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Typical Organization of a Synthetic Genetic Network

(Wang & Buck, 2012. Trends in Microbiology)



Biological computation in Synthetic Biology

• Synthetic genetic circuits can process digital and analog information

• Their construction requires the careful wiring of different genetic components

Digital computation
(Moon et al., 2012. Nature.)

Analog computation
(Daniel et al., 2013. Nature.)



Connecting wires: Expenses add up

• Adding multiple “wires” is expensive for the cell

• Multiple internal circuit layers often dissipate the signal

Digital computation
(Moon et al., 2012. Nature.)
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Single versus multiple cells for Biological computing

• “Distributed computing” could allow decomposition of a complex problem into multiple
smaller parts that can be solved by different computers
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Distributed Computing

• As circuit complexity increases, the number of genetic parts and their
connecting “wires” increases rapidly

• Distributed computing significantly reduces wiring requirements and enables
re-use of sub-circuits

(Regot et al., Nature 2011)
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More Multicellular Computing

• Combining recombinase “state machine” logic with multicellular computing

(Guiziou et al., bioRxiv 2018)
DOI: 10.1101/390823



More Internal Wires

• Recent work has built strains with 12 different “sensor” modules

(Meyer et al., bioRxiv 2018)
DOI: 10.1101/285866



Limited external wires

• A limited set of orthogonal external wires exist for cell-to-cell communication

Hormone molecules

(Regot et al., Nature 2011)

Quorum sensing 
molecules

(Macia et al., Trends in 
Biotech. 2012)

Metabolites

(Silva-Rocha et al., ACS 
SynBio. 2013)



Part-1:
Bacteriophage-derived signals as 

External Wires

Small Signaling Peptides



Phage Quorum sensing system

(Erez et al., Nature 2017)

• Quorum sensing system of Bacillus phage phiT3 uses a hexapeptide as
signaling molecule

Lysis Lysogeny

(SAIRGA)



Re-engineering peptide secretion

• While one system was characterized, genomic searches
revealed at least 17 different peptide signals and their
receptors

• This repertoire can be expanded by directed evolution of the
peptide-receptor pair

• We decided to adapt this system for peptide secretion in E.
coli

(iGEM Evry Paris-Saclay 2018.
https://2018.igem.org/Team:Evry_Paris-Saclay)



Re-engineering promoters

• Bacillus promoters were not
functional in E. coli, with or without
the AimR activator

(iGEM Evry Paris-Saclay 2018.
https://2018.igem.org/Team:Evry_Paris-Saclay)



Re-engineering promoters

• So, activatable promoters were re-engineered as repressible promoters in E. coli

(iGEM Evry Paris-Saclay 2018.
https://2018.igem.org/Team:Evry_Paris-Saclay)



Evry Paris-Saclay
iGEM

Boston
October 24-28th 2018

Presented at the Giant Jamboree

(iGEM Evry Paris-Saclay 2018.
https://2018.igem.org/Team:Evry_Paris-Saclay)



Next Steps

1) Test the effect of peptide on the repressible promoters
2) Test the other 16 peptide-receptor pairs similarly
3) Perform directed evolution of the peptide-receptor pair to expand repertoire

(iGEM Evry Paris-Saclay 2018.
https://2018.igem.org/Team:Evry_Paris-Saclay)



Part-2:
Bacteriophage-derived signals as 

External Wires

Packaged DNA



Engineering Filamentous bacteriophages for messaging

• Filamentous phages are non-lytic phages that
reproduce in bacterial cells

(Ortiz & Endy. J. Biol. Engg. 2012)

• They can be engineered to send “phagemid” messages between cells
• The Sender cells have the secretion machinery, while the Receiver cells have

the surface receptors



Orthogonal RNA signals encoded in phagemid particles

• dCas9 protein is an RNA-programmable repressor

• Computational design was used to generate a panel of orthogonal gRNAs

• Orthogonality was experimentally tested

1 2 3 4 5 6 7 8 9 10 11 12

1 0.03 0.61 0.87 0.60 0.68 0.73 0.52 0.71 0.65 0.78 0.62 1.00

2 0.63 0.16 0.73 0.64 0.63 0.72 0.80 0.78 0.70 0.63 0.52 0.56

3 0.80 0.61 0.09 1.00 0.66 0.87 0.99 0.80 0.78 0.87 0.94 0.94

4 0.72 0.69 0.74 0.09 0.75 1.00 0.78 0.91 0.89 0.99 0.60 0.76

5 0.95 0.82 1.00 0.67 0.01 0.35 0.61 0.59 0.82 0.57 0.81 0.83

6 0.74 0.63 0.88 0.54 0.72 0.08 0.84 0.63 0.45 0.85 0.76 0.57

7 0.85 0.55 0.91 0.46 0.81 0.91 0.07 0.64 0.55 1.00 0.67 0.77

8 0.81 0.58 0.71 0.74 0.77 0.77 0.74 0.05 0.63 0.62 0.75 0.59

9 1.00 1.00 0.99 0.29 1.00 0.72 0.73 0.77 0.02 0.57 0.60 0.81

10 0.91 0.63 0.85 0.92 0.75 0.82 1.00 1.00 1.00 0.09 1.00 0.83

11 0.80 0.58 0.74 0.37 0.98 0.60 0.92 0.72 0.63 0.59 0.15 0.80

12 0.80 0.84 0.96 0.64 0.89 0.81 0.92 0.69 0.76 0.95 0.80 0.08
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Logic gates based on phage-delivered signals

• de Morgan´s rule allows re-coding of AND-AND-NOT logic

• Two internal gRNAs (X and Y) were used as inverters (NOT gates)

• The AND-AND-NOT gate was implemented using a gRNA-only strategy

(i1 . i2 . ~i3)
= ~(~i1 + ~i2 + i3)
= ~(X + Y + i3)
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Conditional amplification of phagemid signals

• A conditional amplification system is designed to prevent packaging of some
phagemids, while allowing packaging for others

Helper dCas9

Conditional Amplifier cells
(Conditional Sender,

Unconditional Receiver)

F-plasmid

Helper

Sender cells
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Receiver cells Amplifier cells

F-plasmidHelper

(Kushwaha, unpublished)



Conditional amplification of phagemid signals

• Conditional Senders can select which phagemids to package for secretion
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Next Steps

1) Phagemids B, C and D will be tested for Conditional amplification

2) Cell-to-cell signaling cascades will be tested for multiple layers

3) The cascades will be coupled with metabolic pathways to optimize production
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