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Abstract: This paper presents a review of reduced-order models (ROMs) and digital twins, with a 11 

primary focus on their application to water distribution networks (WDNs). Initially, we concentrate 12 

on the physical modeling of WDNs. Following this, we introduce relevant programming, specifi- 13 

cally addressing WDNs and solving equations for extended-period simulations. The paper then ex- 14 

plores various ROM methods outlined in existing literature. Lastly, we highlight recent initiatives 15 

in the implementation of digital twins and approaches aimed at reducing uncertainty. 16 

Keywords: Reduced-order model (ROM); Digital twin; Water distribution network. 17 

 18 

1. Introduction 19 

The protection of WDNs is becoming increasingly important due to climate change and 20 

its impacts, such as water scarcity. Consequently, WDN modeling has become a critical 21 

issue to protect them against threats and detect anomalies in real time. Given the com- 22 

plexity of common urban water networks, it is costly to use hydraulic solvers to address 23 

optimization problems. To overcome this challenge, we are seeking to develop reduced 24 

models and integrate them with real-time network data in order to enhance the security 25 

and resilience of water infrastructure. 26 

In this review article, initially, we describe the physical modeling of WDNs and intro- 27 

duce some hydraulic simulation software’s, and then we present some ROM methods. 28 

Finally, we highlight recent efforts to deploy digital twins. 29 

2. Mathematical modeling 30 

The hydraulic model under interest in this review is based on the Saint-Venant equa- 31 

tions, assuming that the flow is one-dimensional and incompressible. This model is 32 

made of two equations: the first expresses the conservation of mass, the second the con- 33 

servation of momentum. The flow is incompressible, as we are assuming a rigid water 34 

column, with negligible pressure and volume variations. The system can be written in 35 

the following form: 36 
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Where h: piezometric head, q: flow rate, A: cross-sectional area of the pipe, g: gravity 1 

acceleration, c: pressure wave velocity, ξx(q): the head loss function. 2 

3. Tools 3 

 PORTEAU: It is a modeling software developed by the French National Research 4 

Institute for Agriculture, Food and the Environment (INRAE) for managing, sizing 5 

WDNs and simulating the behavior of pressurized water distribution or transporta- 6 

tion networks [1]. PORTEAU is a robust piece of software, although it lacks real- 7 

time engine functionality. 8 

 EPANET: It is another hydraulic simulation software developed by the US Environ- 9 

mental Protection Agency (EPA). An extension of EPANET called EPANET RTX, 10 

includes real-time analysis to the modeling of WDNs [2]. 11 

Given Python's top position in the PYPL rankings, a Python interface “OOPNET” [3] has 12 

been developed to read, manipulate and simulate EPANET input files. The modular na- 13 

ture of OOPNET's object-oriented programming means that users can incorporate new 14 

features, test and evaluate them without having to rewrite all the code, making integration 15 

and development easier. 16 

4. Methods 17 

4.1. WDN simplification and model reduction:  18 

This approach aims to reduce the dimension of a system of nonlinear equations describing 19 

WDNs. This can be summarized in the following steps: Formulate the complete nonlinear 20 

model, linearize this model, reduce the linear model using the Gauss elimination 21 

procedure, and retrieve a reduced nonlinear model from the reduced linear model. An 22 

extension of this algorithm has been proposed to incorporate energy aspects and to fulfil 23 

the requirements of the online optimisation strategy for energy management and leakage 24 

control in WDNs [4]. 25 

4.2. Graph decomposition 26 

 FCPA (Forest-Core Partitioning Algorithm): This method shows that the linear (treed) 27 

components of the system is associated to the graph's forest and the non-linear 28 

(looped) portion to the core. Indeed, it isolates the forest from the core facilitating 29 

thereby the separate resolution of linear and non-linear components of the problem 30 

using appropriate methods [5]. 31 

 GMPA (Graph Matrix Partitioning Algorithm): This approach is based on FCPA, 32 

where it initially separates the forest from the core. Following this, it reduces the 33 

dimension of the core by identifying supernodes and superlinks. Finally, the 34 

resolution of non-linear components is carried out on this subgraph, which 35 

exclusively contains the supernodes and superlinks [6]. Figure 1 shows the 36 

decomposition of the graph using the GMPA algorithm and the interface provided by 37 

OOPNET. 38 
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Figure 1. This illustration shows the implementation of the GMPA algorithm [6] through the 2 

OOPNET interface. This interface reads an .INP file and converts it into an object that can be ma- 3 

nipulated by the Python libraries. 4 

 Simplified model for pressure control: The objective of this approach is to establish a 5 

reduced model for estimating pressure measurements in a multiple-input WDN, 6 

which is divided into two sets of vertices, one for the inputs and the other for the other 7 

vertices. This method is based on input pressure adjustment for a target node pressure 8 

value according to total network demand [7].  9 

4.3. Complex system analysis and metamodels 10 

 Proper Orthogonal Decomposition methods (POD): Braun [8] proposed a first 11 

application of the projection-based POD method to the hydraulic equations of a 12 

WDN, and showed that POD is efficient because it preserves the physical information 13 

of the hydraulic equations through the Galerkin projection. In addition, the possible 14 

dimensional reduction in the degrees of freedom of the systems results in an increase 15 

in performance for solving the non-linear set of equations. However, the gain in 16 

execution time is small, as the matrices concerned lose their sparsity. 17 

 Graph neural network metamodel: Machine and deep learning approaches to 18 

estimate water network behavior are based on the collection of data that will be 19 

processed using techniques such as auto-encoders to extract the most important data, 20 

thereby significantly reducing the dimensionality of the system. Zanfei et al [9] 21 

proposed a metamodel based on a graphical learning approach to calculate pressure 22 

and flow and to support the calibration of the water network model, which directly 23 

deals with uncertainty by transferring it from the available data to the metamodel. 24 

 Complex Network Analysis approach (CNA): is one of the methods used for order 25 

reduction based on identifying parts of the network that have less impact on overall 26 

performance. By analysing some network properties, we can identify pipes or nodes 27 

that can be aggregated or neglected without compromising the accuracy of the model. 28 

Therefore, CNA can also be applied as an optimisation procedure for real and very 29 

large WDS with a reduced computational effort compared to evolutionary 30 

optimisation methods [10]. 31 

4. Digital Twin 32 

The need for protection, risk assessment and remote control has given rise to a great deal 33 

of research, which has led to the digital representation of systems such as WDNs, 34 

providing a detailed view of the situation, using measurements and observations from 35 
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equipment including sensors, controllers and actuators that are reported and assimilated 1 

in real time in order to observe and control pressures, flows and water quality; predict 2 

hydraulic behaviour by simulating scenarios; and optimise the operations. As with any 3 

numerical application, digital twins can involve uncertainties, whether related to the 4 

input data or to the results of the calculations. To validate them, it is essential to quantify 5 

these uncertainties and analyse their propagation.  6 

5. Conclusion 7 

The idea behind this review is to develop a digital twin of WDN, built on a reduced-order 8 

model, which is connected to online data, and with a feedback loop to control and adapt 9 

the system for sustainable and resilient decision-making. These approaches are designed 10 

to reduce both the computational time and cost required. 11 
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