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Dear Editor, 11 

Imaging of iron (Fe) in living organisms is challenging and ways to visualize Fe are limited to 12 

sophisticated elemental methods and/or fixed tissues. As a transition metal, Fe cycles between 13 

two oxidation states, Fe2+ and Fe3+, losing or donating an electron in doing so. This property 14 

enables Fe to participate in key metabolic pathways (Briat et al., 2015). Imaging of the redox 15 

species of Fe is therefore of interest to decipher its biological functions. Cellular Fe is 16 

partitioned into two distinct pools (Koppenol and Hider, 2019): static Fe, which is tightly bound 17 

to its ligands, and labile Fe, which is weakly bound and can be exchanged between ligands 18 

rather effortlessly. To date, there are no reports describing the distribution of Fe2+ and Fe3+ 19 

labile pools in living organisms. The Perls-DAB histochemical method stains Fe in fixed 20 

tissues, chiefly the Fe3+ form (Roschzttardtz et al., 2009), but it mainly detects the static Fe 21 

fraction since labile Fe is likely lost during tissue fixation. In order to address the dynamics of 22 

Fe2+ and Fe3+ labile pools in live plants, we have established a method combining two probes, 23 

which enables specific detection of the redox state of the labile Fe pools. 24 

To that aim we have selected two fluorescent probes, SiRhoNox-1 (Hirayama et al., 2017) and 25 

MPNBD (Park et al., 2014), which we used to image labile Fe2+ and Fe3+, respectively, in 26 

Arabidopsis (Arabidopsis thaliana) roots (Supplemental Methods). The two probes were 27 

chosen in such a way that their spectral properties do not overlap, allowing their simultaneous 28 

utilization without any crosstalk (Supplemental Figure S1). The specificity of each probe was 29 

reconfirmed in vitro albeit in an aqueous buffer adapted for plant applications (Supplemental 30 

Figure S2). The fluorescence of the two probes, though depending on pH, was found rather 31 

stable at physiological pH (6.0-6.5) (Supplemental Figure S2G,H). Fluorescence intensity 32 

fluctuations must therefore be interpreted cautiously. The selectivity of the probes toward the 33 

redox state of Fe was tested by applying them to various Fe species in vitro. The mixed probes 34 
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detected labile Fe species (Fe(II)-acetate, Fe(II)-SO4, Fe(III)-NO3, Fe(III)-Cl3), but not the Fe 35 

species involved in strong chelates such as EDTA or citrate (Fig. 1A). In vitro ascorbate-36 

mediated reduction of Fe3+ species into Fe2+ was successfully monitored by the probes (Fig. 37 

1B), suggesting that the method is suitable to assess reductase activity in vivo. 38 

SiRhoNox-1 and MPNBD were applied in combination to 7 day-old plants and compared with 39 

Perls-DAB staining (Fig. 1C-K). The fluorescent signals observed with the two probes were 40 

heterogeneously distributed along the entire primary root and were distinct from each other 41 

(Supplemental Figure S3). Three root zones representative of the distribution of Fe2+ and Fe3+ 42 

were observed at higher magnification (Fig. 1D,G and J). Fe3+ was markedly predominant in 43 

the primary root apex (Fig. 1J) but absent in the young lateral root (Supplemental Figure S4A-44 

C). Likewise, Perls-DAB did not stain the emerging root, suggesting that if Fe is present at this 45 

stage, its level is under the detection threshold of the two methods (Supplemental Figure S4D). 46 

The primary root apex exhibited no Fe2+ signal (Fig. 1J). In contrast, in the differentiation zone, 47 

a strong Fe2+ fluorescent signal was observed at the cell periphery (Fig. 1G), suggesting an 48 

apoplastic localization. This observation is in agreement with previous studies reporting 49 

elemental analyses of cellular fractions (Bienfait et al., 1985; Ye et al., 2015; Liu et al., 2023). 50 

Plasmolysis of root cells confirmed the apoplastic localization of Fe2+ (Supplemental Figure 51 

S5). Moreover, colocalization of FM4-64 and SiRhoNox-1 revealed the presence of Fe2+ at the 52 

plasma membrane (Supplemental Figure S5F). 3D images of each root zone emphasized the 53 

variation of distribution of the two Fe redox species between cell layers and according to root 54 

age (Supplemental Figure S6). 55 

The Fe redox imaging method was applied to the Fe homeostasis ferric reduction oxidase 2 56 

mutant (fro2), the Fe3+/ Fe2+ ratio of which is imbalanced owing to a loss of its ability to reduce 57 

Fe3+ at the root surface (Robinson et al., 1999; Connolly et al., 2003). Compared to wild-type, 58 

the differentiation and mature zones of the fro2 root expectedly exhibited a dramatic decrease 59 

of fluorescence with SiRhoNox-1, confirming the specificity of the SiRhoNox-1 probe for Fe
2+

 60 

in vivo (Fig. 1E,H, Supplemental Figure S7). The penetration ability of the probes was 61 

examined using confocal microscopy. Fluorescence of SiRhoNox-1 and MPNBD was visible 62 

in most layers of the root including the vascular cylinder (Fig. 2A-E), indicating that the two 63 

probes are able to penetrate all the tissues of the root. In addition, fluorescence signals of the 64 

Fe probes were detected inside the cells, showing the permeability of the plasma membrane 65 

toward these probes. In epidermal cells, MPNBD fluorescence filled the symplast (Fig. 2F,H), 66 

whereas SiRhoNox-1 fluorescence surrounded the cells (Fig. 2G). Upon Fe limitation, 67 

SiRhoNox-1 produced intracellular punctuate signals (Fig. 2I,J)(Hirayama et al., 2013; 2017). 68 
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Interestingly the method highlighted a polarized pattern of Fe2+ at the external side of epidermal 69 

cells in the differentiation zone (Fig. 2K-M), a feature that had not been reported previously. 70 

Such Fe2+ polarization is reminiscent of the polar localization of FRO2 in the same cell type 71 

(Martín-Barranco et al., 2020). Remarkably, this polar distribution shifted to the inner side of 72 

the epidermal cells in the mature zone (Fig. 2, compare K-O and P-T) where Fe2+ was observed 73 

in the apoplast (Fig. 2T, red arrows). Quantification of the fluorescence signals allowed 74 

detecting subtle changes in the balance between Fe states, as shown in Fe-sufficient and Fe-75 

deficient conditions in wild-type and the fro2 mutant (Supplemental Figure S7). 76 

In summary, combining fluorescent probes for Fe2+ and Fe3+ represents an original method to 77 

distinguish the redox species of Fe within live tissues, reveals their distribution in root , and 78 

uncovers a remarkable polarization of Fe2+. Because this method can detect subtle differences 79 

of Fe charges in the tissues, it will become useful to characterize actors of the redox status of 80 

Fe, such as oxido-reductases, hence equipping the community with a powerful tool to explore 81 

Fe homeostasis in plants. 82 

83 

SUPPLEMENTARY DATA 84 

Supplementary Figure S1. Excitation and emission spectra of SiRhoNox-1 and MPNBD 85 

probes at pH 6.0. 86 

Supplementary Figure S2. In vitro characterization of the Fe redox SiRhoNox-1 and MPNBD 87 

fluorescent probes. 88 

Supplementary Figure S3. Distribution of Fe along the primary root of A. thaliana grown on 89 

0.5xMS containing 50 µM Fe-EDTA. 90 

Supplementary Figure S4. The lateral root apex is not stained by the two Fe probes. 91 

Supplementary Figure S5. Fe is localized in the apoplastic space of root epidermal cells. 92 

Supplementary Figure S6. Differential spatial distribution of Fe2+ and Fe3+ according to the 93 

developmental stage of the root in 7 day-old plants grown in Fe replete conditions. 94 

Supplementary Figure S7. Changes in Fe redox state are dependent on growth conditions and 95 

Fe homeostasis. 96 

Supplementary Methods. 97 
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Figure 1: In vitro and in vivo detection of labile Fe2+ and Fe3+ using fluorescent probes. 123 

(A,B) Determination of the specificity of the SiRhoNox-1 and MPNBD probes in vitro. (A) 124 

Both probes were applied in combination to 1 mM solutions of a variety of Fe species. (B) 125 

Reduction of Fe3+ by addition of 1mM ascorbate (ASC) to the different Fe species allowed 126 

detecting a change of Fe redox state. (C-K) In vivo imaging of Fe in the roots of 7 day-old 127 

Arabidopsis plants grown on 0.5xMS containing 50µM Fe-EDTA. Labile Fe, detected using 128 

combined SiRhoNox-1 and MPNBD (D, E, G, H, J, K), was compared with Fe histochemical 129 

staining with the Perls-DAB method (C, F, I). In the primary root, the mature zone (C-E), 130 

differentiation zone (F-H) and apex zone (I-K) are shown. The projection of maximum 131 

intensity of the Z-stack of fluorescent pictures is shown for SiRhoNox-1 (Fe2+, magenta) and 132 

MPNBD (Fe3+, green) in wild-type (WT) plants (D, G, J) and in the fro2 mutant (E, H, K). 133 

Data shown are mean ± SD. Data were collected from 3-4 independent experiments. EDTA= 134 

Ethylenediaminetetraacetic acid; a.u.= arbitrary unit; DAB= 3,3'-Diaminobenzidine. All scale 135 

bars = 200 µm. 136 
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 137 

Figure 2: Distribution of labile Fe in the different cell layers of the primary root of 138 

Arabidopsis thaliana. Images were taken from 7 day-old seedlings. (A-E) Representative 139 

orthogonal view of the mature zone of the primary root stained with MPNBD (Fe3+, A), 140 

SiRhoNox-1 (Fe2+, B), propidium iodide (Cell wall, C), or a merged image of the 3 probes (D, 141 

E). Labile Fe2+ and Fe3+ are present in most cell types with a signal in the endodermis. An 142 

enlarged view of the endodermal layer indicated by a dashed square shows interruption of the 143 

apoplastic fluorescent signal at the Casparian strip (arrowheads, E). (F-J): MPNBD and 144 

SiRhoNox-1 fluorescent signals in root epidermis showing the presence of Fe3+ inside the cell 145 

(F) and Fe2+ in the apoplast (G) of Fe-replete plants as well as in intracellular dot-like structures 146 

of Fe-deficient plants (H-J). (J) Close-up view of the Fe2+ dots presented in (I). (K-T): Polar 147 

distribution of Fe2+ in the epidermal cell wall. Differentiation (K-O) and mature (P-T) zones of 148 

the primary root were observed in longitudinal sections. Higher magnification of the epidermal 149 

cells (L, Q) shows polar localization of Fe2+, albeit in opposite pattern in the two zones, which 150 

is confirmed by the line profile of the fluorescence intensity of the probes (M, R). (N, S, O, T): 151 

Orthogonal view of the differentiation (N, O) and mature (S, T) root zones, including the 152 

corresponding enlarged views (O, T) indicated by dashed areas within panels N and S. (T) 153 

SiRhoNox-1 labels the intercellular space in the mature zone (red arrows). (A-G and K-T): 154 

Seedlings were grown on 0.5xMS containing 50 µM Fe-EDTA (+Fe). (H-J): Seedlings were 155 

grown on 0.5xMS without Fe (-Fe). Magenta LUT: SiRhoNox-1; Green LUT: MPNBD; BIOP-156 

Azure LUT: Propidium iodide. MPNBD = 7-(4-methylpiperazin-1-yl)-4-nitrobenzo-2-oxa-1,3-157 

diazole; a.u.= arbitrary unit; EDTA = Ethylenediaminetetraacetic acid; All scale bars = 20 µm. 158 
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Figure 2
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