

T A B L E 2 Regression models developed between normalized difference vegetation indices (NDVI), simple ratio (SR), and leaf area index
(LAI) measured in 2019 dry season in Senegal and 2018 rainy season in Mali.

Test Vegetation indices
Sample
numbers (n) Traits Regression models R2 RMSE p-value

Calibration NDVI 690 LAI y = 8.697x2 − 3.026x + 0.793 0.72 0.3 <0.001

SR 690 y = −0.009 × 2 + 0.532x − 0.185 0.74 0.28 <0.001

Validation 2019 NDVI 60 y = 0.825x + 0.149 0.92 0.31 <0.001

SR 60 y = 0.858x + 0.219 0.89 0.37 <0.001

Validation 2018 NDVI 120 y = 0.535x + 1.316 0.61 0.4 <0.01

SR 120 y = 0.402x + 1.685 0.58 0.45 <0.01

RMSE value was 0.30 (Table 2). The NDVI values ranged
from 0.06 to 0.82. The SR was correlated to measured LAI
with an R2 of 0.74 (Figure 2C) and a RMSE of 0.28 (Table 2).
These values ranged from 1.03 to 11.15 (Figure 4C). LAI val-

ues ranged from 0.07 to 5.7 among varieties, developmental
stages and years, respectively. The calibration model gave a
better regression between calculated LAI and measured LAI
(Figure 4B,D).
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DEMBELE ET AL. 7

F I G U R E 4 Calibration models between measured leaf area index (LAI), normalized difference vegetation indices (NDVI), and simple ratio
(SR) (A and C); and between measured LAI and calculated LAI (B and D) in 2017 rainy and 2018 dry seasons in Bambey, Senegal. R2, coefficient of
determination.

3.2 Models’ validation

Data collected during the 2018 Mali rainy season and 2019
Senegal dry season were used for validation.

3.2.1 Prediction of the LAI from vegetation
indices

Figure 5 showed linear regression between predicted LAI
and measured LAI at Bambey (Senegal) and Sotuba (Mali).
The R2 for model validation was calculated and the ability
of vegetation indices to predict measured LAI was identified
by the RMSE. The relationship between measured LAI and
NDVI and SR in Senegal was highly significant (p < 0.001,
R2 = 0.92, RMSE = 0.31) for NDVI and (p < 0.001,
R2 = 0.89, and RMSE = 0.37) for SR (Figure 5A,B; Table 2).
In addition, the prediction accuracy between predicted LAI
and measured LAI at Sotuba in Mali was acceptable for
NDVI (p < 0.01, R2 = 0.61, and RMSE = 0.40) and SR
(p < 0.01, R2 = 0.58, and RMSE = 0.45) (Figure 5C,D;
Table 2). Prediction models performed less in Mali due to
overestimation and under-estimation of the models at the
beginning of the vegetative and maturity stages respectively
(Figure 5C,D).

3.3 Variation in seeding density, nitrogen,
and varieties based on LAI and vegetation
indices in 2018 rainy season in Mali

ANOVA of data from the model validation under seed-
ing density and nitrogen fertilization was performed. It was
based on 2018 rainy season data collected from 120 plots at
Sotuba. Results showed a significant variety effect on mea-
sured LAI and calculated LAI from NDVI (LAI_NDVI) and
SR (LAI_SR) (p < 0.001). However, no significant differ-
ence was observed between seeding density and nitrogen on
measured LAI, LAI_NDVI, and LAI_SR (Table 3). FADDA,
A12-79, C2_075-15, C2_007-03, and GRINKAN varieties
recorded the highest measured LAI values with an average
of 3.2. PABLO and SOUMBA varieties were the least per-
forming for measured LAI. C2_075-15, FADDA, C2_007-03,
A12-79, and GRINKAN varieties performance was constant
for LAI_NDVI with an average value of 3.06, and PABLO and
SOUMBA varieties were the least performing for LAI_NDVI.
The C2_075-15, C2_007-03, FADDA, GRINKAN, A12-79,
and TIEBILE varieties produced highest LAI_SR values
with an average value of 2.77. PABLO and SOUMBA
varieties were the least performing for LAI_SR values
(Table 3).
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8 DEMBELE ET AL.

F I G U R E 5 Validation test: Relationship between measured leaf area index (LAI) and LAI calculated from normalized difference vegetation
index (NDVI) and simple ratio (SR) in 2019 dry season in Bambey, Senegal (A and B) and 2018 rainy season in Sotuba, Mali (C and D). RMSE, root
mean square error.

4 DISCUSSION

This study established relationships between LAI and NDVI
and SR derived from UAV imagery in the 2017 and 2018 wet
and dry Senegal seasons, respectively. The calibrated models
provided a good LAI prediction during the 2018 and 2019 wet
and dry seasons, respectively, in Mali and Senegal, and vari-
eties effects on LAI under nitrogen fertilization and seeding
density in 2018 in Mali.

4.1 Plant growth dynamics determination
under different conditions with UAV imagery

Results showed that NDVI and SR vegetation indices were
highly correlated to LAI in the 2017 rainy and 2018 dry sea-
sons at Senegal (Figure 3). In addition, the measured LAI
and NDVI and SR vegetation indices reached their maxi-
mum values at flowering and then decreased as the plant
matured (Figure 3). NDVI and SR values decrease after flow-
ering was attributed to leaf senescence (Sultana et al., 2014).
Numerous research studies have concluded that leaf senes-
cence would cause a reduction in NDVI due to increased red

band reflectance and decreased near-infrared band reflectance
(Naser et al., 2020). Leaf senescence was observed in other
previous studies conducted under water stress and under low
nitrogen application (Raun et al., 2001). Serrano et al. (2000)
and Prasad et al. (2007) showed that, in addition to NDVI,
SR could be used to detect LAI variation between growing
seasons. Our results showed that the LAI and NDVI and SR
values were higher in the 2018 dry season than the 2017
rainy season (Figure 3). According to Kouressy et al. (2020),
late sowing of photoperiod-sensitive sorghum varieties during
the rainy season causes cycle shortening with low dry matter
accumulation resulting in a high reduction in straw biomass
and LAI. This could help explain why LAI was low during the
Bambey 2017 rainy season. Bamba et al. (2019) found similar
results in millet (Pennisetum glaucum).

4.2 Models’ calibration establishment of
sorghum LAI under different conditions

The current study results provide new insight regarding the
capacity to estimate LAI of sorghum plants grown under water
and N stress. Study results showed the ability of NDVI and
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DEMBELE ET AL. 9

T A B L E 3 Analysis of variance of the factors studied on the
measured leaf area index (LAI) and LAI calculated from the
normalized difference vegetation indices (NDVI ), and simple ratio
(SR) in 2018 rainy season in Sotuba, Mali.

Treatments LAI LAI_NDVI LAI_SR
Density (D) (plants ha−1)
26,666 (D1) 2.13a 2.41a 2.47a

53,333 (D2) 2.8a 2.91a 2.82a

Nitrogen (N) (kg N ha−1)
N0 2.26a 2.52a 2.52a

89 (N1) 2.3a 2.56a 2.62a

178 (N2) 2.83a 2.91a 2.8a

Variety (V)
FADDA 3.21a 3.03a 2.84ab

C2_075-15 2.8ab 3.06a 2.93a

C2_007-03 2.7ab 2.93ab 2.88a

GRINKAN 2.65b 2.88ab 2.72ab

A12-79 2.96ab 2.71bc 2.67ab

TIEBILE 2.18c 2.41c 2.56b

PABLO 1.87d 2.27d 2.36c

SOUMBA 1.83d 2.25d 2.34c

Source of variation
V *** *** ***

N ns† ns ns

D ns ns ns

V × D ns ns ns

V × N ns ns ns

N × D ns ns ns

V × D × N ns ns ns

Note: Values in a column followed by different letters are significantly different at
P < .05. Lower-case and upper-case letters indicate comparisons within treatments
of eachdensity, nitrogen and among varieties, respectively.
***Significant at the 0.001 probability level. †ns, not significant.

SR to predict LAI with high accuracy (Figure 4). Hassan
et al. (2018) stated that vegetation indices would be the best
option for estimating crop growth parameters in contrasting
environments. Our results showed that the Senegal calibra-
tion models overestimated LAI before flowering. However,
measured LAI was underestimated by the calibration mod-
els at the end of flowering (Figure 4B,D). Malambo et al.
(2018) attributed this to the time lags between the UAV-
based measurements and the field-based measurements. Other
researches have shown that overestimation and underestima-
tion of the model may be related to low reflectance in red
band before flowering and near infrared band after flower-
ing (Din et al., 2017; Gong et al., 2021). Cheng et al. (2020)
and Peng et al. (2011) reported that leaf saturation and senes-
cence at the end of crop cycles are the main causes of model
overestimations and underestimations.

4.3 Models’ prediction under different
conditions in Senegal and Mali

Our results showed that NDVI and SR predictions were more
accurate under water stress in the 2019 dry season than the N
stress and seeding density in the 2018 rainy season at Mali.
This finding indicates that environmental factors influenced
the feasibility of using these models. However, the moder-
ate R2 values obtained demonstrated that this method can
still be deployed in canopy phenotyping of sorghum (Gano
et al., 2021). According to Hassan et al. (2018), a moderate R2

values may be due to limited number of manually measured
plants. Thus, the calibration carried out in the 2017 rainy and
2018 dry seasons in Bambey, Senegal, was not representative
of the 2018 Mali climatic conditions and cropping practices.
It would be interesting to conduct a new calibration to deter-
mine whether this overestimation of models is attributed to
pedoclimatic conditions or to agronomic practices in Mali. To
ensure that these spectral indices can be used as a tool in pre-
dicting LAI (Kang et al., 2016) in Mali, a new model may
be needed. The methods presented here represent important
advances in the non-destructive measurement of the sorghum
LAI and can help accurately predict crop growth at flowering
and early maturity.

4.4 Genotypic variation under seeding
density and nitrogen fertilization

The development of an approach based on multispectral
imagery to evaluate growth parameters of sorghum vari-
eties under seeding density and nitrogen fertilization is an
important step for the improvement of crop breeding meth-
ods. Results of the ANOVA performed on the 2018 data in
Mali (Table 3) showed variability among varieties for mea-
sured LAI and predicted LAI. The FADDA, C2_075-15,
C2_007-03, and A12-79 varieties recorded the same values
for measured and predicted LAI. In contrast, the PABLO and
SOUMBA varieties had low measured and predicted LAI
values. This suggests that vegetation indices derived from
UAV-based imaging can be used in the study of variety vari-
ability under nitrogen fertilization and seeding density. This
result is similar to that of Yang et al. (2020) who reported
variability between wheat varieties for vegetation indices
from UAV-based imagery under water stress and nitrogen
fertilization.

5 CONCLUSION

Findings showed that the NDVI and SR vegetation indices
could be used to predict LAI growth. Prediction of mea-
sured LAI from NDVI (R2 = 0.92) and SR (R2 = 0.89)
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10 DEMBELE ET AL.

vegetation indices was better in the dry season in Senegal.
In addition, the prediction of measured LAI from NDVI and
SR was of R2 = 0.61 and R2 = 0.58, respectively, at matu-
rity under nitrogen fertilization and seeding density in the
rainy season in Mali. This approach based on vegetation
indices (UAV imagery) was effective in studying morpholog-
ical differences among varieties for predicted LAI at early
maturity stage in 2018 rainy season in Mali. It suggested a
possible use of UAV-based multispectral imaging in sorghum
varieties diverse behavior under nitrogen fertilization and
seeding density at early maturity in Sotuba, Mali. The results
showed that the UAV phenotyping method can be used in
sorghum breeding programs in the Sahel especially in Mali to
accelerate selection of new cultivars and increase efficiency
of work. Further work should be done to investigate more
plant indices and machine learning algorithms to increase
models’ accuracy and robustness. However, additional work
is needed to consider how management and N impacts
reflectance patterns can improve LAI prediction using
UAV.
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