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Abstract

The eye is instrumental for controlling circadian rhythms in mice and human. Here, we

address the conservation of this function in the zebrafish, a diurnal vertebrate. Using lakritz

(lak) mutant larvae, which lack retinal ganglion cells (RGCs), we show that while a functional

eye contributes to masking, it is largely dispensable for the establishment of circadian

rhythms of locomotor activity. Furthermore, the eye is dispensable for the induction of a

phase delay following a pulse of white light at CT 16 but contributes to the induction of a

phase advance upon a pulse of white light at CT21. Melanopsin photopigments are impor-

tant mediators of photoentrainment, as shown in nocturnal mammals. One of the zebrafish

melanopsin genes, opn4xa, is expressed in RGCs but also in photosensitive projection neu-

rons in the pineal gland. Pineal opn4xa+ projection neurons function in a LIGHT ON manner

in contrast to other projection neurons which function in a LIGHT OFF mode. We generated

an opn4xa mutant in which the pineal LIGHT ON response is impaired. This mutation has

no effect on masking and circadian rhythms of locomotor activity, or for the induction of

phase shifts, but slightly modifies period length when larvae are subjected to constant light.

Finally, analysis of opn4xa;lak double mutant larvae did not reveal redundancy between the

function of the eye and opn4xa in the pineal for the control of phase shifts after light pulses.

Our results support the idea that the eye is not the sole mediator of light influences on circa-

dian rhythms of locomotor activity and highlight differences in the circadian system and

photoentrainment of behaviour between different animal models.

Author summary

Experiments performed in mice have established a crucial role for the eye in general and

melanopsin expressing cells in particular in the control of circadian rhythms most notably

during photoentrainment, by which circadian rhythms adapt to a changing light
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environment. In marked contrast to this, we show that in zebrafish the eye and photosen-

sitivity dependent on one of the melanopsin genes, opn4xa, which is expressed in both the

eye and the pineal gland, are largely dispensable for correct circadian rhythms. These

results provide insight that the light sensors orchestrating circadian rhythms of locomotor

activity are different between animal models revealing that vertebrates employ different

molecular/cellular circuits for photoentrainment of behavior depending on their phylog-

eny and/or temporal niche.

Introduction

Light has a profound influence on the physiology and behaviour of living organisms. In partic-

ular, it controls circadian rhythms that in turn regulate a variety of biological functions. Circa-

dian rhythms are defined by their period of approximately 24 hours. Once established, these

rhythms persist in constant conditions, which has fostered the concept of an endogenous

time-keeping mechanism known as the circadian system. Nonetheless, external cues are

required to synchronize (or ‘entrain’) circadian rhythms with the exogenous environmental

conditions. For instance, light entrains the circadian system through a process referred to as

photoentrainment (see [1] for a review).

In mouse, photoentrainment depends on a functional retina. Eye enucleated mice or mice

lacking retinal ganglion cells (RGCs) do not entrain to LD (Light/Dark) cycles and thus behave

as if they were in constant darkness [2–4]. Similarly, in human, fifty percent of blind people

exhibit circadian misalignment with the LD cycles [5–7]. In mouse, photoentrainment

depends on a specific subtype of RGCs expressing the photopigment melanopsin, which is

encoded by the Opn4 gene. These RGCs are sensitive to blue light and are referred to as

ipRGCs for “intrinsically photosensitive RGCs”. Mice mutant for Opn4 shows a diminished

phase-delay in response to a pulse of light administered at circadian time 16 (CT 16; at the

beginning of the subjective night) but entrain normally to LD cycles [8,9]. In contrast, mice

with no ipRGCs or with impaired neurotransmission from ipRGCs show no entrainment to

LD as well as no phase delay following a light pulse at CT16 [10–12]. The difference between

the phenotypes observed when only melanopsin photosensitivity is impaired compared to the

models where ipRGCs inputs to the brain are lost is thought to result from the influence of

classical rods and cone photoreceptors on ipRGCs. Indeed, both rods and cones have been

shown to play a role during photoentrainment and to signal to ipRGCs [13–19]. Thus, ipRGCs

function as a hub that integrates and transmits light information to the brain through a direct

projection to the core of the suprachiasmatic nucleus (SCN; [20–22]).This hypothalamic

nucleus functions as a ‘master clock’ that synchronizes peripheral clocks present everywhere in

the body.

In addition to photoentrainment, ipRGCs also control the increase of period length when

animals are placed in constant light (LL) [8,9] and are required for a process of maturation of

the circadian clock that sets the definitive period of locomotor rhythms in LD and in constant

darkness (DD, [23]. Finally, in addition to their crucial influence on the circadian system,

murine ipRGCs also control masking, a direct suppressive effect of light on locomotor activity.

This activity is thought to involve different ipRGC subtypes than the ones that impact the cir-

cadian system [24].

ipRGCs are well established to mediate circadian and direct effects of light on behaviour in

nocturnal mammals. Based on the conservation of the nervous system, observations made in

human blind people and the description of ipRGC populations in the diurnal rodent
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Arvicanthis ansorgei as well as in human, ipRGCs are considered to play a similar role in diur-

nal mammals [25,26]. While the zebrafish has emerged as a powerful non-mammalian diurnal

vertebrate model for chronobiology, the neural circuit controlling photoentrainment of behav-

iors has not been identified in this species. The observation that two species of cavefishes bear-

ing eye degeneration: Astyanax mexicanus and Phreatichthys andruzzii do not show robust

light-entrainable circadian locomotor activity rhythms could suggest that eye function is cru-

cial for photoentrainment of locomotor rhythms in fishes [27,28]. However, the observed cir-

cadian locomotor phenotypes could result from additional photoreceptive deficits. Indeed,

Phreatichthys andruzzii present mutations in several opsin genes that are expressed in extra-

ocular locations [28]. While the function of the eye regarding circadian rhythms of behaviors

has not been addressed in fishes, in the zebrafish model, an additional level of complexity

arises from the observation that all cell types are photosensitive [29–31]. This local photodetec-

tion could serve local functions (metabolism, transcription, cell cycle) or participate to the con-

trol of behaviors, although some level of central control is expected for orchestrating a

complex process such as behavior. As such, the relative importance of central versus peripheral

control for the photoentrainment of locomotor activity is still unclear. Finally given the wide-

spread photosensitivity of the larval zebrafish, a central control could be exerted by a photosen-

sitive brain nucleus in this species.

To begin addressing how photoentrainment is controlled in zebrafish we first tested the

role of the retina using lakritz (lak) mutants in which all RGCs fail to develop and as such no

connection exist between the eye and the CNS [32]. lak mutant larvae entrain to LD cycles and

maintain rhythms of locomotor activity with a period similar to their control siblings in con-

stant darkness (DD) and constant light (LL). While we detected no defect in phase shifting in

response to a pulse of white light produced in the early subjective night (CT16) in lak -/- lar-

vae, we observed a reduction of the phase shift induced upon a similar pulse of light at CT21 in

lak mutants. Interestingly, the induction of the clock gene cry1a upon such a pulse of light is

impaired in lak larvae compared to control siblings. The zebrafish possesses five melanopsin

genes that are all expressed in the retina, including opn4xa and opn4b in larval RGCs [33,34].

In addition, melanopsin expression is detected in extra-retinal tissues. For instance, opn4xa is

expressed in a subpopulation of projection neurons in the pineal gland. Interestingly these

opn4xa+ projection neurons function in a LIGHT ON fashion while opn4xa- projection neu-

rons function in a LIGHT OFF manner [35]. We engineered an opn4xa mutant in which the

LIGHT ON response of the pineal is impaired; opn4xa -/- larvae successfully entrain to LD

cycles and maintain rhythms of locomotor activity in constant conditions albeit with a reduc-

tion of period in LL. Pulses of white light at CT16 and CT21 induced similar phase shifts in

opn4xa mutant and opn4xa/lak double mutant larvae compared to controls. Our results sug-

gest that the function of the retina and the LIGHT ON response of the pineal gland are not

absolutely required for circadian photoentrainment in zebrafish, thus further highlighting dif-

ferences in the circadian system and circadian photoentrainment between mammals and

zebrafish.

Results

The zebrafish eye is dispensable for the establishment of circadian rhythms

Photoentrainment in mouse and human requires a functional eye. We took advantage of lak
mutant larvae that lack RGCs to address whether this role for the eye is conserved in the diur-

nal zebrafish. Homozygous lak mutant larvae lack neuronal connections between the eye and

the brain and do not display an optomotor response [32,36,37]. The gene mutated in lak,

encoding for the bHLH transcription factor ATOH7 (ATH5) is expressed exclusively in the
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developing retina [38]. The lakth241allele we used bears a point mutation and functions as a

null allele which results in a total absence of both RGCs and a neural connection between the

eye and the brain [32]. We compared the locomotor activity of homozygous lak mutants with

siblings (lak+/+ and lak+/-) in different illumination conditions. For each of these conditions,

three independent experiments were performed. Within each independent experiment, the

same number of homozygous mutants and control siblings were randomly selected and the

mean of the three experiments was plotted. In this manner, the weight of each experiment

within the final mean was identical between mutant and sibling populations.

In cycles of 14h light: 10h dark (hereafter referred to as LD), both siblings and lak homozy-

gous mutant larvae exhibit rhythms of locomotor activity that are aligned with the LD cycles

(Fig 1B). However, compared to sibling larvae, lak mutants show a specific reduction of activ-

ity during the day (Fig 1B and S1 Table). Sibling and lak mutant LD-entrained larvae placed in

constant darkness (DD) demonstrate rhythms of locomotor activity with similar levels (Fig 1C

and S2 and S3 Tables). In addition, the periods of the rhythms observed in DD did not signifi-

cantly differ between the two populations (Fig 1D). The reduction in activity observed during

the day in LD conditions thus does not affect the persistence of rhythmicity under free running

conditions in DD.

Finally, in constant light (LL) conditions, the activity of siblings and lak larvae were similar

(Fig 1E, 1F). The period of the lak mutant rhythm was slightly higher than the sibling rhythm

but this difference was not significant (siblings: 24.93 ± 1.87 hours (n = 66), lak: 25.63± 2.1

hours (n = 68); mean ± S.D; p = 0.083; Mann-Whitney). Altogether these results suggest that

retinal ganglion cells and therefore a neuronal connection between the eye and the brain are

dispensable for the establishment of circadian rhythms, their correct alignment to LD cycles

and their maintenance in free running conditions (DD or LL).

Absence of a functional eye differentially affects the induction of a phase

delay and a phase-advance following pulses of light during the subjective

night

To evaluate the role for RGCs in circadian photoentrainment, we assessed the phase-shifting

effect of a pulse of white light on locomotor activity in lak larvae during the subjective night.

We first chose to perform such a light pulse at CT16, as this was previously shown to induce a

robust phase shift of the molecular clock in cell cultures [30,39]. After entraining for 5 LD

cycles, larvae from lak+/- incrosses were further reared in DD and subjected to a pulse of light

during the second night in DD (“PD larvae”). Their activity was compared with the activity of

larvae kept in the dark for 4 days (“DD larvae”). To analyze if a phase shift was induced, we cal-

culated the difference of phase between the two last days (“after the light pulse”) and the two

first days (“before the light pulse”), a value we refer to as “Δphase” (Fig 2A). We found that a

2-hours pulse of light at CT16 induced a phase delay of locomotor activity rhythms in larvae,

as the Δphase of PD larvae was higher than the one of DD larvae (Fig 2B and Table 1). When

the difference between the Δphase of pulsed larvae minus the Δphase of larvae placed in DD

was calculated, it suggests a phase delay of 2.94 hours on average in PD larvae. Finally, we

determined that control and lak mutant larvae exhibit a similar phase shift in locomotor activ-

ity (Fig 2C and Table 1) suggesting that RGCs are not necessary for the circadian photoen-

trainment of locomotor activity to a pulse of light at the beginning of the subjective night

(CT16).

We next performed a pulse of light at the end of the subjective night. A one- hour pulse

induced a phase advance that could be detected during the second circadian cycle after the

pulse (Fig 2D and 2E). Since this phase shift is not seen during the first cycle, we analyzed
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Fig 1. Locomotor activity of larvae devoid of RGCs in LD, DD and LL. A) Experimental design of LD, DD and LL experiments. White rectangles represent

the day period, while black rectangles represent the night period, light grey rectangles represent the subjective day period and dark grey rectangles the

subjective night. For each experiment, larvae are entrained for 5 LD cycles and their locomotor activity is tracked either in LD (LD), constant darkness (DD) or

constant light (LL) the larvae are therefore 5dpf at the beginning of locomotor activity measurements. B) Average distance moved (mm/min) In LD. Merged

data from 3 independent experiments represented in 10 min bins. Error bars represent SE. The distance moved is lower in lak larvae than control sibling larvae

during the 1st (p = 0.008) and 2nd days (p = 0.005) but not during the 3rd day (p = 0.13) nor during the night (p = 0.42, p = 0.51 and p = 0.57 for the 1st, 2nd

and 3rd nights. The lack of a phenotype of lak larvae in the third light phase could be linked to the overall state of the larvae as they are not fed during the

experiment; Mann-Whitney two-tailed test), see S1 Table. * P<0.05, **p<0.01, ***p<0.005. C) Average distance moved in DD. Merged data from 3

independent experiments represented in 10 min bins. Error bars represent SE. No differences are detected between the distance moved of siblings versus lak
larvae using a Mann-Whitney two-tailed test for each subjective night or day, see S2 Table. D) Estimation of the periods using the FFT-NLLS method.

Calculations were made on four complete cycles in DD. The mean period is not significantly different between sibling and lak larvae in DD (control:

25.08 ± 1.59 hours (n = 114), lak: 24.95 ± 1.44 hours (n = 83); mean ± S.D; p = 0.32; Mann-Whitney two-tailed test, sibling vs lak larvae). Each grey point

represents a single larva. E) Average distance moved in LL. Merged data from 3 independent experiments represented in 10 min bins. Error bars represent SE.
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larvae over an additional cycle in order to obtain enough data to perform a robust phase calcu-

lation. The difference between the Δphase of pulsed larvae (PA) minus the Δphase of larvae

placed in DD alone suggests that this paradigm induced a phase advance of at least 3.7 (1.8

+1.9) hours on average. While lak -/- larvae showed a phase advance upon a pulse of light at

CT21 (Fig 2F and Table 1), this phase shift was weaker than that induced in control larvae

(Δphase = -1.8 ± 7.84 for siblings versus Δphase = -0.56 ± 4.49 for lak -/- larvae). Although this

difference in phase shift between lak and siblings is difficult to observe on the graph

F) Estimation of the periods using the FFT-NLLS method. Calculations were made on three complete cycles in LL. Mean± sd (in hours) is represented. Each

grey point represents a larva, n = 66 siblings, n = 68 lak larvae.

https://doi.org/10.1371/journal.pgen.1011172.g001

Fig 2. Larvae devoid of RGCs still photoentrain to pulses of white light at CT16 and CT21. A) Experimental design of phase delay (PD) experiments. White

rectangles represent the day or light pulse period, black rectangles represent the night period and dark grey rectangles represent the subjective day. For each

experiment, larvae are entrained for 5 LD cycles, the larvae are therefore 5dpf at the beginning of locomotor activity measurements. Locomotor activity is

tracked either in constant darkness for 4 days (DD) or tracked in constant darkness for 4 days and subjected to a 2-hours pulse of light during the night of the

2nd day of constant darkness at CT16 (PD). The phase of locomotor activity is calculated for each larva before and after the timing of the pulse for DD and PD

experiments and the Δphase (phase after the pulse–phase before the pulse) is calculated. B) Average distance moved by control larvae (mm/min over 10min) in

DD and PD experiments. Mean ± SE. The Δphase calculated using the FFT-NLLS method of PD larvae is higher than the one of DD larvae (p<0.0001, Mann-

Whitney two-tailed test), showing that the pulse of light induced a phase delay. C) Average distance moved merged from PD experiments represented in 10

min bins. Mean ± SE. The Δphase of control versus lak larvae calculated using the FFT-NLLS method is not significantly different (p = 0.24, Mann-Whitney

two-tailed test). lak show lower levels of activity during the light pulse (p = 0.03, Mann-Whitney two-tailed test). D) Experimental design of phase advance (PA)

experiments. The iconography is similar to A). PA-pulsed larvae were subjected to a one-hour pulse of light at CT21. E) Average distance moved of control

larvae (mm/min over 10min) in DD and PD experiments Mean ± SE. The Δphase calculated using the FFT-NLLS method is negative in PA-pulsed larvae and

statistically different from DD larvae (p<0.0001, Mann-Whitney two-tailed test), showing that the pulse of light induced a phase advance. F) Average distance

moved merged from PA experiments represented in 10 min bins. Mean ± SE.

https://doi.org/10.1371/journal.pgen.1011172.g002
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representing all the animals, it is more apparent when comparing only the records of animals

for which a phase was successfully extracted before and after the pulse (Figs 2F and S1). These

results suggest that a phase advance can occur in absence of RGCs although the eye contributes

to photoentrainment in this context. Altogether, our results suggest that although phase

advances and delays can occur in absence of RGCs, the absence of these cells specifically affect

the response in a phase advance paradigm.

To analyse a role for RGCs during masking we calculated the activity of control and lak lar-

vae during the pulses of light performed at CT16 and CT21. Interestingly, lak larvae showed a

reduced level of activity compared to control larvae during the pulse performed at CT16 but

not at CT21 (CT16: Fig 2C, siblings: 28.33 ± 19.26 mm/min over 10min (n = 62), lak:

21.45 ± 12.27 mm/min over 10min (n = 51); p = 0.03; Mann-Whitney two-tailed test; CT21:

Fig 2F siblings: 16.51 ± 10.9 mm/min over 10min (n = 51), lak: 17.17 ± 7.85 mm/min over

10min (n = 62); p = 0.75). These results showed that RGCs are involved in masking in the zeb-

rafish larvae but in a circadian dependent manner.

lak mutation affects the induction of cry1a following a pulse of white light

at CT21

To decipher the molecular mechanism underlying the reduction of a phase advance induced

by a pulse of white light at CT21 in lak larvae, we looked at the expression of per2 and cry1a in

pulsed and control (‘Dark’) embryos at CT22. Indeed, these two genes are strongly induced by

light and thought to participate in the molecular mechanism of photoentrainment [40–43].

Control embryos show expression of per2 in the telencephalon independently of the adminis-

tration of a light pulse (Fig 3A and 3B) and lak larvae show a similar expression compared to

control (Fig 3C and 3D). In control and pulsed embryos, three different patterns of cry1a can

be distinguished (Fig 3E, 3F and 3G): some larvae show no expression (Fig 3E), some exhibit a

mild expression in the tectum and expression in the pineal (Fig 3F) while other larvae show a

strong expression in the tectum, the eye, the telencephalon, habenulae and pineal (Fig 3G). In

absence of a light pulse, both control and lak larvae show an absence of detectable expression

of cry1a, or more rarely a mild expression. In contrast the administration of a light pulse leads

to 100% larvae exhibiting a high level of expression, suggesting that cry1a is induced by a light

pulse at CT21. This induction is much less important in lak larvae with only 14.3% larvae

showing a strong expression pattern after a pulse of light.

Altogether our results suggest that cry1a and not per2 is induced after a pulse of light at

CT21 and that this cry1a induction is impaired in lak larvae.

Table 1. Quantification of the phase shifts in control siblings versus lak-/- (lak) larvae kept in DD or submitted to

pulses of white light at CT16 or CT21. The Δphase is the difference between the phase of the two last cycles and the

phase of the two first cycles. A phase shift is observed in DD owing to the period that is close to 25 hours which gener-

ates a ~1 hour-shift every cycle. Upon a pulse of light at CT16 or CT21 a statistical difference is observed between DD

and pulsed sib larvae as well as lak and sib larvae when the pulse of light is applied at CT21 (****, p<0,0001; *, p<0,05

using a Mann-Whitney two-tailed test). For each type of paradigm, (DD, PD and PA) three independent experiments

were pooled.

Condition Δphase Mean±S.D (n) P value Mann-Whitney two-tailed test

DD sib 1.9±2.56 (73)

PD-pulsed sib 4.84±1.90 (46) Sib: PD vs DD: ****
PD-pulsed lak 5.72±2.32 (37) PD lak vs sib: 0.24

PA-pulsed sib -1.83±7.84 (86) Sib: PA vs DD: ****
PA-pulsed lak -0.56±4.49 (29) PA lak vs sib: *
https://doi.org/10.1371/journal.pgen.1011172.t001
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opn4xa function contributes to endogenous period setting in LL

As circadian rhythms of locomotor activity are established and photoentrain in absence of

RGCs, albeit with less efficiency, we wondered if opn4xa+ projection neurons present in the

pineal gland could play a role in the establishment and photoentrainment of circadian rhythms

[35]. We, thus, generated a mutant allele for opn4xa via CRISPR/Cas9 genome editing using

guide RNAs targeting the second coding exon. Amongst various alleles that were generated,

Fig 3. cry1a but not per2 expression is induced upon a pulse of white light at CT21 (A-G) Expression of per2 (A-D) or cry1a (E-G) at CT22 in 7 days old

larvae. Before fixation for in situ at CT 22 the larvae were treated exactly like in the experiment described in Fig 2D, meaning that they were not

depigmented before the light pulse which was administered from CT21 and CT22 (CT 22 pulse). In parallel, larvae from the same litter were maintained

in the dark and fixed at CT22 (CT 22 dark). (A-D) The white ellipse identifies the pineal gland where no expression is observed. ctl DARK: n = 3, ctl

PULSE n = 7, lak DARK: n = 4, lak PULSE: n = 7. Scale bar: 50 μm. (E-G) Three different expression patterns can be identified with the cry1a probe, The

grey ellipse surrounds the pineal which expresses cry1a in the ‘mild’ and ‘high’ patterns, the two dark ellipses in G surrounds the habenulae which

express cry1a in the ‘high’ pattern. Tel = Telencephalon, Tec = Optic tectum. Scale bar: 200 μm. (H) Countings of the repartition of Dark and Pulsed 7

days old larvae at CT22 stained with the cry1a probe, ctl DARK: n = 10, ctl PULSE n = 4, lak DARK: n = 5, lak PULSE: n = 7. Ctl DARK versus Ctl

PULSE: p = 0.0010, lak DARK versus lak PULSE: p>0.9999, ctl DARK versus lak DARK: p>0.9999, ctl PULSE versus lak PULSE: p = 0.0182 using

Fisher test.

https://doi.org/10.1371/journal.pgen.1011172.g003
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we selected an allele that displays a 17 nucleotides insertion for further analysis (Fig 4A). The

protein encoded from this allele is predicted to contain a premature stop codon (S2A Fig) lead-

ing to a truncation of the protein in the middle of the second transmembrane domain (S2B

Fig), which should result in a protein devoid of a G protein interaction domain. We have veri-

fied that the two alternative ORFs also generate a truncation from the mutated allele (S2C Fig)

and that the use of an alternative ATG present in both the wt and the mutant allele also leads

to a truncation (S2D Fig). Finally, we have used Spliceator as to verify that the mutation does

not generate alternative splicing sites (Spliceator (lbgi.fr)) We therefore predicted production

of a null allele. Homozygous animals were viable and fertile.

We first looked at the expression of opn4xa in the retina of opn4xa+/+ and opn4xa -/- lar-

vae. The RGC layer contained an average of 33 to 44 opn4xa+ cells (S3A–S3E Fig), which num-

ber did not significantly vary between the different time points suggesting an absence of diel

rhythm in this layer. Surprisingly, we observed a previously undescribed expression of opn4xa
in the interneuron layer with numerous cells at 4dZT0 and 5dZT0 and very few cells at the

other ZT time points (S3A–S3D and S3F). The number of opn4xa+ cells in both the RGC and

the interneuron layer are normal in the opn4xa -/- retina (Figs Fig 4B, 4C, S4A and S4B RGC

layer: opn4xa +/+: 26.17 ± 7.33, n = 6; opn4xa-/-: 23.8±6.92, n = 10; p = 0.42 using a Mann-

Whitney two-tailed test; interneurons layer: opn4xa +/+: 26.33± 11.5; opn4xa-/-: 22.9±7.19;

p = 0.63 using a Mann-Whitney two-tailed test). Similarly, we have observed that the number

of opn4xa + pineal cells were similar in opn4xa +/+ and opn4xa -/- larvae (Fig 4D and 4E

(opn4xa +/+: 4.33±1.51 n = 6, opn4xa-/-: 4.75± 1.98 n = 9, p = 0.85 using a Mann-Whitney

two-tailed test). In addition, pineal opn4xa+ cells express the Wnt effector tcf7 [35]. At 6 days

post fertilization, the opn4xa-/- pineal gland displayed normal expression of tcf7 (opn4xa +/+:

5.5 ± 2,5 (n = 4), opn4xa-/-: 6± 3 cells (n = 3); mean ± S.D; S4C and S4D Fig). Upon illumina-

tion with a 30 min pulse of light, fos is expressed in 2–5 cells of the pineal gland (Fig 4D). We

have previously shown that this expression corresponds to opn4xa+ cells [35]. On the other

hand, fos expression is virtually absent in the pineal gland of opn4xa-/- embryos after a 30 min

pulse of light (Fig 4D; at 3 days opn4xa +/+: 4.8 ± 0.8 (n = 9), opn4xa-/-: 0.25 ± 0,7 cells (n = 8)

per pineal; at 7 days opn4xa +/+: 5.9 ± 3,5 (n = 9) opn4xa-/-: 0.4 ± 0,7 cells (n = 13); mean ± S.

D). Altogether our results suggest that opn4xa-/- larvae contained normal numbers of opn4xa
+ cells in the retina and the pineal gland but have lost expression of fos following a 30 mn light

pulse. We therefore used the opn4xa mutant as a model in which the pineal ON response is

impaired.

To identify a role for opn4xa in the control of circadian rhythms, we analysed locomotor

behaviour of opn4xa-/- larvae under various illumination regimes. Similar to the analysis we

performed in lak larvae, for each of these conditions, three independent experiments were per-

formed. Within each independent experiment, the same number of opn4xa -/- and opn4xa
+/+ siblings were randomly selected and the mean of the three experiments was plotted. We

found that opn4xa -/- larvae still entrained to LD cycles and did not show any difference in lev-

els of locomotor activity when compared to their opn4xa +/+ siblings (Fig 5B and S5 Table). In

addition, opn4xa-/- larvae were able to maintain rhythms of locomotor activity with a similar

frequency and period as wild-type larvae in DD (Fig 5C and 5D and S6 Table). opn4xa-/- lar-

vae placed in LL still showed circadian rhythms of locomotor activity (Fig 5E and 5F) but with

several alterations. First, opn4xa-/- larvae were significantly more active during the first night

(S8 Table). More importantly, in LL the period was shorter for opn4xa-/- larvae compared to

controls using both the FFT-NLLS (opn4xa+/+: 25.31 ± 3.29 hours (n = 65), opn4xa-/-:
24.71 ± 3.32 hours (n = 64); p = 0.041; Mann-Whitney two-tailed test) and mFourfit methods

(opn4xa+/+: 25.84 ± 1.60 hours (n = 66), opn4xa-/-: 25.12 ± 1.739 hours (n = 66); p = 0.012).

Altogether these results suggest that opn4xa contributes to endogenous period setting in LL.
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Fig 4. Mutation in opn4xa abolishes light sensitivity in pineal opn4xa+ cells (A) Scheme showing the 5’ part of the opn4xa locus and in

particular the second exon targeted by the CRISPR guide RNA (target sequence is highlighted in red) as well as the WT and mutant exon2

sequences. (B-C) Counts of the number of opn4xa+ in the RGC layer (B) and the interneuron layer of the retina (C) after in situ hybridization at 4

days (ZT0) (D) Expression of opn4xa in the pineal at 4 days (ZT0) (upper panel) and expression of fos at 3 days after 30 min of illumination (lower

panel) Red arrowheads point to individual labelled pineal cells. Dorsal views are shown, anterior is up (E) Counts of the number of opn4xa
+ pineal cells. Scale bars respectively represent 10 μm (B) and 5 μm (C-D). n.s: not significant, see results section for details.

https://doi.org/10.1371/journal.pgen.1011172.g004
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Fig 5. Locomotor activity of larvae devoid of opn4xa-mediated photosensitivity (opn4xa-/-) in LD, DD and LL. A) Experimental design of LD, DD and LL

experiments. White rectangles represent the day period, black rectangles represent the night period, dark grey rectangles represent the subjective day period

and light grey rectangles the subjective night. For each experiment, larvae are entrained for 5 LD cycles and their locomotor activity is tracked either in LD

(LD), constant darkness (DD) or constant light (LL) the larvae are therefore 5dpf at the beginning of locomotor activity measurements. B) Average distance

moved (mm/min over 10min) of 3 independent experiments in LD. Mean ± SE. The distance moved is not different in opn4xa+/+ and opn4xa-/- larvae during

the 1st (p = 0.73), 2nd days (p = 0.50) and 3rd days (p = 0.07) nor during the 1st (p = 0.30), and 2nd nights (p = 0.27) (S4 Table). A lower level of activity is

found in opn4xa-/- larvae during the 3rd night (p = 0.01) but is visually clear in only one of the 3 independent experiments (Mann-Whitney two-tailed test). C)

Average distance moved (mm/min over 10min) of 3 independent experiments in DD. Mean ± SE. D) Estimation of the periods using the FFT-NLLS method

calculated over four cycles. The mean period is not significantly different between control and opn4xa+/+ and opn4xa-/- larvae in DD (opn4xa+/+: 25.05 ± 1.43

hours (n = 64), opn4xa-/-: 25.35 ± 1.60 hours (n = 60); mean±SD; p = 0.29; Mann-Whitney two-tailed test). Mean± sd (in hours) is represented. Each grey point
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Since opn4xa-/- larvae showed a slight hyperactivity during the first night as well as a subtle

period phenotype in LL, we began to analyse the possible molecular mechanisms behind these

effects using RTqPCR (Fig 6). Analysis of clock gene expression in opn4xa-/- versus wt back-

ground reveal normal rhythms of clock genes expression in LD except for a slight increase in

tefa and cry1a in opn4xa -/- larvae (Fig 6B and 6D). In LL after training, the expression of

bmal1a was higher in opn4xa -/- than in wt larvae (Fig 6A). Interestingly, the expression of

some Bmal1a direct targets (cry1a, dec1) was also increased (Fig 6B and 6C) while expression

of nr1d2a, per1a, per1b, per2 remain unchanged (Fig 6E-H). Overall, only subtle and specific

molecular phenotypes were detected in opn4xa -/- larvae in LL. In addition, their relation to

the locomotor activity phenotypes is not clear.

opn4xa function is dispensable for photoentrainment to a pulse of white

light during the subjective night

We next assessed the ability of pulses of white light at CT 16 and CT21 to induce phase shifts

in an opn4xa-/- background. We observed that under such conditions opn4xa-/- larvae shift

their activity to the same extent as their wild-type siblings (Fig 6 and Table 2). Furthermore,

opn4xa-/- larvae did not show any difference in the level of activity during the pulses of light at

CT16 or CT21 compared to wildtype siblings, implying that photosensitivity controlled by

opn4xa is not required for masking (CT16, Fig 7B, opn4xa+/+: 20.30 ± 10.03 mm/min over

10min (n = 58), opn4xa-/-: 19.42 ± 10.76 mm/min over 10min (n = 58); p = 0.56; Mann-Whit-

ney two-tailed test. CT21: Fig 7D, opn4xa+/+: 12.85 ± 6.80 mm/min over 10min (n = 44),

opn4xa-/-: 16.54 ± 8.55 mm/min over 10min (n = 44); p = 0.47). These results show that the

intrinsic photosensitivity of opn4xa expressing cells is not necessary for circadian photoen-

trainment or masking.

Since neither the absence of RGCs (Fig 2) nor the loss of opn4xa-dependent photosensitiv-

ity (Fig 7) abolished the capacity of larvae to photoentrain to pulses of light performed in the

early or late subjective night, a possible compensation could occur between RGCs and opn4xa
expressing cells of the pineal gland. To begin addressing this question, we tested photoentrain-

ment properties of lak-/-; opn4xa-/- larvae (referred to as ‘double’). Compared to lak simple

mutants, double mutants did not show an attenuated phase shift response to pulses of light at

CT16 or CT21 (Fig 8). This suggests that other photosensitive cells mediate photoentrainment

in zebrafish.

Finally, lak and lak/opn4xa double mutant larvae show similar levels of activity during the

light pulse both at CT 16 and CT21 (CT16: lak: 18.23 ± 8.65 mm/min over 10min (n = 27),

double: 19.79 ± 12.39 mm/min over 10min (n = 27); p = 0.94, CT21: lak: 17.46 ± 6.65 mm/min

over 10min (n = 27), double: 16.8 ± 8.05 mm/min over 10min (n = 27), p = 0.42, Mann-Whit-

ney two-tailed test). This suggests an absence of redundancy between RGC and opn4xa photo-

sensitivity for masking of locomotor activity.

Discussion

Experiments performed in mouse have established a role for melanopsin expressing cells of

the eye in mediating light input to the circadian rhythm in mammals. In addition to the eye,

non-mammalian vertebrates exhibit several extraocular sites of photoreception, raising the

represents a larva. E) Average distance moved (mm/min over 10min) of 4 independent experiments in LL. Mean ± SE. opn4xa-/- are more active than controls

during the first night (p = 0.02, see S6 Table). F) Estimation of the periods using the FFT-NLLS method calculated over three cycles. The mean period is

significantly different between opn4xa+/+ and opn4xa-/- larvae in LL. Mean± sd (in hours) is represented. Each grey point represents a larva.

https://doi.org/10.1371/journal.pgen.1011172.g005
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question of the relative impact of those different inputs. Herein we show that circadian

rhythms of locomotor activity are established and photoentrain in the absence of RGCs in zeb-

rafish larvae. Furthermore, our results show that the absence of a functional eye affects mask-

ing, but in a circadian dependent manner. As zebrafish also possesses melanopsin expressing

cells in their pineal gland [35], we engineered an opn4xa mutant line to address the role of

opn4xa-dependent photosensitivity in this structure. Our data suggests that opn4xa is neither

Fig 6. opn4xa -/- larvae show subtle modifications of a few clock genes in LL: RTqPCR performed on pools of 15

larvae for the gene indicated at the top of the figures. Mean expression relative to beta actin ± s.d. Three pools of

larvae were used for each time point. ‘wt’ refers to pool of larvae from crosses of opn4xa+/+ animals (siblings of the

opn4xa-/- fishes used for the opn4xa-/-points). Larvae were exposed to LD cycles (until d6 21h) followed by a LL cycle

(from d6 21h to d7 18h). The grey rectangles represent the night phase, the yellow rectangles represent the subjective

night in the LL cycle. The data were analysed using two-way ANOVAs which revealed time-genotype interaction for

bmal1a and cry1a, as well as statistical differences between genotypes for specific time points using Bonferroni post-

hoc tests. p< 0.05; ** p< 0.001; ***p< 0.0005.

https://doi.org/10.1371/journal.pgen.1011172.g006
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involved in masking nor in the establishment/photoentrainment of circadian rhythms. While

our analysis does not support a redundant role for RGCs and opn4xa photosensitivity during

photoentrainment of circadian rhythms it reveals a subtle function of opn4xa-dependent

photosensitivity, possibly in the pineal, in the control of period length of circadian rhythms in

constant light.

Subtle defects in opn4xa-/- mutants in LL

While no differences in period or amplitude of locomotor rhythms are observed for opn4xa
mutant larvae in DD, subtle alterations are observed in LL. Abrogation of opn4xa activity

Table 2. Quantification of the phase shifts in opn4xa+/+ versus opn4xa-/- larvae kept in DD or submitted to a 2

hours pulse of white light at CT16. As for Table 1, the Δphase is the difference between the phase of the two last cycles

and the phase of the two first cycles. A Phase shift was observed in DD owing to the period that is close to 25 hours

which generates a ~1 hour-shift every cycle. Phases were calculated with the FFT-NLLS method. Upon a pulse of light

at CT16 or CT21 a statistical difference was observed between DD and pulsed ctrl larvae (****, p<0.0001 using a

Mann-Whitney two-tailed test). In both phase delays (PD, pulse of light at CT16) and phase advance paradigms (PA,

pulse of light at CT21), no statistical difference between opn4xa+/+ and opn4xa-/- was observed using a Mann-Whit-

ney two-tailed test. For each type of paradigm (DD, PD and PA) three independent experiments were pooled.

Condition Δphase Mean±S.D (n) P value Mann-Whitney two-tailed test

DD opn4xa +/+ 1.64±2.92 (39)

PD-pulsed opn4xa +/+ 4.73±2.63 (36) opn4xa +/+: PD vs DD: ****
PD-pulsed opn4xa -/- 5.23±4.81 (35) PD opn4xa -/- vs opn4xa +/+: 0.32

PA-pulsed opn4xa +/+ -2.61±4.05 (60) opn4xa +/+: PA vs DD: ****
PA-pulsed opn4xa-/- -2±2.88 (20) PA opn4xa -/- vs opn4xa +/+: 0.39

https://doi.org/10.1371/journal.pgen.1011172.t002

Fig 7. Larvae devoid of opn4xa-mediated photosensitivity (opn4xa-/-) still photoentrain to pulses of light at CT16 and CT21. A) Experimental design of

phase shift experiments. White rectangles represent the day or light pulse period, black rectangles represent the night period and dark grey rectangles represent

the subjective day. For each experiment, larvae are entrained for 5 LD cycles the larvae are therefore 5dpf at the beginning of locomotor activity measurements.

Locomotor activity is tracked either in constant darkness for 4 days (DD) or tracked in constant darkness for 4 days and subjected to a 2-hours pulse of light

during the night of the 2nd day of constant darkness (PD). The phase of locomotor activity is calculated for each larva before and after the timing of the pulse

for DD and PS experiments and the Δphase (phase after the pulse–phase before the pulse) is calculated. B) Average distance moved (mm/min over 10min) of 3

independent PD experiments. Mean ± SE. The Δphase of opn4xa+/+ and opn4xa-/- larvae calculated with the FFT-NLLS method is not significantly different.

opn4xa+/+ and opn4xa-/-show similar levels of activity during the light pulse (p = 0.56, Mann-Whitney two-tailed test). C) Experimental design of phase

advance (PA) experiments. The iconography is similar to A). PA-pulsed larvae were subjected to a one-hour pulse of light at CT21. D) Average distance moved

(mm/min over 10min) of 3 independent PA experiments. Mean ± SE. The Δphase of opn4xa+/+ and opn4xa-/- larvae calculated with the FFT-NLLS method is

not significantly different (Mann-Whitney two-tailed test).

https://doi.org/10.1371/journal.pgen.1011172.g007
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reduces the increase of period length observed when larvae are placed in LL. A similar defect is

observed in Opn4-/- mice placed in constant light condition [8,9] suggesting this could be a

conserved function of melanopsin. Interestingly, this phenotype is not observed in lak mutant

suggesting that in zebrafish this melanopsin function might involve the pineal gland rather

than the eye. While the effect of opn4xa mutation on period length in LL is subtle, such an

effect is not at all observed in DD. We see two possible hypotheses. First, opn4xa homozygous

larvae could sense less light than controls and since period shows a reverse correlation with the

intensity of light exposure [44,45], it could result in a lower period. A second hypothesis is that

Fig 8. Larvae devoid of RGCs and opn4xa-mediated photosensitivity still entrain to pulses of light at CT16 and CT21. A) Experimental design of phase

shift experiments. White rectangles represent the day or light pulse period, black rectangles represent the night period and dark grey rectangles represent the

subjective day. For each experiment, larvae are entrained for 5 LD cycles the larvae are therefore 5dpf at the beginning of locomotor activity measurements.

Locomotor activity is tracked either in constant darkness for 4 days (DD) or tracked in constant darkness for 4 days and subjected to a 2-hours pulse of light

during the night of the 2nd day of constant darkness (PD). The phase of locomotor activity is calculated for each larva before and after the timing of the pulse

for DD and PS experiments and the Δphase (phase after the pulse–phase before the pulse) is calculated. B) Average distance moved (mm/min over 10min) of 3

independent PD experiments (n = 27 for lak -/- referred as lak and n = 27 lak-/-; opn4xa-/- larvae referred as ‘double’). Mean ± SE. The Δphase of lak and

double larvae calculated with the FFT-NLLS method are not significantly different (see Table 3). C) Experimental design of phase advance (PA) experiments.

The iconography is similar to A). After 5 training cycles in LD, PA-pulsed larvae were subjected to a one-hour pulse of light at CT21. D) Average distance

moved (mm/min over 10min) of 3 independent PA experiments (n = 27 for lak and n = 27 double larvae). Error bars represent SE. The Δphase of lak and

double larvae calculated with the FFT-NLLS method are not significantly different (see Table 3).

https://doi.org/10.1371/journal.pgen.1011172.g008

Table 3. Quantification of the phase shifts in lak versus double mutant larvae kept in DD or submitted to pulses

of white light at CT16 or CT21. As for Tables 1 and 2, the Δphase is the difference between the phase of the two last

cycles and the phase of the two first cycles. A Phase shift is observed in DD owing to the period that is close to 25 hours

which generates a ~1 hour-shift every cycle. Phases were calculated with the FFT-NLLS method (biodare2.ed.ac.uk).

Upon a pulse of light at CT16 or CT21 a statistical difference is observed between DD and pulsed lak larvae (****.
p<0.0001 using a Mann-Whitney two-tailed test). In both phase delays (PD, pulse of light at CT16) and phase advance

paradigms (PA. pulse of light at CT21), no statistical difference between lak and double larvae is observed using a

Mann-Whitney two-tailed test. For each type of paradigm DD, PD and PA three independent experiments were

pooled.

Condition Δphase Mean±S.D (n) P value Mann-Whitney two-tailed test

DD lak 2.143±2.09 (31)

PD-pulsed lak 5.72±2.32 (37) lak: PD vs DD: ****
PD-pulsed double 4.90±2.23 (14) PD double vs lak: 0.33

PA-pulsed lak -0.57±4.49(29) lak: PA vs DD:****
PA-pulsed double -3.16±4.9 (16) PA double vs lak: 0.24

https://doi.org/10.1371/journal.pgen.1011172.t003
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the opn4xa -/- clock is less stable in LL compared to DD. Indeed, we observed a stronger

dampening of the circadian rhythms in LL compared to DD especially when four cycles were

filmed and despite a moderate light intensity (20 lux). Along the same line, the variation

observed for the periods are higher in LL than in DD for both control and mutant larvae sug-

gesting again less robustness in clock activity in constant light conditions.

While we have analysed the expression of clock genes our results did not yield a clear

molecular explanation for the opn4xa -/- period phenotype in LL. Indeed opn4xa -/- larvae

only show a modest increase in Bmal1a, cry1 and dec1 expression in LL (Fig 5). A loss of dec1
using morpholino antisense technology suggests a role for this gene in controlling circadian

rhythms of locomotor activity induced by a light pulse but a role for this gene in period control

in LL has not been addressed [46]. Along the same line a double mutant line for per2 and cry1a
exhibit deficits in the generation of rhythms following a light pulse but the role of cry1a during

period control in LL has not been addressed [47]. In contrast, per2 regulates period length in

constant light but its transcription is not affected in opn4xa-/- larvae ([48,49]; Fig 6G)); it is

however possible that affecting the level of CRY1A could modify PER2 activity therefore lead-

ing to the observed phenotype. Further experiments will be required to address this question.

RGCs, but not opn4xa, are involved in masking

Compared to their control siblings, we found lak mutant larvae to be less active during the

light phases of LD cycles as well as when subjected to a pulse of light at CT16 but not at CT21.

This reveals a role for RGCs in positive masking in zebrafish larvae as well as a circadian con-

trol of this masking activity. It is important to note that while we refer to this as an effect of

“masking”, it is at this step impossible to distinguish whether the lak mutation impairs the

arousing effect of visual stimuli or the arousing effect of light itself. Moreover, masking is not

completely abolished in lak mutant larvae: in LD as well as during a light pulse at CT 16, lak
mutant larvae still show some masking, albeit at a reduced level and masking is not affected in

these larvae at CT21. Could opn4xa photosensitivity from the pineal compensate for the lack

of RGCs? opn4xa -/- larvae display no defect in masking of locomotor activity in LD or during

a pulse of light suggesting that opn4xa-dependent photosensitivity is dispensable for this type

of masking. In addition, lak; opn4xa double mutants show a similar activity to lak-/- larvae

during a pulse of light at CT16 and CT21, suggesting that there is no redundancy between the

eye and opn4xa+ cells in the pineal for masking control. Other photosensitive cells are thus

involved in this process. Among these could be the classical photoreceptors of the pineal or

deep brain photoreceptors, such as those involved in the locomotor response to a loss of illu-

mination [50].

A Differential Role for RGCs in controlling phase advance versus phase

delays in the rhythms of locomotor activity?

lak mutant larvae show a reduced phase-advance but no defect in a phase delay paradigm

which could indicate a specific role for the RGC in controlling photoentrainment in a phase-

advance context. On the other hand, lak mutant larvae display less aggregated pigment gran-

ules than siblings (S5 Fig). Could this impact the way light penetrates their body? While this

remains a possibility, we do not think it is a very likely hypothesis since 1. even in lak mutant

there are rather wide pigment-free areas over the fish brain and in particular over the pineal

(S5B Fig) 2.light can still penetrate from the side of the body as pigments are found only on the

dorsal and ventral most epidermis (S5C Fig). Experiments aiming at targeting different RGC

subpopulations will help consolidate the role of the eye in controlling phase advances as well as

identifying downstream circuits.
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Finally, our results show an induction of cry1a upon a pulse of light at CT21 and a strong

reduction of this induction in lak larvae, which suggests an involvement of this gene in the

molecular mechanism of phase advance induction, as previously suggested for the molecular

rhythms in cell cultures [39]. In contrast, per2 was not induced in our phase advance paradigm

despite previous evidences for per 2 induction by light at different developmental stages and

circadian time [43]. Our results thus highlight an additional layer of complexity in the mecha-

nisms of per2 regulation by light.

RGCs and opn4xa are largely dispensable for shifting circadian rhythms of

locomotor activity in response to a pulse of white light

The present study shows that neither the eye nor opn4xa mediated photosensitivity in the

pineal gland is absolutely required for the development of circadian rhythms and circadian

photoentrainment. The absence of a strong requirement for the eye to control the circadian

system in zebrafish is surprising given that Astyanax mexicanus blind cavefishes are arrhyth-

mic in DD [27] while Phreatichthys andruzzii adult cavefishes, which also exhibit a complete

eye degeneration, and are arrhythmic in LD when fed at random times [28]. In light of our

data, we propose that apart from the eye, other photosensitive structures might be affected in

these other fish species. This in turn brings the question of which structure(s) relay light infor-

mation to control circadian rhythm in fishes and other non-mammalian animals? The pineal

gland, with its classical photoreceptors and opn4xa+ projection neurons is an appealing candi-

date [51]. Strategies aiming at genetically killing this structure or impairing its activity will

surely help unravelling its function. Studies describing the effect of surgical pinealectomy have

been reported in a number of non-mammalian vertebrates. The phenotypes induced seem to

depend strongly on the species. For instance, pinealectomy abolishes rhythms in the stinging

catfish but not in the amur catfish or the lake chub. Interestingly, in species where rhythms are

maintained upon pinealectomy a change in period can occur (see [52] for a review). A similar

variety of phenotypes are induced upon pinealectomy in reptiles or birds. In addition to the

pineal gland, reptiles have a parietal eye, a structure that is developmentally and spatially

related to the pineal gland. Interestingly simultaneous removal of the eye, the pineal gland and

the parietal eye in two species of lizards (P. Sicula and S. olivaceous), does not impair rhythms

of locomotor activity while on the contrary these rhythms are lost if in addition to this triple

ablation injection of dark ink between the skin and the skull is performed [53]. Similarly,

experiments in songbirds suggest the existence of additional photosensitive structures located

in the brain that control photoentrainment [54]. Altogether these results highlight the exis-

tence of other brain structures mediating light inputs on the circadian system. Interestingly,

melanopsin expression has been described in other brain areas in the zebrafish larva: opn4a is

expressed within the presumptive optic area, opn4b is found in the ventral forebrain and the

thalamic region, and opn4.1 is detected in a specific domain located in the ventricular region

at the junction between the caudal hindbrain and the anterior spinal cord [34,50]. Larvae dou-

ble mutant for opn4.1 and opn4xb show a decreased locomotor activity during the day but no

circadian phenotype [55]. As 42 opsin genes are predicted in the zebrafish genome, of which

20 are expressed in the adult brain [56], further characterization of their expression in the lar-

val brain will be needed to define the best candidates for further study. Finally, the possibility

remains that photoentrainment in zebrafish occurs as a result of direct photosensitivity of

motoneurons or muscles themselves as all cells and organs have been shown to be directly pho-

tosensitive and light-entrainable in this species (see [57] for a review).

Taken together, our results highlight profound differences in the establishment and photo-

entrainment of the circadian system between the diurnal zebrafish and other species such as
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mice and human. A crucial, yet open question is whether these divergences reflect the different

phylogeny of these species or their different use of temporal niches. The photosensitive capa-

bilities of the zebrafish in particular and of aquatic species in general (as judged by the number

of opsins predicted in the genome) far exceed that observed in mammals. This could imply a

greater level of complexity and robustness in circadian control in zebrafish independently of

its temporal niche. However, the human brain also expresses opsins (OPN3 and OPN5;

[58,59]) suggesting the existence of deep brain photoreceptors in diurnal primates and the pos-

sibility that they participate in photoentrainment.

Material and methods

Ethics statement

All animals were handled in the CBI fish facility, which is certified by the French Ministry of

Agriculture (approval number A3155510). The project was approved by the French Ministry

of Teaching and Research (agreement number APAFIS#3653–2.016.011.512.005.922).

Zebrafish lines and developmental conditions

Embryos were reared at 28 degrees in a 14h light/10h dark cycle with lights on at 9:00 and

lights off at 23:00.

The lak mutant line has been described previously [32], lak homozygous mutants were

identified by their dark coloration. Genotyping of lak individuals was performed as previously

described 32.

Generation of an opn4xa mutant allele

An opn4xa mutant allele was generated using the CRISPR/ Cas9 targeted genome editing. For

this. a target site was designed in the second exon by manual screening for PAM sites. Tran-

scription of the guide and coinjection of the guide mRNA with cas9 mRNA was performed as

described in [60]. Screening of potential mutants was performed using T7 endonuclease

(NEB) treatment of PCR products amplifying the second opn4xa exon (Fw: 5’ CACAACAT

AAACTGTAACTGCATCC 3’, Rev: 5’ GACACGGGTATGACACTCAGGAAGG 3’). PCR

products from potential carriers were subsequently subcloned and sequenced. In this manner

we identified several interesting carriers among which an individual transmitting an allele

bearing 17 extra nucleotides in the second exon leading to a premature interruption of the

coding sequence.

To genotype opn4xa individuals, we used a classical PCR protocol with the following oligos:

5’-GGACGCCTCCAAACTTC-3’ (Forward) and 5’-CGAACACCCACTCCTTGTAC-3’

Reverse). PCR products of different sizes were obtained (110bp for the wt allele and 127bp for

the mutant allele) and resolved on a 4% agarose gel.

Locomotor activity assays

Larvae zebrafish coming from heterozygous incrosses were raised on a 14:10 hr light:dark

cycle at 28˚C in Petri dishes with no more than 50 larvae per Petri dish in a water bath inside

the fish facility. On the morning of their 5th day of development (9:15–10:30), individual larvae

were placed in each well of a 96-well plate containing aquarium fish water and placed back in

the water bath. Light intensity during the entrainment was 110 lux at 6500K. On the evening

(16:00–20:00), the plate was put in an hermetic box in a dark room maintained at 27˚C with a

heater. This home-made box [61] was continuously illuminated from below with two panels of

infra-red lights as well as neutral white light (4000K, 20 lux at water surface)) controlled by a
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timer from 9:00 to 23:00. Larvae were then filmed at 30 frames per second, with a ceiling

mounted infra-red camera connected to a computer on the following days (from the 6th day of

development to the 9th or 10th day of development) in controlled conditions of illumination.

The temperature inside the box was monitored using an electronic programmable device (I

Button. Maxim). After the experiment, larvae were either genotyped by PCR for opn4xa and/

or lak and/or simply identified for the lak mutation using the dark coloration phenotype. In

addition, larvae presenting developmental defects were discarded from the subsequent analy-

sis. Experiments in which too many larvae presented development issues or where temperature

issues were present were discarded. At least three experiments were made for each type of

assay.

In situ hybridization

In situ hybridization was performed as described previously [62]. opn4xa, tcf7, cry1a and c-fos
probes have been described (34,35,62,63). A per2 probe encompassing the entirety of the sec-

ond exon was engineered using PCR with the following oligos: Forward primer: 5’-AAATCC

GAGTGTCCGTCTGC-3’, Reverse primer with T7: 5’-TAATACGACTCACTATAGGGT

CTTGTTGCTTCCCGATGAC-3’ followed by T7 transcription.

Locomotor activity analysis

After the experiment, the distance travelled per minute was extracted for each larva using the

Ethovision XT13.0 (Noldus. Wageningen. the Netherlands) with the following parameters: for

Detection Settings: dynamic substraction; subject color compared to background: Darker;

Dark: 7 to 210; Frame Weight: 2; for Track Smoothing Profiles: Minimal Distance Moved:

0.2mm—Direct (A>MDM); for Data Profiles: Results per time bin. Ignore last time bin if

incomplete; for Analysis Profiles: Distance moved of the center-point. The obtained files were

then analysed using the wakefish program (written in python by L.Sanchou) to extract an aver-

age activity of mm/min over 10min for each larva (‘DM10 files’). For each experiment, the

same number of homozygous mutants and wild-type or control larvae were randomly selected.

The Biodare software was used to calculate periods and phases for each larva (biodare2.ed.ac.

uk). We choose to use the FFT-NLLS to calculate periods and phases on DM10 files after base-

line detrending, as advised [63]. The parameters used for period calculation were as follows:

baseline detrending, expected periods from 18 to 30 hours. analysis method FFT-NLLS. The

parameters used for phase calculation were as follows: baseline detrending. FFT-NLLS, phase

by fit, absolute phase to window. Windows used to calculate the phase of locomotor activity

“before the pulse” and “after the pulse” encompass time points from CT0 to CT15 (corre-

sponding from 9am of the 1st day in of the experiment to midnight between the 2nd and 3rd

day of the experiment for “before the pulse” and from 9am of the 3rd day of the experiment to

midnight between the 4th and 5th day of the experiment). Locomotor activity levels were calcu-

lated from the DM10 files by calculating means of the average activity in mm/min over 10 min

over a given period for each larva. Statistical analysis was done using Prism. Graphs were gen-

erated using R studio (ggplot2 and rethomics packages [64,65]).

Analysis of clock gene expression using RTqPCR

For each specific stage, pools of 15 larvae were collected and extracted with TRIzol. Reverse

transcription and qPCR were performed using a standard protocol [66] with the oligos detailed

in S7 Table. All the experiments were performed in triplicates and the mean expression relative

to beta actin was calculated. Three pools of larvae were used for each time point.
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Supporting information

S1 Fig. (A) Average distance moved merged from PA experiments in 10 min bins.

Mean ± SE. The original data is the same than in Fig 2 but here, only the larvae for which a

phase could be extracted for the two first and the two last cycles were included in the average.

In addition, two rounds of smoothing each using ten successive time points were applied as

this made the difference in phase shift between the lak and the sib larvae easier to visualize.

(TIF)

S2 Fig. (A) Prediction of the protein sequences produced by the wt and mutant exon 2. The

part corresponding to the second transmembrane domain (34) is underlined. The red asterisk

indicates a premature stop codon. (B) Models of the WT and mutant predicted OPN4XA pro-

teins. (C) Using alternative ORFs leads to a premature stop codon (indicated with a star). (D)

The use of an alternative ATG (bold) also leads to a truncated protein.

(TIF)

S3 Fig. opn4xa is expressed in zebrafish RGCs and interneurons. (A-D) Expression of

opn4xa at 4days at different ZT using fluorescent in situ hybridization. Lateral view of

mounted eyes imaged under the confocal microscope. The ventral side is oriented towards the

left upper corner. Based on position, the opn4xa+ cells from the interneuron layer are most

likely horizontal and amacrine cells. Scale bar: 10 μm. E) Number of opn4xa+ cells in the RGC

layer in 96–128 hpf zebrafish larvae. All data follows a Gaussian distribution. No statistical dif-

ferences were observed between the different time points using a one-way ANOVA with Bon-

ferroni post hoc test. F) Number of opn4xa+ cells in the interneuron layer in 96–128 hpf

zebrafish larvae. The data at 4dZT0 does not follow a Gaussian distribution. * p<0.05. **
p<0.001. *** p<0.0005 using a Kruskal-Wallis test with Dunn’s post hoc comparison.

(TIF)

S4 Fig. Characterization of opn4xa-/- retina and pineal glands. (A-B) Expression of opn4xa
in the retina of wt and opn4xa-/- larvae at 4days ZT0. The ventral side is oriented towards the

downward left corner. (C-D) Expression of tcf7 in the pineal gland at 6 days using in situ

hybridization in wt and opn4xa-/- larvae. Dorsal views are shown. Anterior is up. Scale bar:

10 μm.

(TIF)

S5 Fig. Live lak and sibling larvae at 5 dpf showing the differences in pigmentation. (A-B)

Dorsal views. (C) side views. The red arrow in B points to the position of the pineal gland

which is not covered by pigments in lak and sib larvae. Scale bar: 0.5 mm.

(TIF)

S1 Table. Activity of lakritz -/- versus control larvae in LD showing the average distance

travelled (mm/min) over a 10 min window averaged during the day (D) or the night (N) peri-

ods. Mean ± S.D. D1 corresponds to the first day. The p value and statistical significance using

a two-tailed Mann-Whitney test is indicated.

(DOCX)

S2 Table. Percent of rhythmic lak and sib larvae in DD and LL. The difference between the

ctl DD and the lak DD populations is not significant using a khi-two test p = 0.957, similar

results are obtained between the ctl LL and the lak LL, p = 0,91.

(DOCX)

S3 Table. Activity of lakritz -/- versus control larvae in DD showing the average distance

travelled (mm/min) over a 10 min window averaged during the day (D) or the night (N)
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periods. Mean ± S.D. D1 corresponds to the first day. The p value and statistical significance

using a two-tailed Mann-Whitney test is indicated.

(DOCX)

S4 Table. Activity of lakritz -/- versus control larvae in LL showing the average distance

travelled (mm/min) over a 10 min window averaged during the day (D) or the night (N) peri-

ods. Mean ± S.D. D1 corresponds to the first day. The p value and statistical significance using

a two-tailed Mann-Whitney test is indicated.

(DOCX)

S5 Table. Activity of opn4xa -/- versus control larvae in LD showing the average distance

travelled (mm/min) over a 10 min window averaged during the day (D) or the night (N) peri-

ods. Mean ± S.D. D1 corresponds to the first day. The p value and statistical significance using

a two-tailed Mann-Whitney test is indicated.

(DOCX)

S6 Table. Percent of rhythmic opn4xa -/- and ctl larvae in DD and LL. The difference

between the WT DD and the opn4xa-/- DD populations is not significant using a khi-two test,

p = 0.06.

(DOCX)

S7 Table. Activity of opn4xa -/- versus control larvae in DD showing the average distance

travelled (mm/min) over a 10 min window averaged during the day (D) or the night (N) peri-

ods. Mean ± S.D. D1 corresponds to the first day. The p value and statistical significance using

a two-tailed Mann-Whitney test is indicated.

(DOCX)

S8 Table. Activity of opn4xa -/- versus control larvae in LL showing the average distance

travelled (mm/min) over a 10 min window averaged during the day (D) or the night (N) peri-

ods. Mean ± S.D. D1 corresponds to the first day. The p value and statistical significance using

a two-tailed Mann-Whitney test is indicated.

(DOCX)

S9 Table. qRTPCR primer sequences used in the study. The right column indicates the ZDB

gene ID (https://zfin.org).

(DOCX)

S1 Data. Numerical data related to Fig 1.

(XLSX)

S2 Data. Numerical data related to Fig 2.

(XLSX)

S3 Data. Numerical data related to Fig 3.

(XLSX)

S4 Data. Numerical data related to Fig 4.

(XLSX)

S5 Data. Numerical data related to Fig 5.

(XLSX)

S6 Data. Numerical data related to Fig 6.

(XLSX)
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S7 Data. Numerical data related to Fig 7.

(XLSX)

S8 Data. Numerical data related to Fig 8.

(XLSX)

S9 Data. Numerical data related to S1 Fig.

(XLSX)

S10 Data. Numerical data related to S3 Fig.
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S11 Data. Numerical data related to S4 Fig.
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