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A B S T R A C T   

Sampling for Digital Soil Mapping is an expensive and time-constrained operation. It is crucial to consider these 
limitations in practical situations, particularly when dealing with large-scale areas that are remote and poorly 
accessible. To address this issue, several authors have proposed methods based on cost constraints optimization 
to reduce the travel time between sampling sites. These methods focused on optimizing the access cost associated 
to each sample site, but have not explicitly addressed field work time required for the whole sampling campaign. 
Hence, an estimation of fieldwork time is of great interest to assists soil surveyors in efficiently planning and 
executing optimized field surveys. The goal of this study is to propose, implement and test a new method named 
Multi-Objective Operational Sampling (MOOS), to minimize sampling route time, while ensuring that sample 
representativeness of the area is maintained. It offers multiple optimal sampling designs, allowing practitioners 
to select the most suitable option based on their desired sample quality and available time resources. The pro-
posed sampling method is derived from conditioned Latin Hypercube sampling (cLHS) that optimizes both total 
field work time (travel time and on-site sampling time) and sample representativeness of the study area (cLHS 
objective function). The use of a multi-objective optimization algorithm (NSGA II) provides a variety of optimal 
sampling designs with varying sample size. The sampling route time computation is based on an access cost map 
derived from remote sensing images and expert annotation data. A least-cost algorithm is used to create a time 
matrix allowing precise evaluation of the time required to connect each pair of sites and thus determine an 
optimal path. The proposed method has been implemented and tested on sampling for pHH2O mapping within a 
651 points kilometric grid in the northern part of Saudi Arabia, where soil analyses were conducted over a 1,069 
km2 area. MOOS method was compared to two other common approaches: classical cLHS and cLHS incorporating 
access cost. The performance of each method was assessed with the cross-validated RMSE and sampling route 
time in days. Results show that the MOOS method outperforms the two others in terms of sampling route time, 
especially with increasing sample size, gaining up to 1 day of work for the presented case study. It still ensures a 
relevant map accuracy and sample representativeness when compared to the two methods. This approach yields 
promising outcomes for field sampling in digital soil mapping. By simultaneously optimizing both sample 
representativeness and cost constraints, it holds potential as a valuable decision support tool for soil surveyors 
facing sampling designs in poorly accessible areas.   

1. Introduction 

Ensuring soil security is crucial to address contemporary challenges 
such as climate change, soil erosion, desertification or biodiversity loss 

(Koch et al., 2013). Thus, from local to global scale, mapping soil 
properties related to soil security (de Gruijter et al., 2016; Kidd et al., 
2015b; Koch et al., 2015; Stockmann et al., 2015) is a key issue for a 
better management and monitoring of anthropized or natural terrestrial 
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ecosystems. Digital Soil Mapping (DSM) is one of the main leverage to 
contribute to soil security (Arrouays et al., 2021). It typically allows to 
predict soil properties at unseen locations by using (geo)statistical or 
machine learning (ML) models calibrated with a finite number of sam-
pling sites. This relies on the relation of soil property to map with 
environmental covariates (geomorphological, soil, climatic data). 
McBratney et al. (2003) introduced the “scorpan” framework, describing 
the environmental covariates that are good proxies of soil forming 
factors. 

Field sampling is a first and most critical step for any new DSM 
project. The representativeness of the collected data over the study area 
and the sample size significantly impact the quality of the resulting maps 
(De Gruijter et al., 2006). If no relevant environmental data is available, 
a sampling design can be representative of the soil property by spreading 
the sample sites all over the study area by using a simple random sam-
pling (SRS) or a local pivotal method (Grafström et al., 2012). If envi-
ronmental data that capture well the soil property to map are available, 
sampling design would rather be done by spreading the samples in the 
covariates space with methods such as conditioned Latin Hypercube 
Sampling (cLHS) (Minasny and McBratney, 2006) or k-means sampling 
(Brus, 2019). With the recent advent of high-resolution and widely 
available spatial data, the second option has become the most popular in 
the DSM community. 

Sampling is often costly and is allocated a specific, limited timeframe 
within a mapping project. In poorly accessible areas such as deserts, 
sampling is even more constrained due to the lack of road networks and 
rugged terrain. Yet, arid and semi-arid deserts cover a third of the earth’s 
land surface and are crucial as they host 20 % of the world’s plant di-
versity and contribute significantly to carbon storage (Prăvălie, 2016). 
Thus, facilitate sampling in such constrained conditions is of great 
importance to increase knowledge about these environments. To solve 
this challenge, several authors introduced sampling methods optimizing 
operational constraints with different approaches. Cambule et al., 
(2013) proposed to sample in easily accessible areas with comparable 
environmental covariates to those of poorly-accessible areas. It aimed to 
create a model that would translate well to poorly-accessible areas. 
Clifford et al., (2014) adapted the cLHS method to maximize a 
geographical spread of sampling sites and minimize cost to reach each 
site (computed as the sum of distances of each site to reach the closest 
road). Sena et al., (2021) combined cLHS with a similarity method based 
on k-means to propose alternative sampling sites in case some sites are 
inaccessible. cLHS relies on a single criteria optimization algorithm 
(simulated annealing) which iteratively increases sample representa-
tiveness so that the sample presents a covariate distribution close to the 
distribution of covariates over the whole study area. This makes it prone 
to be adapted by adding an operational constraint objective to it. This 
approach was used by (Roudier et al., 2012) and is of paramount in-
terest. These authors added a cost function to the cLHS algorithm to 
select sampling sites in the most easily accessible areas. A cost map 
describing the “ease of reach” (in arbitrary unit) of each point in the 
landscape was created by modeling the constraints with friction (i.e., 
difficulty to reach a point associated to each land type), slope and dis-
tance to near roads. At each iteration of the algorithm both represen-
tativeness and cost are optimized to obtain an optimal sampling design. 
However, as pointed out by Roudier et al. (2012), the proposed method 
calculates the cost of visiting each point independently, without ac-
counting for the whole route. This does not allow to precisely estimate 
the cost of a sampling design as the route between each site and starting 
site highly affect the total cost. In the same manner, an optimal order of 
sites for sampling cannot be provided to support the practitioner in 
planning the sampling campaign. Additionally, as the cost is defined in 
arbitrary unit, the method cannot be used directly in assessing the 
operational time required to actually perform the sampling. Finally, it 
aims at optimizing both sample representativeness and operational 
constraints without considering it as a bi-criteria optimization problem. 
Indeed, there is not only one but several optimal solutions when dealing 

with multiple objectives. Not using the appropriate optimization 
method might lead to the selection of suboptimal solutions. Meanwhile, 
multi-objective optimization has already been used for sampling in DSM 
or Precision Agriculture for other aims (Israeli et al., 2019; Li et al., 
2022), but never for optimizing operational constraints. 

This article proposes a new method for creating optimized sampling 
designs adapted to poorly accessible areas. It relies on NSGA-II, a multi- 
objective optimization algorithm, which allows both a sample repre-
sentativeness criterion of a study area and an operational criterion to be 
optimised. In this study, the sample representativeness criterion used 
will be the same as in cLHS. The operational criterion will be the total 
fieldwork time (expressed in days), as a sum of the time spent for sam-
pling route and on-site sampling time. Sampling route time is created by 
taking into account the cost to reach each point sequentially (as pro-
posed by Roudier et al., 2012) and expressing this cost as a speed (i.e., 
the time to cross each spatial unit of the study are) instead of a unit free 
“friction”. On-site sampling time is determined by the practitioner, 
based on specificities of the study. This makes this operational criterion 
a relevant estimation of total fieldwork time, an indicator directly usable 
for decision-making. This method will be referred as Multi-Objective 
Operational Sampling (MOOS) in the rest of the document. 

The objectives of this study were as follows: i) develop MOOS, a 
multicriteria optimization approach that integrates both the sample 
representativeness of available covariates and total fieldwork time, (ii) 
perform a comparative evaluation of the MOOS method with more 
common methods presented in the scientific literature to assess its 
effectiveness; (iii) apply and validate this approach in a real operational 
scenario to confirm the results and identify any potential limitations. 

To do so, MOOS was applied and assessed on a pH H2O mapping 
project taking place in an arid and poorly accessible area in Al Ula 
County (Medina Province, Saudi Arabia). To assess the potential of 
MOOS in this situation, it has been compared to the classical method 
cLHS and the adapted version as proposed by Roudier et al. (2012), and 
referred as cLHScost. The three approaches were compared on two 
different metrics, the pH map prediction error (RMSE) and route sam-
pling time (in days), for various sampling size. Then, MOOS was eval-
uated within the same mapping project, simulating the approach that 
soil surveyors would take in planning an actual sampling campaign. 

2. Material and methods 

2.1. Case study and data 

The study area covers 1,069 km2 of the Al Ula region (Medina 
Province, Saudi Arabia). The area has an arid climate, with an average 
daily maximum temperature of 45 ◦C in summer and a minimum of 
10 ◦C in winter. A rainfall gradient is observed over the area, with the 
western part receiving less than 30 mm/year and the south eastern part 
experiencing the highest rainfall at 170 mm/year (Nazzal et al., 2014). 

The Al Ula region is qualified as poorly accessible since its geo-
morphology generates numerous route constraints (Fig. 1a.). Indeed, 
canyons with steep slopes predominate in the centre, as well as in the 
centre-east and the north-east parts, while a volcanic harrat plateau with 
steep borders covers the whole western part. The rest of the region is 
mostly covered by sand which can also affect the ease of access, 
depending on the presence of dunes or rocks. In plains, navigation can be 
constrained in stony colluviums due to the presence of large stones. 
Moreover, road network mainly connects the urban and rural zones 
located in the west and the centre of the region. Only one road links the 
north to the south on the eastern part of the region. For effective navi-
gation, practitioners employ a four-wheel-drive vehicle on roads, tracks, 
or drivable sand. On all other land types for which driving is not 
possible, travel is made by walk. Note that due to terrain steepness in 
canyons and near harrat plateau, some zones are considered as totally 
inaccessible. 

Soil samples were obtained from a kilometric grid covering the Al 
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Ula region. The sampling was done in two campaigns, during autumn 
2019 and autumn 2020. Fig. 1.b. shows the soil sampling sites, note that 
the whole region was not sampled since it was not possible to reach 
inaccessible areas. The dataset includes 651 monitoring sites, each 
located at the center of a 1 x 1 km cell. Detailed descriptions of soil 
profiles, physico-chemical and microbial characteristics, site environ-
ment, location, vegetation, and land management were conducted for 
each site. The analyzed soil samples were a composite of 5 samples 
collected on a depth of 30–40 cm across a 1 x 1 m plot. For this study, 
among all available properties, only the pH H2O was considered. This is 
a commonly used indicator of soil chemical properties (Sparks et al., 
2024). It plays a crucial role in several soil functions such as bioavail-
ability of nutrients, physical structure or biological activity (Neina, 
2019) and is strongly linked to former agricultural use of the land in arid 
regions (Maleki et al., 2021). 

Soil pH was measured using a pH-meter (pH Meter Knick 766) in 1:5 
of deionized water (i.e., pH H2O). Overall, pH H2O of the zone was found 
to be highly alkaline compared to other arid lands deserts with values 
ranging from 7.5 to 9.5. This was explained by the volcanic plateau 
minerals migrating because of erosion. 

One location (marked as a yellow point on Fig. 1.b.) was considered 
as the starting point from which a practitioner starts a sampling 
campaign. This was the actual accommodation of the practitioners; it is 
located in the Al Ula urban area with all amenities. 

11 available environmental covariates were considered to describe 
soil pH H2O variability over the study area. Covariates were directly 
derived or computed from available spatial data: SRTM Digital Elevation 
model (30 m resolution), Sentinel-2 L1-C (10 m resolution) and Sentinel- 
1c-band (5 m resolution). Without any references on mapping pH in arid 
lands, covariates were selected following methodologies as proposed in 
the literature either for large-scale soil pH mapping (Lu et al., 2023) or 
for soil mapping in arid lands with optical remote sensing (Elhag, 2016; 
Taghizadeh-Mehrjardi et al., 2021). Studies aiming at estimating bare 
soil surface texture or soil moisture were also considered (Niang et al., 
2014; Yang et al., 2019) 

Topographic indexes were computed from the DEM with SAGA GIS 

software (https://saga-gis.sourceforge.io) (Conrad et al., 2015). Spectral 
indices were obtained from Sentinel 2 using “rasterio” Python package 
(Rasterio, access to geospatial raster data — rasterio documentation). 

When possible, the acquisition date of remote sensing data was 
chosen in august 2019, just before the beginning of the actual sampling 
campaign. 

2.2. Literature methods 

The proposed method (MOOS) was compared to two other sampling 
methods, namely conditioned Latin Hypercube Sampling (cLHS) (Min-
asny and McBratney, 2006) and a variant of this latter, incorporating 
operational constraints (cLHScost) (Roudier et al., 2012)). Specifically 
designed for sampling in the presence of environmental covariates, cLHS 
uses an iterative optimization process based on simulated annealing. 
The aim of this iterative process is to optimize an objective function 
ensuring the representativeness of the sample across covariates. The 
cLHS objective function (cLHSfObj) is the sum of three sub-parts called 
hereafter Oi,i = 1:3. O1 assesses the resemblance of the sample distri-
bution over numeric covariates to the overall data covariates distribu-
tion, O2 performs a similar assessment for categorical covariates, and O3 
evaluates if the correlation of sampled covariates replicate those of the 
entire dataset. Compared to cLHS, cLHScost includes an operational cost 
optimization. Prior to implementation, the cost associated to each po-
tential sample site must be defined. According to Roudier et al. (2012), 
this was done by computing the distance of each potential sampling site 
to the closest road, taking into account the time cost map displayed in 
Fig. 1.c (the process to obtain this cost map is described later in 2.3.2). 
Finally, the cost of one sampling design equals to the sum of the cost of 
each individual site, as proposed by the author. 

For both methods, the number of iterations was set to 1,000. In this 
study, the Python package “clhs” (“cLHS: Conditioned Latin Hypercube 
Sampling — clhs 1.0.0 documentation,” n.d.) was used as is for classical 
cLHS, and modified to integrate the cost functionality, aligning with the 
existing R package (Roudier, n.d.). 

Fig. 1. General description of the study area with a) geomorphologic characteristics and land occupation, b) location of project’s sampling sites and starting site and 
c) time cost map derived from geomorphic characteristics and land occupation. 
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2.3. Multi-objective operational sampling (MOOS) 

2.3.1. General methodology 
This section provides a general description of MOOS. Details about 

each component of the method are further described in the following 
sections. 

The general principle of MOOS relies on the iterative optimization of 
sampling designs regarding two important criteria: sample representa-
tiveness of covariates and total time spent to perform the sampling 
campaign (referred as total fieldwork time). It is assumed that all rele-
vant covariates are used for sampling, and capture well the variability of 
the parameter to map. Following the same idea of cLHS and cLHScost, the 
initialization starts by creating random sampling designs. Then, those 
sampling designs are iteratively modified. At each iteration, the new 
sampling design is kept if it is more optimal than the precedent one 
regarding both criteria simultaneously. 

Total fieldwork time comprises the time spent to reach all sampling 
sites, starting by a starting site; and the time spent for soil sample 
collection at each sampling site. These two different components of total 
fieldwork time are respectively referred as sampling route time and on- 
site sampling time. 

Sampling route time requires two first steps before being computed: 
i) creating a time cost map (i.e., a map of the study area with each pixel 
corresponding to the time required to cross it), ii) creating the least cost 
paths between each potential sampling sites and store it in a matrix. 
During the optimization, the matrix is used at each iteration to deter-
mine the optimal order of sampling sites and therefore have an estimate 
of sampling route time. 

Compared to cLHScost, mapping the “ease of access” with a time 
instead of a “friction” and considering the whole route to reach each 
sampling sites allows to estimate the actual time spent by a practitioner. 
The on-site sampling time was estimated by the practitioners. 

The sample representativeness criterion was the same as the one used 
for cLHS and cLHScost methods. 

Finally, contrarily to cLHS and cLHScost, the optimization was not 
performed with simulated annealing, but with a multi-objective opti-
mization process, described in 2.3.4. When optimizing several criteria 
there might be not only one optimal solution, but several. The multi- 
objective optimization is adapted to solve a problem with more than 
one criterion. For the case of field sampling, it allows to select a set of 
sampling designs that are optimal regarding both sample representa-
tiveness and fieldwork time. 

2.3.2. Total fieldwork time estimation 
Total fieldwork time (in days) comprises sampling route time and on- 

site sampling time. Prior to optimization, creating the data for sampling 
route time computation was done in two steps. First, a time cost map was 
created by gathering all data that gives information about possible route 
constraints (i.e., land occupation, administrative data, slope). These 
data were discretized in order to assign to each pixel, the time required 
to cross it. Secondly, the least cost paths between each pair of potential 
sampling sites were computed using the classical path search algorithm 
“A-star” (Hart et al., 1968). This allowed to estimate the time an oper-
ator would spend to go from one site to another, avoiding most con-
strained areas. Route time was then stored in a matrix which was used 
during the optimization step. A cell of the matrix of coordinates {i,j} 
contained the time to go from the ith to the jth sampling site. 

During the optimization, the sampling route time associated to a 
specific sampling design was computed by finding the optimal order and 
associated time to reach each sampling site, beginning from starting site. 
This is a common problem known as Travelling Salesman Problem (TSP) 
(Hoffman et al., 2013). This was solved using the “fast_tsp” python 
package. Note that this method allowed to retrieve recommended 
optimized path for a sampling design. 

On-site sampling time was added to sampling route time to obtain 
total fieldwork time for a specific sampling design. It was computed as 

the estimated time for sampling at one site (determined by practitioners) 
multiplied by the sample size. 

For this study, road network, slope (expressed in degrees) and land 
occupation (buildings, farmlands, types of sand) data were used to 
design the time cost map. Pixels of size 30 m were considered as it 
allowed to keep enough information while reducing computation time. 
Zones with slope higher than 45◦ or buildings were considered as not 
accessible (white zones in Fig. 1.c). Accessible zones were given a speed 
value according to (Table 1) the type of land occupation, presence of 
roads/tracks and slope as detailed in Table 2. Sampling sites with pH 
H2O and environmental covariates values will be used as potential 
sampling sites to assess the sampling methods that are presented in the 
following sections. 

Least cost paths were computed for all 651 potential sampling sites 
and starting site. On-site sampling time was estimated to 40 min by 
practitioners who conducted the actual sampling campaign in the Al Ula 
region. 

Then this actual time spent for sampling (expressed in seconds) is 
converted in whole days of work. According to the classical French 
working time of 35 h per week that was applied to practitioners, a day of 
fieldwork was set to 7 hours. 

2.3.3. Sample representativeness objective 
Representativeness criterion used in the MOOS was the same as the 

objective function of the cLHS already described in 2.2. Here, the aim 
was to minimize cLHSfObj, as a smaller value corresponded to a relative 
better sample representativeness of covariates. As stressed in Israeli 
et al. (2019), this criteria is sensitive to the sample size, it was therefore 
normalized (i.e. divided by the sample size) in order to be able to 
compare the representativeness of sampling designs with different 
sample size. This criterion was computed for all eleven covariates pre-
sented in 2.1. 

2.3.4. Multi-criteria optimization 
The multi-objective algorithm NSGA-II (Deb et al., 2002) was used to 

select optimal sampling designs that minimize both sample representa-
tiveness of covariates and total fieldwork time. It is based on a genetic 
algorithm. Each sampling design is an “individual” which has one 
“chromosome”, a vector describing all its sampling sites. This vector 
contains X Boolean elements, X being the number of potential sampling 
sites. “True” value at the ith element of the vector indicates that the ith 

Table 1 
Detail of environmental covariates used to predict soil pH H2O.  

Environmental data Resolution Description Reference 

SRTM Global DEM 30 m    
Altitude (m)  Original data   
LS factor  Length-slope 

factor 
(Module LS Factor, 

SAGA GIS)  
TWI  Topographic 

Wetness Index 
(Module Wetness 
Index, SAGA GIS)  

Slope (degrees)  Gradient of 
altitude 

SAGA slope 
function 

Sentinel-2 L1C 10 m    
Red, Green, Blue, NIR  Original data   
Salinity index 1  SI =

̅̅̅̅̅̅̅
B×

√
R (Khan et al., 2005)  

Normalized 
Difference Salinity 
index  

NDSI =
R − NIR
R + NIR 

(Major et al., 1990)  

Normalized 
Difference Vegetation 
index  

NDVI =
NIR − R
NIR + R 

(Tucker, 1979)  

Brightness index  BI =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
R + NIR2

√ (Khan et al., 2005) 

Sentinel-1C- band 5 m    
C- band vertical 
polarization  

Original data   

C- band horizontal 
polarization  

Original data   
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sampling sites is contained in the sampling design. “False” value at the 
ith element indicates the contrary. 

The optimization process used for MOOS is described Fig. 2. First, N 
different sampling designs with various sample size are randomly 
created (initial population) for the first iteration (generation 0). Then, 
for each sampling design, both cLHSfObj and total fieldwork time are 
computed. Sampling designs were then ranked according to two 
consecutive methods:  

a) Pareto optimality, where a solution is considered more optimal to 
another if both criteria are simultaneously better (Luc, 2008). This 
process results in the creation of a first Pareto front, representing the 
set of optimal solutions where no solution can be improved in one 

objective without compromising performance in another. Then, 
other Pareto fronts that are less optimal are progressively discovered. 
Therefore, 1 to N different Pareto fronts can be identified and ranked 
from the most optimal to the less optimal. This rank is associated to 
each sampling design.  

b) the crowding distance value which provides an estimate of the 
density of solutions (sampling design) surrounding the solution 
under consideration. Within a Pareto front, if a sampling design is 
surrounded by only a few other sampling designs, it will be given a 
high crowding distance. For instance, a sampling design on the 
borders of the front has the highest crowding distance, set to + ∞. 
Sampling designs are ranked from higher to smaller crowding dis-
tance value within each front. Keeping sampling designs with highest 
crowding distance ensures to explore a large variety of optimal so-
lutions during optimization and not to focus on few local optima. An 
example of rank for N = 10 is shown in Fig. 2. 

Based on this ranking, half of sampling designs are kept. These latter 
are considered as “parents” from which other sampling designs will be 
created (offspring). In our case, only “mutations”, a random modifica-
tion of “individual’s chromosome” (random permutation of n sampling 
sites) were used to create new sampling designs. A mutation often 
generates a sampling design with a different size as a permutation may 
result to add or remove several sampling sites. Contrarily to the classical 
use of NSGA-II, no crossover (combination of 2 sampling designs to 

Table 2 
Land occupation types of study area and associated transportation, estimated 
speed (km/h) and corresponding pixel value.  

Land occupation type Transport Speed (km/h) Pixel Value 

Large roads Car 100 1.08 
Small roads Car 60 1.8 
Drivable sand / tracks Car 30 3.6 
Not drivable sand Walk 5 21.6 
Farmland Walk 5 21.6 
Steep slope (30◦ to 45◦) Walk 2 54 
Urban Impossible X noData 
Very steep slopes (>45◦) Impossible X noData  

Fig. 2. MOOS optimization process and example of sampling designs obtained at each stage of a generation and at the end of the optimization. N or N/2 indicate the 
current size of the set of sampling designs. Each point on a plot corresponds to one sampling design. 
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create a new one) were used as it could generate sampling designs with a 
large sample size, thus a long fieldwork time, that would have high 
chances not to be kept during optimization. Once the offspring are 
created a new population is available, forming the next generation. 
Thus, generation after generation, most optimal individuals are kept. 
The optimization ends when the maximum number of generations is 
reached. At the end of the optimization, it is assumed that the most 
optimal sampling designs are obtained. 

The method was chosen as it is widely used in the optimization 
literature and easy to implement and customize with the “Pymoo” py-
thon package (Blank and Deb, 2020). 

In the presented optimization process, the sample size of generated 
sampling designs can evolve along iterations. However, practitioners 
may have operational constraints on the size of sampling design. 
Therefore, MOOS also allows to limit the range of possible sample size 
by discarding all sampling designs that do not go within this range and 

replacing it by sampling design with the right size. Setting a range of 
possible sample size as presented here is the classical use intended of 
MOOS. It fits an operational for which no precise assumption is made to 
chose one optimal sample size. 

Note that to compare MOOS, cLHS and cLHScost on the same basis, 
the possible sample size to explore with MOOS was fixed. This is due to 
cLHS and cLHScost only allowing the optimization to be performed with 
a fixed sample size. This was achieved by generating an initial popula-
tion with various sampling designs of same sample size and doing mu-
tations that can only randomly replace n sites with n other sites (n being 
a random number). 

2.3.5. Multi-criteria decision making 
As the optimization leads to a set of various optimal sampling de-

signs, it can be challenging to choose the best possible solution consid-
ering operational context. Solutions are often not uniformly distributed 
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along a Pareto front, and different methods were proposed (Li et al., 
2020) to identify relevant solutions within the front. Among these 
methods, the best trade-off between objectives metric (Rachmawati and 
Srinivasan, 2009) was preferred in this study because its practical use is 
intuitive and it can easily be implemented by a practitioner with little 
knowledge in optimization methods. The best trade-off metric relies on 
“knees” identification within the Pareto front. Das (1999) defined the 
“knee” with the following statement: “It is noticed from practical experi-
ence that given the trade-off curve or surface for a particular multicriteria 
problem, the user or designer usually picks a point ’in the middle’ of the 
surface. Often this is also the point where the Pareto surface “bulges out the 
most””. Indeed, solutions located at “knees” of the front are of particular 
interest. Compared to their neighboring solutions, they allow for a large 
improvement of one of the objectives with only a small degradation of 
the other. Translated to MOOS, this would mean a sampling design 
which allows to gain substantially on representativeness with only a 
small increase in total fieldwork time; and/or a substantially shorter 
fieldwork time with a similar representativeness. 

This was implemented using “Pymoo” package (Blank and Deb, 
2020) on the results of optimization obtained with MOOS. 

2.4. Evaluation methodology 

MOOS is evaluated first by comparing it to cLHS and cLHScost to 
assess its efficiency over more conventional approaches. Secondly, the 
evaluation is based on a realistic use-case study, to evaluate the 
approach’s effectiveness as a support for decision-making. 

The three methods MOOS, cLHS and cLHScost were compared by 
randomly splitting the dataset into 5 subsets of equal size to perform a 
cross-validation. Iteratively, each subset was used as a validation set, 
and the 4 other subsets were merged and used as training set. For each 
method, samples of size of 10, 25, 50, 100 and 200 were created from the 
training set and used to train a Random Forest model (Breiman, 2001) to 
predict pH H2O with the eleven presented environmental covariates as 
predictors. The RMSE of each model on the validation subset was then 
computed. In the meantime, sampling route time of each sampling 
design obtained with MOOS was determined. Since cLHS and cLHScost 
do not inherently optimize this criterion, sampling route time was 
computed (with the same method described in 2.3.2) after each run. For 
each subset, and each sample size, cLHS and cLHScost were run a 

hundred times and MOOS once with a population size of 100. 
The detailed procedure is described in the following:   

To complete the comparison a pairwise Dunn test evaluating the 
statistical significance (p < 0.05) of the differences in median sampling 
route time and RMSE among the three methods for each sample size was 
conducted. The random forest algorithm was implemented with Ran-
domForestRegressor function of “skcikit-learn” python package (sklearn. 
ensemble.RandomForestRegressor, scikit-learn) with default settings. 

Secondly, MOOS was qualitatively assessed on the same sampling 
task running with a population size of 100 for 2000 generations. To 
better simulate a real use-case, the possible sample size to explore during 
optimization was set between 60 and 120. This range was considered to 
make sure the resulting Pareto front represented a large variety of 
sampling designs that a practitioner can choose from. The ‘knee’ method 
introduced in 2.3.5 was applied on the obtained Pareto front to identify 
the sampling design with the best trade-off between objectives. The best 
sampling design was then mapped to illustrate its potential to plan a 
sampling campaign. 

3. Results 

3.1. Sampling methods comparison 

3.1.1. RMSE 
Fig. 3 displays the cross-validated RMSE of pH H2O obtained with the 

three methods with varying sample size. RMSE values range from 0.8 to 
0.4 points of pH H2O, with a decrease in both median and variability as 
the sample size increases. This figure also shows that the method used 
does not impact the RMSE. No significant difference of RMSE values is 
observed among the three methods. 

3.1.2. Sampling route time 
Fig. 4 shows a comparison of sampling route time obtained across 

varying sample size for the three sampling methods considered in the 
experiment. To better display differences between methods, only the 
sampling route time (i.e., time spent to travel from the start point to 
reach each sampling site) was included. The on-site sampling time was 
not included as it does not change for a fixed sample size. In this case, 
each run of MOOS was done with a fixed sample size for comparing with 
other methods. 

Complementing Fig. 4, Table 3 shows the result of Dunn test, eval-
uating the statistical significance (p < 0.05) of the differences in median 
sampling route times among the three methods for each sample size. 
Methods with different letter have a statistically significant difference in 
median route time.Sampling route time (expressed in days) ranges from 
less than one day for 10 sampling sites up to 5 days with 200 sampling 
sites. Whatever the sample size considered; the sampling route time 
observed with the MOOS method is always lower. The difference in 
sampling route time between MOOS and other methods increases with 
the number of sampling sites. Indeed, with 10 sampling sites, MOOS 
results in a 0.4 days median gain compared to cLHScost and cLHS. With 
200 sampling sites, the difference of median time increases up to 1 day 
compared to cLHScost and 1.4 days compared to cLHS. Table 3 confirms 
that MOOS results in significantly smaller sampling route time than the 
two other methods. 

3.2. Operational use of MOOS 

Fig. 5.a is a scatter plot showing the 17 most optimal sampling de-
signs obtained with one run of MOOS, with a flexible sample size set for 
optimization. Each point is therefore a specific sampling design char-
acterised by its sample representativeness (cLHSfObj) and its total field-
work time (expressed in days). Contrarily to Fig. 4, the total fieldwork 
time (i.e. sampling route time + on-site sampling time) is displayed, as it 

Fig. 3. Cross-validated RMSE of pH H2O obtained with varying sample size 
with 3 different sampling methods: cLHS, cLHScost and MOOS. For every sample 
size, a pairwise Dunn test, conducted at a 95% confidence level revealed no 
statistically significant differences in medians among the three methods. 
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is the final criterion that serves decision-making. All 17 sampling de-
signs form a Pareto front, which means they dominate bi-criteria wise 
other sampling designs obtained along MOOS run. The number next to 
each sampling design is an ID to help referring to a specific sampling 
design in the following of this article. The objective here is to describe 
the kind of results a soil surveyor can expect when preparing a sampling 
campaign with MOOS. This Pareto front represents the set of possible 
solutions a soil surveyor will have to choose for field sampling. 

Fig. 5.a highlights sampling designs with cLHSfObj values ranging 
between 5 and 4.4 and total fieldwork time ranging from 7 to 11.5 days. 
As expected, sampling designs with smaller sample size (top left of the 
plot) have the highest cLHSfObj values (less representative), but lead to 
the shortest total fieldwork time. On the other hand, sampling designs 
with larger sample size (bottom right corner) have the best represen-
tativeness and longest total fieldwork time. Due to the randomness of the 
optimization and the complex relation between spatial distribution of 
the samples, representativeness and associated route; the repartition of 
the sampling designs along the Pareto front is non-uniform. Indeed, the 
front contains gaps, and plateaux where one of the objectives is almost 
constant while the other substantially changes. To precise, there are 
three cLHSfObj plateaux: from sampling design n◦ 16 to 15, n◦ 3 to 1 and 
8 to 17. On the other hand, there are two total fieldwork time plateaux: 
from sampling design n◦ 15 to 3 and n◦1 to 8. This is particularly 
interesting because points connecting plateaux and forming a “knee” on 
the front, such as sample designs n◦15, 1 and 17, are those presenting the 

best trade-off between two objectives compared to their surrounding 
solutions. For example, the sampling design n◦1 (with the highest trade- 
off, indicated by a black circle) compared to n◦2 and 14, allows to gain 
substantially on one of the objectives while the other only slightly 
changes. For almost no change in total fieldwork time, using solution 1 
over solution 2 allows to gain 0.05 points of cLHSfObj. Similarly, using 
solution 1 over solution 14 allows to gain 1.5 days with only a slight 
decrease in cLHSfObj. Thus, in a real case, if there are no other con-
straints, solution n◦1 can be considered as the best option to choose. 

The spatial organization of sampling sites of sampling design n◦ 1 
and the resulting recommended path are shown in Fig. 5.b. The sampling 
design n◦1 includes 75 sampling sites, it has a cLHSfObj value of 4.6 and 
an estimated field work time of 9.1 days. As the estimated time spent on 
each site to sample is of 40 min, the total time spent on the field com-
prises 7.1 days (75 sites x 40 min) for on-site sampling time and 2 days 
for sampling route time. This map shows that sampling sites are mostly 
concentrated in easily reachable areas. Indeed, when compared with 
time cost map (Fig. 1.c), and characteristics of the study zone (Fig. 1.a.), 
recommended path passes through the most accessible zones (roads, 
sandy plains, near urban areas) and avoids canyons or steep slopes. 
Additionally, sampling sites are spatially spread all over the study area, 
yet slightly clustered, forming lines close to roads in certain zones. 

4. Discussion 

4.1. Using MOOS reduces operational costs 

The proposed method (MOOS) aimed at optimizing both the sample 
representativeness (cLHSfOb) and the total fieldwork time, which is in 
our case the most important part of operational costs. 

Results showed that employing MOOS for sampling in poorly 
accessible areas significantly reduces fieldwork time compared to cLHS 
and cLHScost, particularly with large sample size, without impacting 
sample representativeness and resulting mapping accuracy. This was 
expected as MOOS aims specifically to optimize the total fieldwork time 
criterion unlike cLHS and cLHScost. For a sound comparison, the three 
methods were compared on the same operational criterion: total 

Fig. 4. Sampling route time (expressed in days) needed to reach each sampling site considering 5 different sample sizes and 3 different sampling methods: cLHS, 
cLHScost and MOOS. 

Table 3 
Dunn test results for differences in median sampling route time (time spent to 
travel to each sampling site) obtained with the 3 methods and 5 different sample 
sizes. Common letters indicate non-significant differences (p < 0.05) for each 
sample size.   

Sample size  
10 25 50 100 200 

cLHS a a a a a 
cLHScost a a b b a 
MOOS b b c c b  
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fieldwork time. For the record, for cLHS and cLHScost, which do not 
incorporate natively this new cost criterion, this latter was computed 
once the optimization done. Indeed, in a practical application, these 
methods do not provide any optimal site order or recommended path to 
optimally explore all the sampling sites. This would certainly lead to 
even longer sampling route time than depicted in Fig. 3 for cLHS and 
cLHScost. 

MOOS maximizes the sample size that can be achieved in a limited 
time. Therefore, compared to cLHS and cLHScost, it allows to create 
more accurate maps with the same total fieldwork time. This makes 
MOOS a relevant alternative to existing sampling methods. To our 
knowledge, no other sampling method allows to estimate and optimize 
fieldwork time like MOOS does. As a result, it is expected to also 
outperform other methods that consider operational constraints without 
using a representativeness criterion like cLHSfObj (Cambule et al., 2013; 
Kidd et al., 2015a). 

4.2. MOOS as a decision support to design realistic sampling designs 
suited to field experts needs 

Regarding operational application of MOOS, results show that it 
aligns with the practices of soil surveyors when organizing sampling 
surveys over large areas for the following reasons. 

First, total fieldwork time criterion gives a relevant estimation of the 
time required to perform the sampling, noting that this information was 
not available with other methods. This certainly supports the practi-
tioner in its objective to minimize the risk of unexpected time spent on 
the field. Secondly, the method provides not only one best solution, but a 
set of sampling designs that allows the practitioner to choose the sam-
pling design that is most appropriate for a specific use. Due to the se-
lection based on Pareto optimality and “crowding-distance”, NSGA-II 
explores preferentially, zones of the front with few sampling designs, 
like its outer edges. Therefore, it tends to select a wide range of optimal 
sampling designs. Overall, this provides valuable information on the 
time needed for a large diversity of sampling designs with different sizes 
and/or different representativeness. 

Regarding the example chosen for Fig. 5, the set of sampling designs 
showed that the method succeeds in providing a variety of possible so-
lutions which differ in representativeness and total fieldwork time. The 

shape of the Pareto front with “knees” helps choosing among all sam-
pling designs, the ones with the best trade-off between both criteria. 
Regarding the spatial repartition shown in Fig. 5.b, the sampling sites 
spread all over the study area may indicate how well the two objectives 
are balanced. Indeed, this is a visual confirmation that a diverse set of 
sites will be explored during sampling. Moreover, the recommended 
path resulting from the application of MOOS avoids inaccessible zones 
(i.e., zones marked as white in Fig. 1.c.). This way, the practitioner can 
verify that the risk of encountering sites that are inaccessible during the 
fieldwork remains relatively low. 

In the case presented, it is assumed that the project is not constrained 
by any time limit, the aim is to choose the sampling designs that has the 
best trade-off between both criteria. Considering a case where the 
number of total fieldwork time is strictly constrained, one may prefer to 
choose the solution with the best sample representativeness with a total 
fieldwork time as close as possible to the limit. Regarding example 
presented Fig. 4.a., the consideration of a 11 days limit for the survey 
would have, for example, led to choose the solution n◦14. 

As NSGA-II algorithm is highly versatile, its parameters can be easily 
adapted. For example, by setting specific constraints on objectives, 
sample size, specific initialization or stopping criterion or type of 
random permutation to create new sampling designs. For instance, the 
practitioner can choose to constraint the number of total fieldwork time 
so that solutions exceeding the fixed threshold are discarded during the 
optimization. 

However, practitioners should choose cautiously the sample size to 
ensure that the resulting model still yields a sufficient quality of pre-
diction. Several authors investigated this issue, indicating that the 
optimal sample size surely depends on covariates resolution, type of 
variable of interest, spatial extent of the area, sampling method and 
model used (Bouasria et al., 2023; Loiseau et al., 2021; Saurette et al., 
2022; Schmidinger et al., 2024). Thus, it is recommended to choose a 
minimum sampling size which follows the recommendations of these 
authors that is adapted to each specific DSM study. Choosing an optimal 
sample size could be further aided by using other metrics. Stumpf et al., 
(2016) identified optimal sample size by identifying the ‘knee’ of the 
difference of sample variance and global variance for different sample 
sizes. In the same way, Saurette et al., (2024) demonstrated that the 
Jensen-Shannon divergence metric is useful to determine an optimal 

Fig. 5. Operational use case of MOOS. a) Pareto-optimal set of points obtained with MOOS with sample size varying from 60 to 100, and selected sampling design 
(sampling design n◦1) with best trade-off between objectives; (the number associated to each sampling route is an id. facilitating identification), b) selected sampling 
design and resulting sampling sites with recommended path from one site to another. 
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sample size as it reflects well the final model performance (providing all 
relevant covariates are used), while being robust to the spatial extent of 
the area. 

In this specific case study, cLHSfObj and sampling cost expressed in 
days were used as optimization criteria. Yet, practitioners have the op-
portunity to explore alternative representativeness criteria that may 
align more closely with the mapping method and availability of cova-
riates. As proposed by Brus (2019), if relevant covariates are missing or 
no covariates are available, a representativeness criteria based on space 
coverage sampling should be preferred. On the contrary, if all relevant 
covariates are available and the mapping is done by kriging with 
external drift, a model-based sampling would be recommended. As long 
as it is possible to find or design a relevant criterion allowing different 
sampling designs to be compared, it can be used with MOOS. 

MOOS could be further improved by using a representativeness cri-
terion specifically tailored for decision-making. Such a criterion ought to 
assist a practitioner in selecting a sampling design that ensures adequate 
prediction accuracy. For instance, rather than stipulating a maximum of 
10 days of fieldwork days, a practitioner could specify a desired accu-
racy level of at least 70 % for the map. As previously indicated, the 
Jensen-Shannon divergence, as introduced by Saurette et al., (2024), 
presents a viable initial alternative. Nonetheless, additional research 
involving diverse soil parameters, models, and spatial extents is essential 
for verification of this metric for an operational use. 

In the same way, other types of operational costs metrics could be 
used to better satisfy specific requirements. For instance, Brus et al. 
(1999) exhaustively described costs associated with sampling and used a 
monetary (US$) metric to include the fieldwork time as well as equip-
ment and laboratory costs. Additionally, the NSGA-II optimization al-
gorithm used in MOOS, enables the optimization of more than two 
criteria, providing an opportunity to incorporate additional criteria. To 
maximize sample representativeness, a criteria ensuring good spatial 
coverage could be added, such as in Israeli et al. (2019) which optimized 
jointly cLHSfObj and a “spatial dispersion objective”. 

4.3. Limits and perspectives 

In any Digital Soil Mapping project, having quality environmental 
covariates that capture well the soil parameter’s variability is crucial 
(McBratney et al., 2003). Remote and poorly accessible areas are often 
underexplored and poorly characterized by previous studies. Therefore, 
sampling in these areas often imply a lack of relevant environmental 
data or legacy data. This can be solved by numerous means and has 
already been extensively covered in the literature (Hartemink et al., 
2008). This is an issue shared by all sampling methods based on ancillary 
data such as response surface sampling (Lesch et al., 1995), Kennard- 
Stone sampling (Kennard and Stone, 1969), feature space coverage 
sampling using k-means (Brus, 2019), among others. This aspect is 
recalled here as an important limitation, but not specific to the approach 
presented in this study. 

Despite cLHS being a widely used method in the DSM community, 
several authors recently showed that using cLHS has no particular in-
terest over a Simple Random Sampling when mapping with Kriging with 
external drift or Random forest, two of the most used models in DSM 
(Wadoux et al., 2019; Wadoux and Brus, 2021). In the context of MOOS, 
it can be argued that using cLHS objective function is still interesting as 
it is combined with fieldwork time criterion. Indeed, the representa-
tiveness and fieldwork time criteria can be seen as two competing ob-
jectives. The interest of MOOS relies in finding a compromise between 
both, which is not possible with SRS that do not use a specific criterion. 

Initial tests with MOOS were undertaken as a preliminary observa-
tion to further validate the proposed approach. These first results indi-
cated that the total fieldwork time was slightly overestimated. Mainly 
because practitioners spent less time for on-site sampling than expected. 
This illustrates one of the main limitations of MOOS: the estimation of 
total fieldwork time relies heavily on the available data source and 

assumptions made to create the time cost map and determine on-site 
sampling time. The time cost map reliability depends on the quality of 
the data source to map land characteristics and derive associated access 
constraints. It also depends on the assumptions made to define each type 
of environment and the travel speed associated with each of them. This 
requires an extensive knowledge of the study zone. Moreover, on-site 
sampling time requires a good knowledge of the specific sampling 
task, to estimate accurately the time spent on each sampling site. Not 
respecting these conditions may lead to a high uncertainty in total 
fieldwork time, which can significantly affect the quality of final result, 
especially with a large sample size. Indeed, providing practitioners re-
sults with an associated uncertainty is crucial for a more realistic esti-
mation of fieldwork time. It could help them to better manage risks and 
prepare a sampling campaign with awareness. To solve this issue, un-
certainty can be incorporated into the algorithm process thanks to fuzzy- 
logic or Bayesian reasoning, as already explored in the optimization 
literature for different applications (Bahri et al., 2018; Laumanns and 
Ocenasek, 2002). Choosing among a Pareto front under uncertainty 
seems to be still an open question for the current research. However, a 
practitioner using such method for field sampling might choose sam-
pling designs that have the best trade-off between objectives as well as 
uncertainty to reduce risks. 

To better estimate total fieldwork time, another solution may be to 
dynamically update the time cost map, or on-site sampling time while 
sampling. For example, this would mean recording the actual speed (or 
range of speed) for a specific land occupation while doing the sampling, 
and updating accordingly the routes and chosen sampling sites to opti-
mize fieldwork time. Although the dynamic recommendation of new 
sampling sites was already investigated for field sampling (Ma et al., 
2020; Zhao et al., 2019), no author explored dynamic rerouting. One 
should investigate solutions solving dynamic routing problems that 
proved to improve field work parameters (Seyyedhasani and Dvorak, 
2018). Whether achieved with an on-board or remote computation unit, 
this would raise new technical challenges to solve to fit operational 
constraints. 

To summarize, while employing MOOS necessitate an initial in-
vestment in data curation (time cost map creation), knowledge of the 
study area and environmental data of quality, it serves as a valuable 
decision support tool for soil surveyors. MOOS facilitates the design of 
more efficient sampling campaigns, leading to a reduction in fieldwork 
time. 

5. Conclusion 

This study introduced a methodological approach aiming at opti-
mizing sampling designs for poorly accessible areas using a multi- 
objective optimization technique. Its primary goal was to minimize 
sampling route time between sampling sites and on-site sampling time, 
while ensuring a high level of sample representativeness that captures 
the variability of the study area. The developed method, named Multi- 
Objective Operational Sampling (MOOS), was designed to simulta-
neously optimize operational costs and a sample representativeness. 
When compared to common approaches of the literature, MOOS pre-
sents very similar results in map error but with significant sampling 
route time reduction. MOOS especially outperforms other solutions in 
terms of route time with increasing sample size. The potential of MOOS 
for decision support in choosing the best possible sampling route was 
confirmed through its application in a real-life case study performed 
over a large study in Saudi Arabia. In summary, this study proposed a 
new operational method that helps soil surveyors efficiently plan and 
conduct optimized field surveys. It offers various optimal sampling de-
signs, giving practitioners the flexibility to choose the best option based 
on the required sample quality and operational constraints. 

M. Dumont et al.                                                                                                                                                                                                                                



Geoderma 445 (2024) 116888

11

CRediT authorship contribution statement 

Maxime Dumont: Writing – review & editing, Writing – original 
draft, Visualization, Validation, Methodology, Investigation, Formal 
analysis, Data curation, Conceptualization. Guilhem Brunel: Writing – 
review & editing, Validation, Supervision, Methodology, Investigation. 
Paul Tresson: Validation, Investigation, Data curation. Jérôme Nes-
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