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Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy 
mildews. However, the traditional process remains time-consuming, taking 20–25 years, and demands the evaluation of new traits to 
enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number 
of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on 
a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a meth
odology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé 
wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant 
varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic 
Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive 
abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait charac
teristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as 
training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection 
index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.

Keywords: genomic prediction; grapevine; plant breeding; selection index; ideotype; Cognac; Rosé; genomic selection; Genomic 
Prediction; GenPred; Shared Data Resource
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Introduction
Plant breeding has been a key lever to adapt varieties to human 
use and the environment. The genetic gain obtained after 1 cycle 
of a breeding program is given through the breeder’s equation 
(Lush 1937). It depends on the additive genetic variance of the 
population, the accuracy and intensity of selection, and the cycle 
length. In grapevine, this cycle length is about 20–25 years, when 
accounting for phenotyping new varieties (Töpfer and Trapp 
2022). Thus, the long breeding cycle for grapevine breeding is a 
major constraint to genetic gain. Because of its perennial nature, 
grapevine needs to be adapted to challenging conditions, in an in
creasingly variable environment, due to climate change (Santos 
et al. 2020).

In the past years, grapevine breeding in Europe has been fo
cused on disease resistance to powdery and downy mildews 
(Eibach et al. 2007; Schneider et al. 2019; Töpfer and Trapp 2022). 
The French INRAE-ResDur program generated a dozen of var
ieties, all with at least 2 major resistance genes for each disease. 

The whole selection process lasted around 15–20 years (Reynolds 
2015; Schneider et al. 2019). Thus, there is a critical need for 
accelerating this selection process while accounting for other traits 
related to climate change. Marker-assisted selection (MAS) was 
used in the INRAE-ResDur program for early screening of seed
lings with major resistance genes for powdery and downy mil
dews. However, most traits involved in adaptation are under a 
complex genetic determinism with possibly thousands of genes 
involved, including polygenic resistance, wine quality, and yield 
(Alonso-Blanco and Méndez-Vigo 2014; Flutre et al. 2022). For 
such traits, QTL detection results in many small effects often 
overestimated and that are not transferable through MAS to 
breeding (Beavis et al. 1994; Xu 2003; Meuwissen et al. 2016; 
Crossa et al. 2017).

Genomic selection (GS) has been proposed to avoid these lim
itations, thanks to the availability of genome-wide markers 
(Bernardo 1994; Meuwissen et al. 2001). In GS, all markers are ana
lyzed together and their associated effects on the phenotypes are 
jointly estimated in a training set (TS) population. Then, these 
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effects are applied in a validation set (VS) population, on which 
only genotypic data are available (Heffner et al. 2009). GS has 
been widely applied to animal and plant breeding, with some 
few examples of applications in grapevine (Fodor et al. 2014; 
Viana et al. 2016; Migicovsky et al. 2017; Brault et al. 2021, Brault, 
Segura, et al. 2022; Flutre et al. 2022). Notably, GS has only been ap
plied in a research context, with varieties not intended for breed
ing. GS can save time in breeding programs, but it offers other 
benefits too (R2D2 Consortium et al. 2021). Indeed, using GS allows 
testing of more crosses and offspring because no phenotyping is 
needed. This increases the selection intensity, as more genotypes 
are tested, increasing the selection gain according to the breeder’s 
equation. Concerning the selection accuracy, the impact of GS is 
balanced. On the one hand, GS implies concentrating phenotyping 
on the training population, with possibly more replications that 
can increase the heritability and accuracy of the model. On the 
other hand, using a GS model trained in a population genetically 
far from the selection population would reduce the predictive 
ability (PA) (Brault, Segura, et al. 2022). One challenge of GS is 
then to find a trade-off between the advantages and drawbacks 
of GS in terms of prediction accuracy.

Once predicted or observed genotypic values are acquired, the 
breeder needs to select the best individuals in the population, by 
taking into consideration several traits and making compromises. 
This can be streamlined with a linear multitrait selection index. 
The most famous selection index is the Smith–Hazel index 
(Smith 1936). Since then, other algorithms have been developed 
to account for the multicollinearity between the traits (de 
Carvalho Rocha et al. 2018; Olivoto and Nardino 2021). In grape
vine, the ideotype (i.e. the criteria to combine all traits to get the 
best performing variety in each environment) is complex, because 
the wine is a transformed product and its quality relies on many 
variables (Reynolds 2015; Töpfer and Trapp 2022). Such an ideo
type is likely to vary across wine regions. Specifically, the grape
vine ideotype will include traits for which the genetic value 
must be maximized or minimized (directional selection) and traits 
for which an optimum value would be sought (stabilizing selec
tion). Moreover, quality traits such as acids, sugars, anthocyanins, 
tannins, and volatile compounds interact with yield-related vari
ables (Reynolds 2015).

This article describes and proposes an application of GS to 2 
breeding programs of grapevine varieties. These 2 breeding pro
grams were compared, with a similar design of experiments but 
various traits and ideotypes. First, we fitted a mixed linear model 
for each experiment to extract genotypic values, and then, we ap
plied genomic prediction (GP) within the TS to estimate PA. 
Finally, we used multitrait selection index to select the most 
promising individuals from predicted genotypic values.

Material and methods
Design of experiment
Two breeding programs (hereafter referred to as population) were 
compared: the Martell breeding program, funded by Martell com
pany which produces Cognac and conducted by the conservatory 
of the Charente vineyards, INRAE, and IFV in France; and the 
EDGARR breeding program, conducted by the Center for Rosé, 
INRAE, and IFV in France for producing Rosé wine. Both programs 
included biparental families, hereafter referred to as crosses be
tween varieties emblematic of the region and varieties with poly
genic resistance to powdery and downy mildews (interspecific 
hybrids). Resistant varieties were obtained by crossing Vitis vini
fera varieties with other Vitis wild species bearing diverse 

resistance genes. Then, several cycles of backcross with V. vinifera 
varieties were done to retrieve the quality of V. vinifera (Töpfer 
et al. 2010). The resulting crosses are called interspecific. In both 
programs, after MAS, unselected individuals from the crosses 
were planted in a pot to constitute the TS, for genotyping and phe
notyping; while selected individuals (i.e. with all resistance genes 
based on MAS) were only genotyped and constitute the VS, a few 
families were only in the VS (Supplementary Fig. 1, Fig. 1). This 
specific design was applied to speed up the breeding program.

The Martell program included 4 famous grape varieties 
(Monbadon, Montils, Rayon d’Or, and Vidal 36) crossed with 5 dif
ferent resistant varieties (E03-PL4, C03-PL5, 50#90, 50#86, 50#83), 
and the EDGARR experiment included 2 famous grape varieties 
(Cinsaut and Vermentino) crossed with 6 resistant varieties 
(mainly 3421-F02-PL5 and 3408-F10-PL2 and COL48#59, 
COL48#46, COL48#29, COL13#75). The detailed composition of 
the TSs and VSs is in Supplementary Fig. 1. The genetic related
ness between the individuals of the TS and the VS could be full- 
sibs, half-sibs, or no genetic relationship. A major difference 
between these programs was the number of genotypes. In the 
Martell program, there were 347 and 277 individuals in the TS 
and VS, respectively. In the EDGARR program, there were 193 
and 132 individuals in the TS and VS, respectively.

Genomic data analysis
The same genotyping approach was used in both programs. 
Genotyping was done using the genotyping-by-sequencing tech
nology, using the ApeKI restriction enzyme (Elshire et al. 2011). 
Paired-end sequencing (2 × 150 bp) was performed on 4 lanes of 
an Illumina HiSeq2000 for each program (at the MGX platform 
in Montpellier, France). Processing consisted in read checking 
with FastQC version 0.1.2 (Andrews 2016), demultiplexing with a 
custom script, cleaning and trimming with CutAdapt version 
1.8.1 (Martin 2011), alignment on the PN40024 12Xv4.2 reference 
sequence (Velt et al. 2023) with BWA-MEM version 0.7.12-r1039 
(Li 2013) and realignment with GATK version 3.7 (DePristo et al. 
2011), followed by variant and SNP calling with GATK 
HaplotypeCaller, and a final filtering step, notably to discard 
SNP genotypes with <10 reads or quality below 20. For EDGARR 
and Martell programs, SNP markers with more than 10% missing 
data and with <20 reads were discarded, producing 27,271 and 
10,602 remaining SNPs, respectively. Genotypes with more than 
50% missing data were also discarded. The remaining SNPs were 
imputed using Beagle software version 5.4 (Browning et al. 2018). 
Markers with a minor allele frequency lower than 1% were re
moved, giving a final table for EDGARR of 19,228 SNP markers 
for 326 individuals and for Martell of 10,380 SNPs for 624 
individuals.

Then, for each cross, outlying individuals were detected using 
the Mahalanobis distance (Mahalanobis 1936), with a P-value of 
1%.

Phenotypic data analysis
EDGARR
The individuals in the training population (e.g. 193 genotypes) 
were planted in pots, without rootstock. The vinestocks were 
managed to fast fruiting to accelerate the production of grapes. 
The experimental trial was located at the Espiguette domain, in 
Grau-du-Roi, in the South of France (43°29′48.5″N 4°08′13.2″ E). 
There was 1 repetition per genotype, except for repeated controls 
Cinsaut, Vermentino, Grenache, and Syrah, with 5 or 6 repetitions; 
the design is close to a p-rep design with a large proportion of 
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individuals unreplicated. This design was used to save time, be
cause replication requires clonal propagation with cuttings, 
which takes a lot of time from seedling stage. Genotypes were 
mostly ordered by crosses in the field layout for practical reasons, 
with controls randomly repeated.

In this population, 30 traits were phenotyped for 2 years (2018 
and 2019), and 5 additional traits were phenotyped for 1 year. 
Traits were divided into 5 categories, namely acids with cis- and 
trans-coutaric acids, caftaric, ascorbic, hydroxycinnamic, malic, 
shikimic, and tartaric acids, pH, and total acidity; color traits 
with blue, yellow, and red absorbance, lightness, yellow and red 
indices, color intensity, and tint and polymeric pigments at 420 
and 520 nm; sugar traits with glucose and fructose; polyphenol 
traits with total polyphenol index and anthocyanin concentra
tion; and finally agronomic and technologic traits with berry 
weight, glutathione, number of clusters, and harvest date. A full de
scription of these traits and summary statistics are Supplementary 
Tables 1 and 2. Clusters were sampled when the sugar content 
reached 22° brix (gram of saccharose/100 g). Some traits were 
measured with 2 nonredundant units: in concentration (g/L) and 
in amount in berries (mg/g of berries).

For the extraction of genotypic values, we first applied a full 
mixed model for each trait phenotyped for 2 years:

yijkl = μ + Gi + Cj + x + y + Yk + ϵijkl , (1) 

with yijkl the phenotypic observation for a given genotype i, cross j, 

year k, and repetition l (for controls), μ the intercept, Gi the random 

effect of the genotype j (nested in cross i), Cj the random effect of 

the cross (number of genotypes per cross is available in 
Supplementary Fig. 1), x and y the random effects for coordinates 

(i.e. row and column with 4 and 95 levels, respectively) of the pots 
in the trial, Yk the fixed effect of the year (2 levels), and ϵijkl the re

siduals. We assume that Gi, Cj, x, y, and ϵijkl are random, with inde

pendent distribution and mean of 0, and have the following 

variances σ2
G, σ2

C, σ2
x, σ2

y , and σ2
ϵ . The total genetic variance is 

σ2
g = σ2

G + σ2
C; a homogeneous genotype and cross variance was as

sumed. This full model was fitted with maximum likelihood, ran
dom effects were selected by a likelihood ratio test, and fixed 
effects were selected based on Fisher tests, using the lmerTest R 
package (Bates et al. 2014). The homogeneity of cross variances 
was checked visually. Variance components were estimated 
with restricted maximum likelihood on the selected model. The 
broad-sense heritability (H²), was computed as:

H2 =
σ2

G + σ2
C

σ2
G + σ2

C + σ2
ϵ

(2) 

with σ2
G, σ2

C, and σ2
ϵ variances associated with genotype, cross, and 

residuals. Fitting information for all traits is available in 
Supplementary Table 3. If the genotype effect was not selected 
in the model, we refitted the same model with model selection 
only for fixed effects.

Best Linear Unbiased Predictors (BLUPs) were computed as the 
sum of the genotypic and cross effects (when cross effect was se
lected). We deregressed the BLUPs with the following formula:

drgBLUP =
BLUP

1 − (PEV/σ2
g)

(3) 

(Garrick et al. 2009; Andrade et al. 2019), with PEV the prediction error 
variance, i.e. the error associated with each BLUP value (for 

Fig. 1. Design of experiment for EDGARR and Martell breeding programs. Green (empty) seedlings carry 2 resistance genes for both powdery and downy 
mildews; purple seedling are missing resistance genes.
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genotype and cross effects). This was estimated by the “postVar” 
parameter in ranef function from the lme4 R package. The denom
inator of Equation 3, i.e. the reliability of BLUP, was variable among 
genotypes because some of them had phenotypic data only for 1 
year depending on the trait, and controls had more repetitions. 
For traits measured for 1 year, raw phenotypic data were used (aver
aged phenotypic data per genotype was computed for checks).

Martell
For the Martell program, individuals were also planted in pots 
for the training population, without rootstocks, in Cognac region 
(45°44′22.9″N 0°21′58.2″ E). The TS included 358 genotypes; among 
them, 349 came from progenies, and 9 were grafted field controls 
(repeated 5 times). The phenotyping was done in 2021 and 2022 on 
potted plants for the training population. We studied 30 traits, 
which can be classified into 6 categories: vigor, disease, phen
ology, agronomic, technologic, and vinification. A full description 
of these traits and summary statistics are in Supplementary 
Tables 1 and 2. Traits related to harvest were sampled at around 
10 alcohol content for the referent genotype (Ugni blanc).

The mixed model equation for phenotypic data analysis included 
effects described in Equation (1) and some other effects: yijkl = μ+ 
Gi + Cj + x + y + Yk + Rpv3i + Ren3i + Run1 Rpv1i + Mijkl +ϵijkl, with 
the supplementary random effects for resistance genes Rpv3, 
Ren3, Run1_Rpv1, and M indicating the presence of available vine 
spur (if 1 spur and 1 cane were present, the pruning was simple 
guyot). Martell field design contained 16 rows and 26 columns 
(for x and y effects). We used the same Equation (2) for computing 
the heritability for Martell population.

GP
The same pipeline of analysis was applied to both programs. First, 
Genomic Prediction was applied to the training population for all 
traits available with K-fold cross-validation, repeated R = 10 times, 
with K = 5. We implemented 2 GP methods: GBLUP with rrBLUP R 
package (Endelman 2011) and the LASSO (Tibshirani 1996), with 
glmnet R package (Friedman et al. 2010). GBLUP is more adapted to 
a complex genetic architecture (many QTLs), while LASSO is more 
adapted to a simpler genetic architecture. PA was estimated as 
Pearson’s correlation between observed and the predicted genotypic 
values. PA values were averaged across folds and cross-validation 
repetitions, and standard errors were calculated.

The best method among the 2 was chosen for each population 
and trait and used to predict the genotypic values for the VS. The 
model was refit on the whole TS (without cross-validation) for pre
dicting genotypic values for the VS. These values were dereg
ressed a second time using Equation (3), with genetic variance 
and PEV estimated using mixed.solve function from rrBLUP R 
package (Endelman 2011). For the LASSO, the deregressed values 
were obtained by fitting the ordinary least square estimator for 
all selected markers in the TS.

For the EDGARR experiment, we predicted the berry color (red or 
white) using a logistic generalized linear model (GLM), adapted to bi
nomial data with the LASSO method, using the glmnet R package, 
with as options family=’binomial’ and alpha=1 (Friedman et al. 2010).

Selection index
The selection index was designed by representatives of the wine 
growers for each of the 2 studied wine regions. It included traits 
for which the value needs to be maximized or minimized and 
traits for which an optimal value is required. The first selection 
criterion was the presence of the resistance genes for powdery 
and downy mildews and the flower sex, handled with MAS.

The resulting multivariate selection index was computed using 
the multitrait genotype–ideotype distance index (MGIDI) method, 
described in Olivoto and Nardino (2021). Briefly, it rescales the 
phenotype on a 0–100 scale, in which 100 represents the max
imum or the minimum value, depending on the direction of 
the selection. Then, it performs a factor analysis, to summarize 
the multitrait phenotypes and to avoid collinearity. Finally, the 
MGIDI is given by the sum of the distance between the actual 
phenotype and the ideotype for each factor. When an optimal va
lue was sought by professionals, we computed the difference be
tween the optimal value and the phenotype.

The selection index was applied for both programs, on pre
dicted and deregressed genotypic values for the VS individuals. 
The output of the MGIDI method included a strength and weak
ness view of selected individuals, with the contribution of each 
factor to the distance to the ideotype, and the rank of individuals, 
ordered by increasing MGIDI value.

Other phenotypic and genomic data
We used genomic and phenotypic data from 2 other grapevine po
pulations. A half-diallel population composed of 628 individuals 
from 10 biparental crosses where 5 parents were involved (Tello 
et al. 2019), phenotyped between 2013 and 2017. The second popu
lation is a diversity panel population of 277 genotypes, chosen to 
represent the genetic diversity of V. vinifera (Nicolas et al. 2016) 
and phenotyped between 2011 and 2012. Phenotypic and genomic 
data from these populations were already analyzed for GP and 
QTL detection in previous studies (Brault, Lazerges, et al. 2022, 
Brault, Segura, et al. 2022; Flutre et al. 2022).

There were 6 and 5 common traits with EDGARR and Martell 
programs, respectively. For genomic data, we performed a Basic 
Local Alignment Research Tool (BLAST) analysis on flanking se
quences to find out the marker positions corresponding to the 
last version (PN40024.v4) of the V. vinifera reference genome 
(Velt et al. 2023). Then, we kept the common markers between 
each population and the target one (Supplementary Table 4). 
We fitted a GP model using GBLUP and LASSO for half-diallel, di
versity panel, or both populations and kept the best method to 
predict genotypic values of EDGARR and Martell populations. 
We measured the PA and compared it with the values from 
within-population GP (i.e. when cross-validation was applied 
within EDGARR or within Martell genotypes). Additive genetic re
latedness between each pair of genotype in TS and VS was as
sessed using rrBLUP R package version 4.6.2 (Endelman 2011).

Results
Genetic structure
For the EDGARR program, 325 individuals were genotyped for 19,228 
SNP markers after filters. For the Martell program, there were 624 in
dividuals genotyped for 10,380 SNPs. A principal component analysis 
(PCA) was conducted to explore the genetic structure of the popula
tions. We found that families were well separated, located between 
their parents (Fig. 2). Individuals in TS and VS displayed a clear over
lap, except for some families only in the VS (Fig. 2, Supplementary Fig. 
1). The PCA analysis showed some outlier individuals, spotted with 
the Mahalanobis distance. For the EDGARR population, we excluded 
3 individuals, all from Cinsaut × 3421-F02-PL5 cross; for the Martell 
population, we excluded 4 individuals from 4 crosses.

Overall, for both populations, the relative position of biparental 
families seems to be driven by the resistant parents (3408-F10- 
PL2, 3421-F02-PL5, 50#86, C03-PL5, E03-PL4), as crosses from a 
common resistant parent are grouped together. This is likely 

4 | C. Brault et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/g3journal/article/14/4/jkae038/7613884 by M

ED
IATH

EQ
U

E IM
AG

 user on 29 April 2024

http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae038#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae038#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae038#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae038#supplementary-data
http://academic.oup.com/g3journal/article-lookup/doi/10.1093/g3journal/jkae038#supplementary-data


because those resistant parents are likely more genetically distant 
between themselves compared with V. vinifera varieties.

Phenotypic structure
In phenotypic data analysis and for both populations, we included 
nongenetic factors, despite a small number of repetitions, and 
those effects were significant for some traits (Supplementary 
Table 3). Broad-sense heritability values displayed a wide range 
across all traits (Supplementary Table 3). They ranged from 0 to 
0.76 (average of 0.39) and from 0.002 to 0.99 (average of 0.43) for 
EDGARR and Martell populations, respectively. From the BLUPs 
of genotypic values, we applied a deregression to retrieve the ori
ginal scale of the data in terms of mean and variance. We checked 
visually the quality of deregression. The Pearson correlation be
tween raw averaged phenotypic data and deregressed BLUPs for 
each trait was between 0.73 and 0.98 for the EDGARR population 
and between 0.60 and 0.99 for the Martell population. Besides 
that, we measured the matrix of genotypic correlations (for dereg
ressed BLUPs) between the traits. We found that for EDGARR, 
traits related to color were more correlated to each other, with 
correlation values from 0.74 to 0.99 (those types of traits were 
not present in Martell data set). Overall, for the other traits, geno
typic correlations were mostly low (data not shown).

The PCA analysis showed a mild phenotypic structure 
(Supplementary Fig. 2). For EDGARR, the structure was driven by 

the resistant parents (3421-F02-PL5 and 3408-F10-PL2) and by 
traits related to color, while for Martell, the crosses were more se
parated from each other, and the differentiation was driven by 
acid and yield traits.

GP results
We used a GLM with the LASSO method to predict categorical color 
for EDGARR population. The accuracies ranged between 0.943 and 
0.963, with an average of 0.952 in cross-validation. For the other 
traits, predictive abilities were comparable for both populations 
and covered a wide range of values between 0.04 and 0.87 (Fig. 3). 
To avoid the effect of the genetic architecture on the PA, we chose 
the best method between GBLUP and LASSO. Overall, GBLUP pro
vided a better PA than LASSO for both populations, with an average 
of 0.41 and 0.34 for EDGARR and 0.44 and 0.39 for Martell, for GBLUP 
and LASSO, respectively. For EDGARR, GBLUP yielded a higher PA 
than LASSO for 26 traits out of 35 and 28 out of 30 for Martell. For 
both populations, PA was correlated with broad-sense heritability 
values across traits, with a correlation value of 0.60 for EDGARR 
and 0.42 for Martell. The different trait categories were quite evenly 
represented across the range of PA for both populations (Fig. 3). 
However, traits for which the cross effect was not kept in the mixed 
model (Equation 1) displayed a lower PA with an average difference 
of 0.55 and 0.37 for EDGARR and Martell populations, respectively 
(Supplementary Fig. 3). Thus, the population structure of the 

Fig. 2. Principal Component Analysis of genetic markers for EDGARR (left panel) and Martell (right panel) populations. Parents are labeled. The point 
shape corresponds to the type of individual: triangle: Training Set; square: Validation Set; points: parents of crosses. Cross names were abbreviated as 
follows: Vermentino (VO), Cinsaut (CST), Monbadon (MBD), Rayon d’Or (RO), Montils (MT), and Vidal (VD).
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BLUPs has a strong impact on accuracy. We found that the 4 traits 
measured on a semi-quantitative scale for Martell populations had 
a slightly lower PA (difference of 0.26, a P-value of 0.044 using a 
Wilcoxon test). For EDGARR data, we could not fit a mixed model 
for 6 traits, because they were phenotyped in a single year. We 
found an average PA of 0.17 for these traits, up to 0.51 for trans- 
coutaric acid and the GBLUP method.

The predicted genotypic values were deregressed a second 
time in order to retrieve the initial mean and variance for 
each trait for applying our selection index. We computed the 
correlation between the genotypic values (deregressed BLUPs) 
and the predicted values (obtained by GP) and visually checked 
that the scales were comparable. The correlations ranged from 
0.42 to 1 (average of 0.82) for the EDGARR population and from 
0.24 (for vigor trait) to 1 (average of 0.87) for the Martell 
population.

Selection index
For both programs, the selection index was established by the pro
fessional committee in charge of local grapevine breeding. The 
first criterion was the presence of 2 resistance genes both to pow
dery and downy mildews. Then, a specific index was determined, 
based on the traits available.

EDGARR selection index
For EDGARR population, the Center of Rosé established a selection 
index to get varieties with more acidity, less color, higher product
ivity, and adaptation to climate change. Finally, the corresponding 
ideotype included 11 traits, 5 traits to be optimized (must tartaric, 
malic, total acidity, pH, alcohol content), 2 traits to be minimized 
(color intensity and total polyphenol index), and 4 traits to be 

maximized (berry tint, number of clusters, berry weight, and har
vest date) (Supplementary Table 5). We used PA values as weights 
associated with each trait. The MGIDI algorithm selected 3 factors, 
represented by 4 (tartaric acid, berry lightness, berry color, color in
tensity, harvest date), 3 (malic acid, total acidity, pH), and 4 traits 
(alcohol content, total polyphenol index, number of cluster, and 
berry weight), respectively (Supplementary Table 6). Distributions 
of predicted genotypic values and the position of some parents 
and selected genotypes are displayed in Supplementary Fig. 4. 
Vermentino was a parent of 12 out of 15 selected genotypes, and 
8 individuals from the same cross Vermentino × F10-PL2 were se
lected (Supplementary Table 7). Surprisingly, the resistant geno
type F02-PL5 was not selected as a parent of the first 15 
genotypes. From the PCA and distribution analysis (Fig. 4, 
Supplementary Fig. 4), it is clear that selected individuals are 
phenotypically close to each other. The predicted berry color was 
white for 4 genotypes, and the genotype with the lowest MGIDI 
was predicted white (Supplementary Table 7). Factors 1 and 2 con
tributed the most to the MGIDI score for the selected genotypes, 
which means that they performed quite similarly for factor 
3. Some genotypes performed better for some factors, such as 
P869-F04 for factor 1 or P596-A09 for factor 2, while others had a 
more balanced performance across factors, such as P249-F10 
(Supplementary Fig. 5, Supplementary Table 6).

Martell selection index
The ideotype for Martell included 12 traits, 7 traits to be maxi
mized (global and primary fertility, yield, tartaric acid, total 
must acidity, cluster weight, and berry weight), 1 to be minimized 
(must pH), and 2 with an optimum value (must malic acid and 
ease of detachment of pedicel, OIV 240) (Supplementary 

Fig. 3. PA for all traits for EDGARR (a) and Martell (b) populations. Error bars correspond to standard errors calculated across cross-validation repetitions. 
For each trait, the best method among GBLUP and LASSO was selected.
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Table 5). We excluded beforehand traits with a PA value lower 
than 0.5. The MGIDI algorithm selected 3 factors, represented by 
5 (total acidity, pH, yield, and primary and global fertility), 4 (clus
ter weight, tartaric acid, berry weight, and malic acid), and 2 traits 
(ease of detachment of pedicel and potassium), respectively 
(Supplementary Table 5). Among the selected traits, some of 
them displayed high genetic correlations (positive or negative). 
The average of the 15 genotypes selected followed the expected 
trend (increase or decrease compared with the average of the 

population), for all the traits, except for single berry, cluster 
weights, and malic acid (Supplementary Table 6). Distributions 
of predicted genotypic values and the position of some parents 
and selected genotypes are displayed in Supplementary Fig. 4. 
For 13 out of 15 genotypes selected, Monbadon and C03-PL5 were 
1 of the 2 parents (Supplementary Table 7). As for EDGARR, factor 
3 contributed less to the MGIDI score, and genotypes displayed vari
ous strengths or weaknesses for the factors. In particular, the su
perior performance of E12-32G10 (ranked 1st) was due to factors 

Fig. 4. PCA of the genotypic values for the selection candidates for the traits in the selection index for the first 2 principal components. Variables are 
displayed in red arrows, and genotypes are colored according to their cross. Selected individuals are labeled. a) EDGARR population and b) Martell 
population.
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1 and 3, and E10-29D10 (ranked 8th) was only due to factors 2 and 3 
(Supplementary Fig. 5, Supplementary Table 6).

Across-population GP
We studied the ability of nonrelated populations (the half-diallel 
and the diversity panel populations) to predict genotypic values 
for EDGARR and Martell population. For that, we compared the 
PA of each population from Fig. 3 (referred to as within- 
population), with PAs for the half-diallel or the diversity panel 
as a training population (referred to as across-population). For 
EDGARR and Martell, within-population GP was better for 4 
traits out of 6 and for 5 traits out of 5, respectively. PA values 
for across-population GP were variable, mostly depending on 
the trait, on the validation population, and to a lesser extent 
on the training population (Fig. 5). Overall, across-population 
PA values were much higher in EDGARR than in the Martell pro
gram. For EDGARR and 2 traits (shikimic acid concentration and 
number of clusters), using data from the diversity panel and the 
half-diallel led to a higher PA than using data from the same 
population (EDGARR).

For EDGARR, using both data from the diversity panel and the 
half-diallel led to higher PA, except for the harvest date, for 
which a strong decrease was observed. For Martell, the diversity 
panel was the best training population consistently for all 
traits. When looking closely at predicted values using the differ
ent training population we studied (Supplementary Fig. 6), we 
noticed that genetic structure (among EDGARR or Martell 
crosses) was often better captured for EDGARR than for 
Martell population in across-population. This led to an im
provement in PA, notably for shikimic acid, tartaric acid, and 
single berry weight.

We used for each trait and TS the best method among GBLUP 
and LASSO. The results show that GBLUP was the only method se
lected for within-population, while LASSO was the best method 
for some traits and training populations (Supplementary Fig. 6).

The difference in across-population PAs between the EDGARR 
and Martell programs is consistent with a higher genetic related
ness between the training populations tested (half-diallel and di
versity panel) and EDGARR (Supplementary Fig. 7). Interestingly, 
the additive genetic relatedness between half-diallel crosses or di
versity panel subpopulations and EDGARR crosses was more con
trasted than with Martell crosses (Supplementary Fig. 7).

Discussion
Our study comprised the analysis of 30 traits for 2 grapevine popu
lations. Some of the individuals were only genotyped, which al
lowed us to perform GPs. We first tested the ability of GP models 
to accurately predict the genotypic values in a within-population 
scenario. Then, we proposed a selection index and selected the 
most relevant individuals according to it. The ideotype was built 
in partnership with professional wine growers and was specific 
to each of the 2 wine regions studied. To our knowledge, this is 
the first time a precise ideotype is described for grapevine. 
Finally, some of the phenotyped traits were also available for 
other grapevine populations. We tested to train the GP model 
with these less related individuals for the common traits, and 
the results were encouraging in 1 of the 2 populations.

Comparison of the populations
The 2 populations studied were similar in the sense that they were 
composed of biparental crosses with a resistant and emblematic 
grapevine variety as parents (Fig. 1). In both designs, the number 

of individuals per cross was highly unbalanced, especially in the 
VS (Supplementary Fig. 1). We observed that the number of re
maining SNP markers was higher in EDGARR than in Martell 
population (27,271 and 10,602, respectively), despite a higher 
number of reads per genotype for Martell (4.6 M) compared with 
EDGARR (4 M). This might be explained by the broader genetic di
versity and less genetic relatedness of the resistant parents in the 
Martell population.

The size of the entire population for Martell was about twice 
the size of EDGARR. Nevertheless, PA observed was similar for 
both populations, with a comparable range and average. There 
were only 2 common traits between these populations: berry 
weight (SBER_W_g) and number of clusters (NB_CLUST_PLANT). 
Other traits were close, such as malic and tartaric acids, or total 
acidity, but they were not measured on the same entity (berry 
for EDGARR and must for Martell). Then, they were considered 
as different traits. PA for the number of clusters was extremely 
different in the 2 populations, with low PA for EDGARR (0.09) 
and high PA for Martell (0.78) (Fig. 3). This might be explained by 
the fact that for EDGARR, the number and length of shoots were 
not controlled. Then, the number of clusters is relative to the 
number of shoots and the fertility. This result is consistent with 
the difference in heritability values between these populations 
(Supplementary Table 3). For EDGARR, traits for sugar concentra
tions displayed low heritability and PA, probably because the sam
pling date was determined by a sugar threshold; thus, the genetic 
variability for these traits was minimized. These results illustrate 
the effect of vineyard management and measurement method
ology on heritability values.

Factors affecting the PA
A major factor impacting PA was the presence of the cross effect in 
the final BLUP model (Supplementary Fig. 3). We found that traits 
with the cross effect had more differentiated genetic values per 
cross (defined as the sum of the cultivar and cross effects). 
Then, PA was automatically increased because we predicted 
both the average of a cross and the Mendelian sampling part 
(within a cross) (Würschum et al. 2017; Werner et al. 2020). This ef
fect was highlighted by Werner et al. (2020), who measured PA per 
cross and for several crosses. However, we could not use a single 
cross as training or validation population, because we did not 
have enough genotypes and cross sizes were unbalanced. Brault, 
Segura, et al. (2022) compiled predicted genotypic values per cross 
and calculated the PA of GP for each cross and PA for predicting 
the cross means. But again, we had too few individuals to accur
ately measure PA for each cross.

As expected, the heritability values were overall correlated 
with PA values for both populations.

Across-population GP was competitive with within-population 
GP for the EDGARR population (Fig. 5). This was unexpected since 
the TS used in across-population scenario was phenotyped in the 
field and during different years compared with EDGARR popula
tion, phenotyped in pots. In the Martell population, PA values 
were higher in the within-population scenario, and differences be
tween within- and across-population GP were higher compared 
with EDGARR population. However, we observed that PA values 
in across-population were higher for EDGARR than for Martell 
for SBER_W_g (Fig. 5), while TS sizes were constant. Then, this dif
ference in PA in the across-population scenario could be due to the 
differences in genetic relatedness between TS and VS or by the 
phenotyping environment. Indeed, the genetic relatedness be
tween TS and VS was higher for EDGARR than for Martell 
(Supplementary Fig. 7). The diversity panel and the half-diallel 
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were planted about 20 km apart from the EDGARR population and 
about 400 km apart from the Martell population. Our results sug
gest that the geographic proximity of TS and VS and genetic re
latedness could have more impact on PA than TS size. Since the 
genetic relatedness between Martell or EDGARR varieties and 
half-diallel or diversity panel vary greatly (Supplementary Fig. 
7), we would expect further improvement of prediction accuracy 
with TS optimization.

In the Martell population, we studied semiquantitative traits, 
which displayed slightly smaller PA than other traits. We consid
ered such traits as normal traits, even if the assumption of nor
mality was strongly violated. Recently, Azevedo et al. (2023)
showed that using a linear mixed model for GP of ordinal traits 
was robust but suboptimal. They advised using Bayesian 
Ordinal Regression Models, even though it is computationally 
demanding.

Future breeding programs
These breeding programs aimed to save time and maximize the 
genetic relatedness between training and VSs. First, individuals 
were filtered by MAS for disease resistance and hermaphroditism 
(Fig. 1). The discarded individuals were quickly planted in pots to 
be phenotyped and serve as the TS, while genotypic values could 
be predicted for the VS, using GP. Such a breeding program relies 
on 2 strong hypotheses: (1) phenotypes do not display a high 
genotype-by-environment (G × E) interaction between pots and 
the field, and (2) genetic relatedness is a major parameter of PA. 
Indeed, if we observe a strong G × E interaction, the ranking of in
dividuals between pot and field will likely vary, hampering an ac
curate selection of the best individuals. To some extent, this was 
tested in the across-population scenario and PA values were near
ly as high as they were in the within-population scenario for some 

traits for EDGARR population. This hypothesis should be further 
investigated for more traits and scenarios. For the second hypoth
esis, if genetic relatedness was already known to affect PA, its 
magnitude remains unknown, especially in this study where the 
VS was composed of interspecific varieties, while phenotypic 
data were only available for V. vinifera varieties. This is the first 
time that GP has been applied with such different genetic back
grounds between the training and the VSs. We tested using com
pletely different populations to train the model, and results were 
encouraging for most traits for EDGARR population, while PA va
lues were smaller in across-population for Martell population.

For across-population GP, we showed that LASSO was more of
ten better than GBLUP, compared with the within-population 
scenario (Supplementary Fig. 6). This observation was also done 
in another study on grapevine (Brault, Segura, et al. 2022).

In this study, we used prediction models harnessing only the 
additive variance, while we expect for a heterozygous species such 
as grapevine that dominance could have a sizable proportion of gen
etic variance for some traits. In the future, having models taking into 
account all variance components would be more appropriate in the 
breeding process, as it was done by Wolfe et al. (2021).

Phenotyping environment
In our design of experiment, there was no repetition of a given 
genotype for a given year. Despite this, we could have medium 
to high heritability values depending on the trait. These values 
must be taken with caution, as variance components are likely 
not well estimated with this design.

Potted own-rooted grapevine phenotypes are likely to differ 
compared with field phenotypes. However, we have not found 
studies that compared both different varieties and traits related 
to the harvest. Most studies on pots or greenhouses were focused 

Fig. 5. Comparison of the PA for various TSs. a) EDGARR population and b) Martell population.
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on disease resistance or drought tolerance. If this kind of breeding 
is chosen for the future, one should measure the G × E interactions 
beforehand.

Grapevine ideotype
For EDGARR, a variety for Rosé wine was sought, with a little color, 
while for Martell, a variety for Cognac production was sought, with 
a white berry color and high yield. Beyond those criteria, both pro
jects were aiming to counterbalance the effects of climate change 
on berry composition, namely higher alcohol degree, lower acid
ity, and shorter growth period (Rienth et al. 2016, 2021; de 
Cortázar-Atauri et al. 2017; Parker et al. 2020; Bécart et al. 2022). 
These traits interact with each other’s. Selecting varieties that 
are ripening later (i.e. at the beginning of autumn in the 
Northern hemisphere) will experience lower temperatures during 
ripening, which would slow the degradation of malic acid and the 
accumulation of sugar (van Leeuwen et al. 2019). Ideotypes are 
now integrating traits related to the wine product, climate change, 
disease resistance, and more generally to production (yield, ability 
to produce wine). Other traits not directly in the ideotype would 
also be important, such as the resistance to black-rot Guignardia 
bidwellii, to millerandage and to coulure (poor fruit set). Besides, 
one may want to select individuals with medium performance 
across the traits or to correct the default of current grape varieties. 
The last solution is possible only if musts are blended.

As many other traits could not be included in the ideotype be
cause of the difficulty of phenotyping, one must ensure that the 
selection intensity is not too high. Thus, enough individuals 
with genetic diversity must be kept to be phenotyped for costly 
traits such as wine aromas later in the breeding program.

Another solution for grapevine breeding would be to predict the 
best crosses to realize, based on the cross mean and variance pre
diction. The proof-of-concept for cross mean was already done in 
grapevine (Brault, Segura, et al. 2022), but it was not applied in a 
breeding context. Predicting cross variance would allow to select 
crosses that would result in extreme offspring phenotypes 
(Neyhart and Smith 2019; Wolfe et al. 2021).

In contrast to other crops, the grapevine ideotype is likely to in
clude traits for which an optimum value is sought. That is why we 
used deregressed genetic values so that the range of values for 
these traits remains meaningful to breeders. However, such dou
ble deregression as we did here could hamper the prediction qual
ity. For the mixed model, we could have used BLUEs instead of 
BLUPs, but the design of experiment was too unbalanced, espe
cially for the number of individuals per cross.

Conclusion
This study provided the first insights on how GP could be inte
grated into grapevine breeding programs. The comparison of 2 
breeding programs helped us identify factors affecting the predic
tion accuracy and determining the best conditions for applying 
GP, notably the training population environment and phenotypic 
reliability. For the first time in grapevine, a multitrait selection in
dex was used based on predicted genotypic values to help select 
the best cultivars.

Data availability
Data and code to reproduce the results are available at doi:10. 
57745/G8PXEJ (Segura et al. 2023). Genomic and phenotypic data 
for half-diallel and diversity panel populations are available at 
doi:10.15454/PNQQUQ (Brault et al. 2023). 
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