Modelling bee movements to improve pollination

Mathieu Lihoreau, Juliane Mailly, Joanna Brebner, Charlotte Doussot, Louise Riotte-Lambert

- To cite this version:

Mathieu Lihoreau, Juliane Mailly, Joanna Brebner, Charlotte Doussot, Louise Riotte-Lambert. Modelling bee movements to improve pollination. The Project Repository Journal, 2024, 19 (1), pp.24-27. 10.54050/PRJ1921089 . hal-04569527

HAL Id: hal-04569527
 https://hal.inrae.fr/hal-04569527

Submitted on 6 May 2024

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Modelling bee movements to improve pollination

Pollinators such as bees, flies, butterflies, birds, and bats support a major ecosystem service that sustains most terrestrial plants and animals, including us humans. When foraging on flowers, these animals disperse pollen grains, thereby contributing to the reproduction of about 75 per cent of wild and cultivated plants. Today, the alarming decline of pollinators worldwide threatens this vital ecosystem service, calling for a better understanding and management of plant-pollinator interactions.

 Figure 2: Left - Simulation of search flight by a single bee. In this example, the simulated bee explores its environment by making search loops of varying sizes, start-
ing and ending at its nest (N). Right - Simulation of route development by several bees. In this example, five simulated bees (dififerent colours) learn to concomitantly ing and ending at its nest (N)
exploit 20 plants s squares).
et al., 2013). Building on this pioneering work, we are now making predictions about how bees may discover or dismiss specific plants in their environment (Moran et al., 2023) and, in the case of social bees, collectively organise to optimise resource exploitation in the whole plant population (Dubois et al., 2021). Importantly, theory is constantly tested and refined using a tight dialogue between computer simulations and experiments on real bees.

From pollinator movements

 to precision pollinationModelling bee movements provides direct access to plant reproduction patterns via pollen dispersal. If we can predict the complex, long-term and nonrandom patterns of poilen dispersal by kees, it becomes possible to precisely know which plants cross and at which frequency. This means we can anticipate pollinator community. The power of pollnator coristic approach power of bee behaviour (as opposed to statistical models) is that it will generate realistic predictions in any kind of environment including all scenarios of environmental changes. This is a maior step forward
considering the worrying environmental crisis we are facing.

Thus, our models will ultimately constitute unique and powerful tools for precision agricuiture. It will be possible, for example, to precisely identify the distribution, diversity (mix of species) and number of polifinators necessary to optimise pollination and food production in a given crop. Improving crop yield through these methods couid help farmers compensate for potential losses from transitioning towards more sustainable practices with less (or no) agrochemicals. The very same modelling approach could be used for conservation purposes. Indeed, our models will inform us about pollinator abundance and diversity required for efficient reproduction and maintenance of wild plant populations. They could also provide key information about the plant communities that would better support local populations of endangered pollinators. Thus, better integrating poliinator benaviour into pollination models as we are doing in an absolutely crucial stemising but also successful ecological transition.

References

Brebner J., Makinson J., Bates O., Rossi N. Lim
KS., Dubois T., Gomez-Moracho T., Lihoreau M.,
 Chittika L. and Woorgate J. (2021) 'Bumble bees
strategically use ground level linear features in navigation' Animal Behaviour, 177, pp. 147-160.
do: 101016/janbehav.2021.0003. doi: 10.1016/janbehav, 2021.07.003.
Chittta, L. (2022) The Mind of a Bee. Princeton,
NJ: Princeton University Press. Dore, A., Henry, D., Aubert, H. and Lihoreau,
M. (2022) 'How do bees move across the landscapes?, The Project Repositiory Journal, 12, pp. 76-79. doi: 10.54050/PRI1218299.
Dubois, T, Pasquaretta, C., Barron, A.B., Gautrais,
J. and Lihoreau, M. (2021) A model of resource . and Linoreau, M. (2021) A model of resource learning', PLos Computational Biology, 17,
e1009260. doi: 10.1371/journal.pcbi.1009260. Lihoreau, M. (2024) What Do Bees Think About.
Baltimore, MA: Johns Hopkins University Press. Lihoreau, M., Raine, N.E., Revnolds A.M. Lihoreau, M., Raine, N.E., Reynolds, A.M., J.L. and Chittka, L. (2012) 'Radar tracking and motion sensitive cameras on flowers reveal the routes over large spatial scales', PLoS Biology, 10, e1001392. doi: 10.1371/journal.pbio.1001392. Moran, A., Lihoreau, M. Pérez-Escudero, A. and Gautrais, J. (2023) Moueling bee movement
shows how a perceptual masking effect can shows how a perceptual masking effect can
influence flower discovery', PLos Computational Biology, 19, e1010558. doi: 10.1371 /journal.
pcbi.1010558. pcbi. 1010558
Revnolds, A.M., Lihoreau, M. and Chittka, L.
(2013) A simple iterative model accurately captures a simple iterative model accurately
complex formation by bumblebees across spatial scales and flower arrangement, PLos Computational Biology,
e1002938. do: 10.1371/journal. pcbi.1002938.

