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A B S T R A C T   

Collembola are very abundant organisms in soils (several thousand individuals per square meter) and are 
considered to be good indicators of soil quality. These indicators are mainly based on the number of individuals 
observed (abundance per square meter of soil), but also the singularity and number of species present (species 
richness). A limitation that comes with the usage of collembola as an indicator is the complexity of the identi
fication of the species under a microscope, how time-consuming it is, and the morphological similarity between 
some species. Deep learning approaches have been very successful in the resolution of image-based problems. 
Still, no work yet exists that uses deep learning in the recognition of collembola on a microscope slide. This could 
be a valuable tool for experts seeking to use Collembola as a metric on a larger scale. In this work, we explore and 
evaluate the performance of state-of-the-art deep learning techniques over the identification of Collembola on a 
new manually annotated dataset.   

1. Introduction 

Soil biodiversity is a crucial component of terrestrial ecosystems and 
represents up to 50% of the total biodiversity on earth (Anthony et al., 
2023). Organisms found in soils contribute to many ecosystem services, 
like soil fertilization, crop protection, water cycle regulation, and water 
and soil decontamination. They thus have a central place in ecosystems, 
but are also sensitive to environmental modifications, particularly those 
affecting soils, like agricultural practices. It thus appears necessary to 
protect soil biodiversity, which requires monitoring it. Collembola, 
commonly known as springtails, are a class of intriguing tiny arthropods 
belonging to the subphylum Hexapoda. With several thousand in
dividuals per square meter of soil, they represent a considerable 
biomass. They are a key component for ecosystem functioning, like 
nutrient cycling or soil aggregation. Like other soil organisms, they are 
sensitive to changes in soil properties, such as soil moisture, tempera
ture, pH, and nutrient availability. Their presence and/or diversity in
dicates soil quality and degradation, making them valuable tools for 
monitoring the effects of agricultural and forest practices (Cortet et al., 
1999) and soil pollution (Fountain and Hopkin, 2004; Heisler and Kai
ser, 1995). These indicators may include both the abundance of in
dividuals per square meter of soil and the richness of species present. 
Unfortunately, to identify Collembola, many steps are required, 

including collection of soil cores, extraction of living species from the 
soil cores, separation of Collembola from other taxa, and mounting them 
on microscope slides for species identification. Due to their morpho
logical similarity, identifying Collembola through a microscope is a 
highly intricate and time-consuming task that demands significant 
expertise. This is a major obstacle to the development and mass use of 
Collembola as bio-indicators since the low number of available taxon
omists contrasts with the fact that the datasets available in ecology are 
getting larger (Deharveng, 2004). To overcome the challenges of iden
tifying Collembola, modern technology offers a promising solution. 
Deep learning, a branch of artificial intelligence, has emerged as a 
powerful tool in ecology and biodiversity research. Over the last few 
years, deep learning models have emerged as the state-of-the-art 
approach in computer vision, consistently demonstrating superior per
formance across various tasks and benchmarks. The use of machine 
learning in ecology is not new (Crisci et al., 2012), it already has been 
used for tasks such as ecological modeling (Recknagel, 2001), the study 
of animal behavior (Arablouei et al., 2023), and species identification 
(Waldchen and Mader, 2018). What makes deep learning such a growing 
field is the recent availability of powerful hardware and large amounts 
of training data. By learning from the given example deep learning 
models can extract important features and resolve a task without being 
specifically programmed to resolve it (LeCun et al., 2015), which makes 
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it an ideal solution to large amounts of data. Manual analysis of a vast 
dataset is time-consuming for experts. Automating this task saves a lot of 
time and enables monitoring to be used on a larger scale, (Rustia et al., 
2021; Schneider et al., 2022; Spiesman et al., 2021), helping to 
compensate for the small number of taxonomists especially for data that 
can be complex to analyze like images (Minaee et al., 2021) or videos 
(Liu et al., 2020). The use of deep learning in computer vision for 
ecology has dramatically improved in the past few years, the PlantCLEF 
challenges are a good example (Waldchen and Mader, 2018). Every year 
it provides a large and complex image dataset to uncover and evaluate 
state-of-the-art machine learning models, and every year the result of 
the identification performance improves despite the task becoming more 
complex. By identifying the most frequent and common species of Col
lembola in agricultural soils, often relatively poor in diversity, deep 
learning would allow the mass use of this indicator. It could allow ex
perts to save time by focusing their attention on less frequent species. 
Microarthropods (including Collembola and Acari) identification and 
analysis of Collembola with deep learning has already been tried before 
(Kampichler et al., 2000; Sys et al., 2022), but even though optical mi
croscopy is not something new in deep learning, learning, Collembola 
identification through microscopic slides has never been done before. 
This study aims at the investigation of the effectiveness of deep learning 
on species identification via microscope slide images, particularly in the 
context of Collembola identification. In this context, two hypotheses are 
presented. The first hypothesis suggests that a state-of-the-art deep 
learning model can accurately detect and identify most Collembola at 
the species level mounted on microscope slides. The second hypothesis is 
that this model relies on distinctive Collembola features rather than 
excessively fitting to background image elements. 

2. Material and methods 

2.1. Digitization and annotation 

Since no previous work existed on the identification of Collembola 
on microscope images with deep-learning techniques, creating an 
image-annotated dataset was required before going any further. To 
collect Collembola, it is necessary to extract soil cores from the chosen 
analysis site, then with the use of some extraction device called Mac
fadyen (Potapov et al., 2020) we extract specimens to some fixation 
liquid so that we can separate the Collembola from other taxons we find. 
Finally, we proceed to depigment and mount them on a microscope slide 
with a mounting medium called “Marc-andré” (Milano et al., 2018). To 
gain some time, we used already mounted Collembola, which were 
already available thanks to multiple research projects concerning the 
same study object (Joimel et al., 2017). The creation of the dataset 
required identifying, taking photos of Collembola, and annotating them. 
Ten species of interest, common and known to be abundant in agricul
tural soils, were chosen to be automatically identified with deep 
learning as a proof of concept: Ceratophysella denticulata (Bagnall, 1941) 
(CERDEN), Ceratophysella Gibbosa (Bagnall, 1941) (CER-GIB), Hemi
sotoma thermophila (HEM-THE) (Axelson, 1900), Hypogastrura manu
brialis (Tullberg, 1869) (HYP-MAN), Lepidocyrtus cyaneus (Schille, 1908) 
(LEP-CYA), Lepidocyrtus Lanuginosus (Gmelin, 1788) (LEP-LAN), Meta
phorura affinis (Börner, 1902) (MET-AFF), Isotomiella minor (Schäffer, 
1896) (ISO-MIN) and Parisotoma notabilis (Schäffer, 1896) (PARNOT). 
These species have been chosen to identify if state-of-the-art models of 
deep learning can detect and identify the interspecies morphological 
similarity and the intra-species morphological variance of Collembola. 
To give examples of similarity, the species Parisotoma notabilis and 
Hemisotoma thermophila are easy to differentiate using features only 
visible on a high zoom (x630), but they have very similar morphology, 
on a low zoom (x50). It is also the case of Ceratophysella denticulata, 
Ceratophysella Gibbosa, and Hypogastrura manubrialis, which makes both 
of these groups of species hard to differentiate. For practical reasons, the 
species Lepidocyrtus cyaneus and Lepidocyrtus Lanuginosus were fused as 

LEP since the main difference between these two species is their color
ation, which degrades itself over time once they are mounted on slides, 
and since there is a low number of annotations, it was decided to merge 
them. Ceratophysella denticulata, and Ceratophysella Gibosa were fused as 
CER due to the low amount of data available in our datasets for the 
models to be able to differentiate between them. Ceratophysella dentic
ulata and Ceratophysella Gibbosa were merged into a single category, 
designated as CER, because of the scarcity of annotations for Cerato
physella Gibbosa in our datasets, allowing for its use as a species of in
terest. It is also important to show images of other Collembola than these 
10 species to our model of deep learning because, in a realistic scenario, 
it will have to differentiate them from other unknown species. To do so, 
we added a new category called “Other”, where we regrouped Collem
bola of multiple species not included in the species of interest. To avoid 
bias, all species of Collembola were sampled on multiple projects, which 
allows us to use recent microscope slides, the most recent one being from 
projects in 2021, and older microscope slides, the oldest projects being 
from 2003 (Table 1). With these, we can train the model to work on new 
as well as older samples of lesser quality, allowing experts to work on 
older projects. To create the dataset, multiple steps were required: first, 
the Collembola were identified by an expert with a microscope, then 
taken in photos, digitalized with the software proview that also applies a 
white balance and an automatic exposure to make the image clearer, and 
finally annotated with the software labelimg (Fig. 1), it should be noted 
that there was no specific protocol delineating the position of each 
specimen to maintain consistency with expert practices. Variability in 
positioning was not controlled. The microscope used was a Carl Zeiss 
labscope A1 equipped with an Optika microscope C–P6 camera to take 
the pictures. All of them have the same dimensions 3072 × 2048 pixels 
for 3 × 2 mm and were taken with a x50 magnification. In total 1664 
different pictures were taken for 2195 different Collembola identified 
and annotated (since there can be multiple Collembola per image, there 
are fewer images than annotations). 

2.2. State of the art 

To assess the ability of deep learning, and object detection models, 
specifically in detecting and identifying Collembola, multiple state-of- 
the-art models have been chosen to create a benchmark. Faster R-CNN 
and Yolov5 represent two different approaches, a two-stage detector, 
and one stage detector, respectively. 

2.2.1. Yolov5 
Yolov5 is well known for achieving state-of-the-art performance on 

several benchmarks including the coco dataset. It is one of the most 
popular object detection model approaches and was developed by 
Ultralytics as an extension of Yolov3 (Redmon and Farhadi, 2018) with 
improved speed and precision. Yolov5 is a one-step detector, meaning 
that it detects and classifies objects simultaneously. It is composed of a 
backbone (CSPDarknet), a neck and a prediction head (Fig. 2). The 
backbone extracts feature from the image that are mixed and combined 
for prediction by the neck, and then the detection head takes it as input 
to propose boxes and classes. To generate the proposition, the image is 
divided into multiple different grids of multiple scales and each cell will 
propose N objects. Using anchors to make box coordinate predictions 
and different scale aspect ratios Yolov5 achieves precise detection. An
chors are used to facilitate the prediction of coordinates, which are 
crafted using different ratios and sizes based on the data they are sup
posed to fit, in our case Collembola. Instead of directly predicting Col
lembola coordinates, Yolov5 predicts in which cell the center of the 
Collembola is along with the height and width ratio of the anchor used to 
predict it. Doing so simplifies the task by narrowing down the range of 
prediction from 0 to N (N being the size of the image in pixels) for each 
coordinate, to a more focused range of 0 to 1, greatly improving the 
accuracy of the model coordinate predictions. 4 different versions of 
Yolov5 were used in the benchmark, Yolov5n, Yolov5m6, Yolov5l6 and 
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Yolov5x6. Yolov5n has 1.9 M parameters and is pre-trained on images 
with a dimension of 640 × 640 pixels Yolov5m6, Yolov5l6, and 
Yolov5x6 have respectively, 35.7 M, 76.8 M, 140.7 M parameters, they 
are pre-trained on images with a dimension of 1280 × 1280 pixels. 

2.2.2. Faster R-CNN 
Faster R-CNN (Ren et al., 2015) an extension of the R-CNN series 

(Girshick et al., 2014). An evolved version that is more precise, faster, 
and widely used as a reference in object detection benchmarks. Faster R- 
CNN is a two-step detector, the model first generates propositions and 
then classifies them. It is composed of a backbone, a region proposal 
network (RPN), a region of interest pooling (ROI), and a classification 
head. The backbone extracts feature from images, the RPN generates 
object candidate, and the ROI connects the backbone and the RPN to the 
classifier head, which classifies the objects. To generate the final prop
ositions, the RPN uses the backbone feature and an anchor-based system 
of sliding windows, to generate N object propositions. The ROI connects 
the image feature extraction backbone and the object classifier head, 
facilitating the classification of objects by aggregating and processing 
relevant regions within the images. ROI pooling aids in the selection and 
analysis of specific image regions for accurate object classification. 2 
different versions of Faster R-CNN were created for the benchmark, 
Faster R-CNN (640) with an input dimension of 640 × 640 and Faster R- 
CNN (1280) with an input dimension of 1280 × 1280. They both used 
Resnet50 as a backbone, have 41 m parameters, and are pre-trained on 
ImageNet. Both those dimensions were chosen to match the Yolov5 
input dimensions. Still, after multiple tests, the 640-version had incon
clusive results. This can be explained by the important features being too 
small using this resolution for Faster R-CNN. Only the 1280 version was 
used in the benchmark. 

2.3. Evaluation 

The evaluation of our models was a crucial step in analyzing the 
ability of the state-of-the-art deep learning models to detect and identify 
Collembola on microscope slides. To do so we proceed as follows, first, 
we made predictions on an evaluation dataset that we've extracted from 
the main dataset. This ensures that the model has never encountered this 
particular dataset during its training phase. The predictions-annotations 
matching is done by calculating the IoU metric Eq. 1 for each possible 
pair and matching them based on it. The IoU Eq. 1 is a metric that 
quantifies the overlap between the annotation and the prediction box. 
We considered that an IoU of 0.5 between the prediction and the 
annotation is a match. If a prediction didn't match any annotation 
human annotation, it was considered to be a background element. 

IoU =
Area of Intersection

Area of Union
(1) 

The second step was to obtain the metrics we needed to evaluate 
those predictions. To do so, we defined 3 variables: True positive, the 
prediction coordinates match a ground truth and the species predicted is 
correct. False positive, the prediction coordinates match a ground truth 
but predict the wrong species or the coordinates are not matched with 
any ground truth, meaning that a background element was confused 
with a Collembola. False negative, the ground truth is not matched with 
any predictions, suggesting that the model confused a Collembola as a 
background element. Based on these variables we calculated more 
global metrics. The Recall Eq. 2 is a metric that quantifies the ability of a 
model to correctly identify all positive instances of a dataset. The higher 
the recall for a species, the more confident the model is in finding all the 
Collembola of this species. The precision formula 3 measures the ability 
of the model to be correct when predicting a species. The higher the 
precision for a species, the more confident the model is to be correct 
when predicting it. From these two metrics, we calculated a more 
advanced metric, the precision-recall curve, which is a graph repre
senting the balance between the recall and the precision, depending on Ta
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the confidence of the predictions. 

Recall =
TP

TP + FN
(2)  

Precision =
TP

TP + FP
(3) 

With this metric, we can observe the impact of confidence on the 
results of the model. Using the precision-recall curve, we can calculate 
the AP Eq. 5 (Average Precision), which represents the area under the 
curve, and quantify the model result on one species, as a single number. 

Since we had multiple species, we also used the mAP Eq. 4 (Mean 
average precision) which gives a score for the whole model whereas the 
AP will give one for each one of them. The objective of these models is to 
be reliable enough to be used by experts in real-life conditions. This 
means that we had to be confident enough in the model prediction to use 
it. We allowed ourselves 5% of mistakes in the prediction of each species 
of interest. We created a benchmark to compare the results of state-of- 
the-art models of deep learning on this task. To create a benchmark of 
models, we use the mAP to analyze which model does best on average 
for each species and the AP to analyze how good it is at predicting each 
species. To ensure the model's ability to reach 95% precision, we used 

Fig. 1. Example of annotations of Collembola with labelimg.  

Fig. 2. Yolov5 architecture (Xu et al., 2021).  
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the precision-recall curve that allowed us to find the threshold of con
fidence with which for a recall of N, there is at least 95% precision per 
species. 

mAP =
1
C

∑C

i=1
APi (4)  

where C is the number of species. 

AP =

∫ 1

0
precision(r) dr (5)  

where r represents recall, and precision(r) represents the precision at a 
given recall level r. 

Because of the low amount of data at our disposal, cross validation 
was used to ensure the statistical results, and that the model was not 
over-fitting. Over-fitting happens when a model is too complex for the 
amount of data given and loses the ability to learn a solution that gen
eralizes well because it fits the training data too much, resulting in poor 
performance on unseen data. The cross-validation technique we used 
works as follows: K crosses are created by randomly shuffling the dataset 
and dividing it into a training and an evaluation set K times, then for 
each cross, a new model is trained. This allows us to train K different 
models, each one on a different version of the dataset. Once all the 
models are trained, we evaluate them and average all of their perfor
mances to better understand the model's capability on this dataset. The 
similarity of each model's evaluation results would indicate that the 
models are less likely to be overfitting on the data, therefore showing 
that they are more likely to be capable of generalizing this task on un
seen data. The opposite would be if the models achieve highly different 
results, suggesting that they are very dependent on the data they were 
trained on and might generalize poorly to unseen data. In our case, each 
model used a cross-validation of 5 crosses. 

2.4. Training protocols 

The models were all trained with the same parameters: 500 epochs, 
an initial learning rate of 0.01 with a weight decay of 0.005, the opti
mizer Adam was chosen, with a beta1 of 0.937, and data augmentation 
transformations were applied while training. Data augmentation is a 
technique used in machine learning to artificially increase the size of a 
dataset by creating new samples from the existing ones. Augmented 
samples are used to train the model more effectively by increasing its 
ability to generalize and its accuracy on the test dataset. The advantage 
of this technique when dealing with a low amount of data such as in our 
case, is the reduced risk of overfitting, since models are exposed to more 
variations, they will tend to less memorize the dataset. This becomes 
essential when you have limited data to train models with, which is a 
common problem in deep-learning applications. Another advantage is 
the robustness it gives to the model, by applying variation it makes 

models more reliable on a wider range of input data, which in our case 
would make it more reliable on images from old microscope slices which 
tend to be in a bad state. Finally, it also saves time by reducing the need 
to collect a bigger dataset. Various transformations can be applied to 
create new samples. In the case of images, simple modifications can be 
applied such as flipping or rotating, and more complex ones like color 
distortion or random crop. Here are the data augmentation techniques 
used in training: Random crop, Mosaic, and Color distortions such as 
brightness, contrast, saturation, hue, Gaussian blur, Random scaling, 
Random rotation, and Random horizontal flipping. Data augmentation 
helps recreate the state of old microscope slides on new ones (Fig. 3), 
which improves results on old projects. 

2.5. Model bias 

To test the hypothesis that the models are using the Collembola 
feature to make a prediction, we created two experiments. In the first 
one, we used a Grad-Cam (Selvaraju et al., 2017) to observe where the 
model looks on the image to make a prediction, in the second experi
ment we modified the image background of Collembola to see if the 
model is still capable of predicting if the noise from the image can't 
indicate the specimen. 

2.5.1. Grad-cam 
Grad-cam (Selvaraju et al., 2017) is a technique used to create a 

heatmap representing where the model focuses on the image to make a 
decision. It uses the feature maps generated during the inference of the 
model and the respective gradient to show which part of the image was 
used in the identification. The objective was to use this technique on the 
best model of the benchmark to analyze if the model is capable of using 
features of Collembola when making a prediction. 

2.5.2. Background 
To be sure that the model is not using anything else than the Col

lembola feature to make a prediction, we changed the Collembola 
background from their original background to a background from a 
different project where their species are either non-existent or in mi
nority Fig. 4. We then analyzed if the prediction changes depending on 
the background change. For time purposes, only 10 specimens per taxon 
were cropped, so 70 in total. 

2.6. Comparison with experts 

To better understand the model's potential, we compared its pre
diction ability with experts on images from the validation dataset. Two 
experts, who identify Collembola daily agreed to participate in the test. 
The constraint imposed on the expert was to predict with the same 
image the model uses. For the experts, this differs from the annotation 
phase since they didn't have direct access to the specimens, they couldn't 

Fig. 3. Image (a) represents a microscope slide photo from an old project, the slide is in a bad state with a lot of noise on the image, and features of the Collembola 
are not all visible. Image (b) represents a microscope slide photo from a recent project in a good state, thanks to data augmentation we can add noise onto image (b) 
to create image (c), which will create more images of slide in a bad state and improve model results on old projects. 
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zoom on specific details (they only had access to the x50 magnification 
of the image), they couldn't modify the light or know from which project 
the Collembola come from. 

2.7. Hardware specification 

All the models were trained on a server equipped with 256Go of RAM 
4 GeForce RTX 2080Ti and Processor Intel(R) Xeon(R) Gold 5222 CPU 
@3.80GHz. The server OS is Ubuntu20.04.6 LTS, and the version of 
PyTorch used was 1.13.1. 

3. Results 

Table 2 results highlight the performance of each model with their 
respective mAP and AP per class. Yolov5x6, the largest Yolov5 version, 
with a map of 0.894, outperforms all other models, all species combined, 
while Faster R-CNN with a mAP of 0.656 is the worst-performing model. 
It is interesting to note that the inference time of Yolov5x6 on one image 
with our hardware is 0.11 s including the post-processing of the pre
diction, while an expert takes between 10 s on average for a common 
species to 5 min or more for a less common one. 

3.1. Analysis Yolo 

Table 2 shows that Yolov5x6 is the best benchmark model on average 
and for each species of interest. Against intuition, the strength of the 
model is on species with fewer annotations. Metaphorura affinis has an 
AP of 0.991 when the total amount of annotation for this species was 
only 129, compared to Parisotoma notabilis with 267 annotations and 
an AP of 0.910. On the other hand, Isotomiella minor, which, like Met
aphorura affinis, has a limited number of annotations, performs 
comparatively less well, with an AP of 0.807. Overall, it is evident that 
the model excels in identifying Collembola from the species of interest, 
especially when considering the challenge posed by the varying number 
of annotations per species. With the matrix of confusion shown in Fig. 5, 
we can analyze what kind of mistakes the model makes when making 
identification. When identifying Isotomiella minor, its weakness, the 
model makes 2 types of mistakes. It either confuses the Collembola with 

the background or with a Collembola from the category “Other”, this 
represents 15% of the error made, and the second type of mistake is the 
confusion between, Isotomiella minor, Parisotoma notabilis, and Hemi
sotoma thermophila which represents 6% of mistakes made. Unknow 
Collembola from the category “Other” are also confused with species of 
interest, up to 18% of unknown Collembola are miss-classified, and the 
errors are spread over all the species of interest. Since we aim to obtain a 
precision of at least 95% per species, we use Fig. 6 to analyze the recall 
we can obtain depending on the precision. Table 3 refers to different 
levels of recall and the precision per species associated with them. Since 
there is a balance between precision and recall, more recall is equal to 
less precision, with the necessary precision of 95% the recall will be of at 
least 20%. Augmenting the recall drastically reduces the precision for 
each species except for Metaphorura affinis and the taxon CER. The 
precision mostly depends on the level of recall expected from the 
scientists. 

3.2. Model bias 

3.2.1. Grad-cam 
The following results (Fig. 7) are achieved using a Grad-Cam on 

Yolov5x6 the best model of the benchmark 2, on every image from the 
validation dataset. The model tends to focus on key features of Col
lembola identification like their antennas, ocular fields, torso or anal 
spines. It also focuses a lot of attention on the background, specifically 
for the species Parisotoma notabilis and Isotomiella minor. 

3.2.2. Background 
70 specimens were cropped to a different background Fig. 4 and 

identified. For most of them, the model is capable of correctly identi
fying the species without using the background noise, but two species of 
interest have worse results than the other if we prevent the model from 
using it. Parisotoma notabilis and Isotomiella minor both represent 7 out 
of 13 mistakes the model made as we can see in Table 4. They seem to be 
harder to identify without the original project background. 

3.2.3. Comparison with experts 
During the expert analysis of the dataset images, attempts were made 

Fig. 4. We change the Collembola from its original background to the target background by cropping the Collembola from the original image and pasting it to the 
target background. 

Table 2 
Benchmark of the different models. The best mAP and the best AP per species were written in bold.   

mAP “OTHER” AP “CER” AP “HEM-THE” AP “HYP-MAN” AP “LEP” AP “PAR-NOT” AP “ISO-MIN” AP “MET-AFF” AP 

Faster R-CNN (1280) 0.656 0.632 0.83 0.587 0.718 0.652 0.525 0.417 0.887 
Yolov5n 0.802 0.709 0.916 0.772 0.894 0.772 0.778 0.659 0.916 
Yolov5m6 0.869 0.779 0.926 0.841 0.943 0.837 0.885 0.775 0.966 
Yolov5l6 0.870 0.793 0.944 0.845 0.935 0.843 0.843 0.794 0.966 
Yolov5x6 0.894 0.803 0.947 0.891 0.948 0.855 0.910 0.807 0.991  
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Fig. 5. Yolov5x6 confusion matrix, each line represents the actual class labels, each column represents the predicted class labels, and the sidebar serves as a visual aid 
to interpret the intensity or magnitude of the values represented in the matrix. The cells of the matrix show the predictions made and the actual species of the 
specimens, providing a detailed assessment of a model's performance across multiple classes. 

Fig. 6. Yolov5x6 precision-recall curve, the AP of each species is the area under their curve, the MaP is the mean of all the AP.  

T. Oriol et al.                                                                                                                                                                                                                                    



Ecological Informatics 81 (2024) 102606

8

to identify Collembola species. However, it became evident that the 
identification process encountered a significant obstacle due to the low 
zoom levels in the images. The stated reason was that crucial details for 
identification were impossible to discern using this magnification, as 
shown in Fig. 8. 

4. Discussion 

In this paper, we achieve Collembola detection through deep- 
learning models, we delve into the identification of Collembola species 
on microscope slides, including the training of state-of-the-art models 
Yolov5 and Faster R-CNN (Ren et al., 2015), and the creation of a dataset 
of Collembola for object identification. Our results present the challenge 
of species identification on images taken with a microscope with a focus 
on Collembola. The primary objective was the evaluation of Yolov5 and 
Faster R-CNN performance on identifying Collembola on microscope 
slides. A dataset of 2195 annotations was built to achieve such training, 
including 9 species of interest and a category “Other”. Results outcome 
(Table 2) clearly shows the superiority of Yolov5 over Faster R-CNN by a 
substantial margin and its ability to identify Collembola on microscope 
slides. The intuition behind it is the use of different resolutions from the 
image that Yolov5 uses to make identifications, this would make the 
model use different features, from different size while identifying Col
lembola. Collembola identification is a complex task due to several 
unique challenges related to their morphological characteristics 

Table 3 
Precision per species for 20%, 50%, 80% and 95% recall.  

Species / Recall 20% 50% 80% 95% 

OTHER 0.950 0.925 0.717 0.145 
CER 0.979 0.968 0.935 0.917 
Hemisotoma thermophila 0.964 0.952 0.903 0.448 
Hypogastrura manubrialis 1 0.986 0.970 0.573 
LEP 0.987 0.939 0.777 0.333 
Parisotoma notabilis 1 0.983 0.927 0.472 
Isotomiella minor 0.983 0.903 0.696 0.184 
Metaphorura affinis 1 1 0.987 0.982  

Fig. 7. From (a) to (d) Grad-Cam of correct identifications made by Yolov5x6, from (e) to (h) Grad-Cam of wrong identifications.  
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(Deharveng, 2004). The intra-species variance, the interspecies simi
larity, and the morphological traits making identification possible 
sometimes being only visible with a high zoom. Yolov5x6, the largest 
version of Yolov5 in our benchmark (Table 2), exhibited remarkable 
performance, outperforming Faster R-CNN by a large margin, which is 
not surprising considering that Yolov5 usually does better than Faster R- 
CNN (Fang et al., 2021; Hussain et al., 2021; Tan et al., 2022; Wang and 
Yan, 2021). It could be due to its number of parameters, the dimension 
of images used as input, and the added resolution output. It is interesting 
to note that, the difficulty of identification tends to vary with species, 
some of them being much easier to identify than others. Metaphorura 
affinis, the least challenging species, achieved an impressive AP of 0.991 
despite a low amount of annotation. While Parisotoma notabilis, with 
more than twice the number of annotations, has a lower AP of 0.910. 
This demonstrates that some taxa are inherently harder to identify, and 
their features tend to be more difficult to find by the model, they need 
more annotations to improve their results. Isotomiella minor for example, 
is the most challenging species of our model with an AP of 0.807 and also 
is one of the species with the lowest number of annotations, increasing 
the number of annotations and using techniques that focus on the 
variance intra-species and similarity inter-species would greatly benefit 
its results. In addition to the unique challenges posed by species like 
Isotomiella minor, an analysis of the confusion matrix sheds light on 
common sources of model errors. Misclassifying Collembola from the 
species of interest into the “Other” category, often due to an inter- 
species similarity. Some Collembola were also confused with the back
ground, most of the time because of the poor condition of the slide and 

the specimens. In the context of this paper, the misclassification of 
species of interest into the category “Other” is only a minor concern, the 
main objective is to reach a precision of at least 95% on each species of 
interest. Every specimen classified as “Other” will be verified by an 
expert, so making each mistake in this category will be corrected by a 
specialist. The level of precision mainly depends on the threshold of 
confidence chosen by the experts. The threshold of confidence affects 
the balance between the precision and the recall, the higher the confi
dence, the higher the precision, and with more precision the prediction 
will be more accurate. With lower confidence, the recall is higher, and 
more Collembola will be found, which will result in a higher gain in time 
for the experts. The experts choose the balance between gaining time 
and trusting the predictions. To illustrate the feasible recall while 
achieving our objective of 95% precision we use the precision-recall 
curve (Fig. 6). We observe the precision for different thresholds of 
recall 3. When reaching 95% precision for each species, we obtain at 
least 20% of recall, meaning 20% of Collembola are found and 80% have 
to be identified by experts. The experts can choose to gain more time and 
reduce the level of confidence which will augment the recall accord
ingly. 80% of Collembola can be identified with at least 70% precision, 
but some species are more difficult to identify than others. Despite the 
variability in the identification precision, Yolov5x6 is globally capable 
of identifying most of the Collembola in a very short time, whereas an 
expert would not be able to do so with a low zoom of only 50×. To find 
what are the features used by the model to make a decision we used a 
Grad-Cam (Selvaraju et al., 2017). The results from Fig. 7 show signif
icant focus from the model on the background which could have been 
the reason for the model performance being so high despite the low 
zoom, but experimentation confirms that the model remains robust, 
even when the Collembola are translated from their background to a 
different project background where their species doesn't appear, except 
for two challenging cases, Isotomiella minor and Parisotoma notabilis. In 
these cases, altering the background creates more mistakes when mak
ing predictions as illustrated in Table 4, and the model relies on the 
background much more than any other species as seen on the Grad-Cam 
Fig. 7. This indicates that most cases don't require it, but the model uses 
background noise for challenging cases that lack data or mostly have 
annotations from older project. It is not possible to generalize a pattern 
of feature attention or compare the model with experts when using 
Grad-Cam because its interpretation is too subjective, but we can notice 

Table 4 
Number of errors for ten Collembola per taxon when changing the background of 
specimen.  

Species Number of errors out of 10 specimens 

CER 1 
Hemisotoma thermophila 0 
Hypogastrura manubrialis 1 
Isotomiella minor 3 
LEP 1 
Metaphorura affinis 1 
Parisotoma notabilis 4 
Total 11  

Fig. 8. Hemisotoma thermophila on an old slide. The image of the specimens is very noisy and the features making the identification possible are invisible without a 
bigger zoom. 
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the observations of specific features that experts would use, like eye 
plates ocular fields or antennas when they are clearly visible. Automa
tion of Collembola identification with a deep learning model would 
allow the use of Collembola on a much higher scale. Our study carries 
significant implications for the field of Collembola species identification 
on microscope slides. It shed light on Yolov5, specifically Yolov5x6 on 
the identification of species on images taken with a microscope, and as a 
powerful tool in the automation of such identifications. It is noteworthy 
that the variety of identification difficulties emphasizes the need for 
more annotations, which would significantly improve model perfor
mance. In summary, while some species are harder to identify than 
others, our model shows potential in the identification of species of in
terest, and overall, our model is poised to provide substantial time 
savings in the identification of Collembola species of interest. 

5. Conclusion 

In conclusion, Collembola can play a crucial role in terrestrial eco
systems as indicators for monitoring soil quality. To use them as metrics, 
identification is a prerequisite, and it is a time-consuming task. Among 
the 8700 species of Collembola worldwide, our expertise suggests that 
35 species represent the majority found in agricultural soils in France. 
The automation of identifying these key species using state-of-the-art 
object detection offers a significant time-saving opportunity for ex
perts. This study evaluates the performance of state-of-the-art deep 
learning models in identifying Collembola on microscope slides, intro
ducing a new dataset designed for model training. Our leading model 
outperforms human experts on images with a zoom of x50 and effec
tively utilizes Collembola features for identifications. While further 
improvements through annotation and few-shot learning techniques can 
enhance the model, it has already proven to be effective in substantially 
reducing the time required by experts. This presents a valuable tool for 
experts seeking to use Collembola as a metric on a larger scale. 
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