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Abstract: We report in this paper the first detection of low pathogenic avian influenza (LPAI) subtype
H9N2 in houbara bustards and in gamebirds in Morocco. Starting in 2019, an increase in mortality
rates related to respiratory distress was recorded in these species. Necropsy of the specimens revealed
fibrinous sinusitis and tracheitis with intra-bronchial fibrin casts, which are consistent with H9N2
infection in chickens; therefore, implication of the virus in these outbreaks was strongly suspected.
Consequently, between January 2020 and June 2023, birds with respiratory signs were necropsied
for pathological lesions, tissue samples were examined by histopathology, and samples of trachea,
lungs, and cecal tonsils were analyzed using quantitative real-time PCR for the detection of H9N2
virus. In addition, the sequencing of isolates was performed and lastly differential diagnosis with
other respiratory pathogens was carried out. During the study period, 93 samples were collected
from suspected H9N2 outbreaks, of which 30 tested positive for H9N2 virus: 23 Houbara bustards,
4 partridges, 2 quails, and 1 pheasant. Moreover, sequencing of the HA gene of the virus showed
97.33% nucleotide identity with strains reported previously in broilers in Morocco in 2017 and in
2022. Phylogenetic analysis grouped the Moroccan partridge isolates in the same cluster as viruses
isolated in Morocco between 2016 and 2022, Algeria (2017), Burkina Faso (2017), Nigeria (2019), and
Togo (2020). Additionally, 10 house sparrows from the premises of these birds were examined for the
presence of H9N2 virus, revealing a 30% positivity rate. In conclusion, LPAIV H9N2 is circulating in
houbara bustards and gamebirds in Morocco, and house sparrows might be a possible source of the
infection. To our knowledge, this is the first report of LPAI H9N2 in the African species of houbara
bustards worldwide and in gamebirds in Morocco.

Keywords: avian influenza; H9N2; houbara bustards; Chlamydotis undulata undulata; gamebird
industry; Morocco
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1. Introduction

The houbara bustard is a medium-sized bird of semi-desert environments belonging
to the Otididae family [1,2]. The African species (Chlamydotis undulata undulata) consists
of sedentary populations that occupy arid regions extending from the Canary islands to
Morocco, and Egypt [1,3] while the Asian species (C. undulata macqueenii) is migratory and
occupies regions from the Middle East to Central Asia [2,3]. Both species are listed as vul-
nerable on the International Union for the Conservation of Nature’s (IUCN) red list [3]. This
is due to the over-exploitation of the birds and their natural habitat [1–4]. As a consequence
of the population decline and due to their major role in Arab falconry as the traditional
quarry for falcons, numerous conservation sites based on captive breeding and release in
nature programs have been established in Morocco since the 1990s by Arab falconers [1].
Likewise, the gamebird industry has recently grown in Morocco, currently comprising
twelve centers with a population of 420 100 birds. The most common species of gamebird
is the Barbary partridge (Alectoris barbara), which registered a 27% increase in its popula-
tion compared to the year 2021, followed by ring-necked pheasants (Phasianus colchicus)
and Japanese quails (Cortunix Japonica). The centers are distributed in nine regions of
the country, with the most significant populations located in Safi and Bouznika, which
host 74% of the total gamebird population in the country (Agence Nationale des Eaux et
Forêts, 2022). In those conservation sites, captive-bred bustards are released to aid in the
restoration of wild populations, while captive-bred gamebirds are released for hunting
purposes. This dynamic creates an ideal environment for the spread and persistence of
infectious pathogens between the two populations [5]. As a result, active surveillance
of infectious diseases must be carried out regularly to maintain the success of both the
restoration of bird populations and the health status of the captive and wild populations.
Avian influenza viruses (AIV) and Newcastle disease virus (NDV) ought to be monitored
by virtue of their important economic, epidemiological, and pathological roles in avian
species worldwide [6].

The low pathogenic avian influenza subtype H9N2 has been endemic in intensive
poultry farming in Morocco since its introduction in 2016. Reports of the virus circulating
in intensive farming units of chickens (broilers, broiler breeders, and layers) and in turkeys
have been made [7–10]. Furthermore, El Mellouli et al. [11] have conducted a prevalence
study of H9N2 in wild birds using real time RT-PCR. The study revealed the circulation
of LPAI H9N2 in ten bird species belonging to three orders including Charadriiformes,
Pelecaniformes, and Gruiformes. However, the prevalence and pathogenicity of the virus
in minor reared species including gamebirds and bustards have not yet been studied,
although they are thought to play a major epidemiological role in avian disease persistence
and circulation. In fact, several studies performed on gamebirds infected with AIV reported
their important role as bridge species in the poultry–wildlife interface [10,12–14].

In this article, we report for the first time the circulation of the virus in houbara
bustards and gamebirds in Morocco. A comprehensive bacteriological study of the major
coinfecting agents associated with the infection and the pathogenicity of the virus are
also described. In addition, house sparrows (Passer domesticus) sampled from the same
regions with reported outbreaks were tested using RT-qPCR in an attempt to identify the
origin of the virus in these outbreaks. In fact, a risk analysis study was carried out to
identify the major routes of exposure of captive-bred houbara bustards to avian influenza
viruses (AIV) and Newcastle disease virus (NDV) in the UAE [6]. The authors reported
the highest risk associated with house sparrows either via direct contact with the birds or
via indirect contact through their visiting bustard aviaries for water and food, resulting in
contamination of the water with feces.

2. Materials and Methods
2.1. Bird Species and Specimen Collection

From January 2020 to June 2023, a total of 93 cases with respiratory syndromes were
submitted to our veterinary clinic (Temara, Morocco) and to the avian pathology unit of
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Hassan II’s Veterinary and Agronomy Institute (Rabat, Morocco) for laboratory investiga-
tions. Among these cases, 69 consisted of both vaccinated and non-vaccinated houbara
bustards (Chlamydotis undulata undulata), 4 were from flocks of ring-necked pheasants
(Phasianus colchicus), 13 were from flocks of Barbary partridges (Alectoris Barbara), and 3
were from flocks of Japanese quails (Cortunix Japonica). All the flocks of gamebirds were
vaccinated against the LPAI H9N2 virus. The samples of the houbara bustards originated
from the southern regions of Morocco, while the gamebirds were from three regions includ-
ing Tangier–Tetouan–Al Hoceïma, Casablanca–Settat, and Rabat–Sale–Kenitra. In addition,
ten house sparrows (Passer domesticus) collected from the premises of houbara bustards
were examined as described below for the other bird species.

During each H9N2 suspected outbreak, samples of trachea, lungs, and cecal tonsils
were collected and stored at −20 ◦C until processing. Differential diagnosis with other
respiratory viral, bacterial, and fungal pathogens was carried using species-specific PCRs
with Kylt® Kits (AniCon Labor GmbH, Hoeltinghausen, Germany), namely, Mycoplasma
Gallisepticum (MG), Paramyxovirus type 1 (NDV), Chlamydia Psittaci, infectious laryngotra-
cheitis virus (ILT) and Avian Metapneumovirus (AMPV), in addition to avian coronavirus
as part of a monitoring program. Moreover, bacteriology and mycology investigations were
also performed according to standard procedures to rule out an Aspergillus sp. infection,
and to identify bacterial coinfecting pathogens. Finally, scrapings of the crop and the
intestines were examined for parasitic helminthes and protozoans.

2.2. Sample Processing
2.2.1. Pathological Examination

The dead birds presented to the clinic were necropsied for gross pathologic lesions, and
samples of the trachea, lungs, air sacs, kidneys, and pancreas were taken and placed in a 10%
solution of neutral buffered formalin for histopathology examination. The samples were
then dehydrated and embedded in paraffin and sections of 5 µm were prepared and stained
with hematoxylin and eosin (H&E) according to standard histopathologic procedures [15].

2.2.2. RNA Extraction and Real-Time RT-PCR

Viral RNA was extracted from samples of the trachea and lungs (two to five organs
pooled per flock) with a viral RNA extraction kit (Kylt, Anicon, Germany), according to
the manufacturer’s instructions. The Superscript III-based one-step RT-PCR kit (Thermo
Fisher Scientific, Waltham, MA, USA) was used in a TaqMan real-time RT-PCR assay
and performed with the primers and probe described by [16] for the amplification of
influenza H9 viral nucleic acids in a Fast RT-PCR machine (ABI 7500). For N2 subtyp-
ing, a pair of primers specific for the N2 subtype was used for PCR amplification [17].
The cycling conditions consisted of 30 min at 50 ◦C (reverse transcription phase) and
then an initial denaturation at 95 ◦C for 2 min, followed by five touchdown PCR cycles
starting with 94 ◦C for 15 s, 60 ◦C for 30 s, 68 ◦C for 1 min; 30 cycles of 94 ◦C for 15 s,
54 ◦C for 15 s, 68 ◦C for 1 min, and a final extension at 68 ◦C for 5 min, according to the
manufacturer’s instructions.

2.2.3. Virus Isolation

Samples with the highest Ct values in the RT-PCR were grown in 10-day-old specific
pathogen-free (SPF) embryonated chicken eggs in order to obtain a maximum viral load
detectable by conventional RT-PCR. The viral inoculum was prepared as described previ-
ously by Sikht et al. [10] and then injected into the air chamber. The eggs were incubated at
37 ◦C and the embryos’ viability was evaluated daily. Upon the embryos’ death, the eggs
were refrigerated at 4 ◦C for 4 h, after which lesions on the embryos were observed and the
allantoic fluids were collected, clarified, and stored at −80 ◦C until use.
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2.2.4. HA Gene Sequencing

Amplification of the partial HA gene by RT-PCR was carried out using the primers
described by Hoffmann et al. [18]. The RT-PCR was achieved using the Applied Biosystems
kit (Life Technologies). The RT-PCR reaction was performed in a 20 µL reaction mixture
containing 2 µL of buffer (10×), 2.5 µL of MgCl2 (25 mmol/L), 2.5 µL of dNTP (10 mmol/L),
0.75 µL of each primer (10 µmol/L), 10.2 µL of sterile water, 0.5 µL of RNAase inhibitor
(20 U/µL), 0.3 µL of RT (50 U/µL), and 0.5 µL of Gold Taq polymerase (5 U/µL). Forty
cycles at 94 ◦C for 20 s, 56 ◦C for 20 s, and 72 ◦C for 30 s were carried out. A final
step at 72 ◦C for 2 min was added to complete amplification. The PCR products were
analyzed on a 1% agarose gel. RT-PCR products (500 bp) containing a region known
to vary between strains were purified with the Nucleospin gel and a PCR cleanup kit
(Macherey Nagel,Düren, Germany), according to the manufacturer’s instructions. The
purified RT-PCR products were subjected to Sanger sequencing using the ABI PRISM
BigDye terminator cycle sequencing kit (PerkinElmer, Foster City, CA, USA).

2.2.5. Phylogenetic Analysis

The nucleotide sequence and deduced amino acid sequences of these H9 isolates were
blasted and compared with the reference strain sequences retrieved from GenBank from
different regions of the world. Bioedit 7.2.5 software [19] was used to compare and align
nucleotide sequences. Phylogenetic analysis and tree construction for the HA gene were
generated using the maximum likelihood (ML) method, with MEGA software Version 5.05
program with the Tamura-Nei model [20].

3. Results
3.1. Case History and Pathological Findings
3.1.1. Case History and Seasonal Distribution of Outbreaks

For this study, a total of 93 specimens from suspected birds were investigated based on
clinical signs and gross pathologic lesions. The birds were submitted to the clinic because
of respiratory symptoms and mortalities (Table A1). As for the seasonal distribution, 70%
of cases were recorded between May and August with another 20% recorded during the
month of December (Figure 1).
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Figure 1. Temporal distribution of LPAI H9N2 outbreaks in houbara bustards and gamebirds
in Morocco.



Viruses 2023, 15, 2374 5 of 18

3.1.2. Gross Pathological Findings

Necropsy of the LPAI H9N2 positive cases revealed a variety of lesions depending
on the coinfecting agents; however, the main consistent lesions were fibrinous sinusitis
(30%) and tracheitis in 20% (6/30), and 43.3% (13/30) for both congestive lungs with fibrin
plugs in the bronchial lumen and airsacculitis (Figure 2). Other recurring lesions included
fibrinous pericarditis and perihepatitis in the context of bacterial coinfections in 43.3%
(13/30). Catarrhal enteritis, hypertrophy and congestion of the kidneys, and splenomegaly
were noticed in 70%, 43.3%, and 13.67% of cases, respectively. On the other hand, pancreas
hypertrophy was detected in only 5/30 (16.67%) of cases, all of which involved bustards
with a septicemic poxvirus infection.
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Figure 2. Gross pathological lesions associated with LPAI H9N2 infection in houbara bustards
and gamebirds. Photos (a–d) represent pathological lesions observed in H9N2-infected bustards:
(a) fibrinous sinusitis, (b) congestive and exudative tracheitis, (c) intrabronchial fibrin cast, (d) fib-
rinous pericarditis with liver congestion. Photos (e–h) represent lesions observed in gamebirds:
(e) fibrinous sinusitis in a Barbary partridge, (f) kidney congestion and hypertrophy in a Barbary
partridge, (g) lung congestion in a Japanese quail, (h) fibrinous pericarditis and perihepatitis in a
Barbary partridge.

3.1.3. Histopathological Lesions

Histopathology revealed extensive fibrino-heterophilic and lymphocytic tracheitis
and airsacculitis, multifocal to extensive lympho-plasmocytic, and heterophilic bronchop-
neumonia, with intralesional bacterial colonies (Figure 3). Degenerative changes were
noticed in the tubular epithelium of the kidneys and multifocal depletion of zymogen
granules of the pancreas were observed. A severely extensive, necrotizing, heterophilic
pancreatitis with eosinophilic intracytoplasmic inclusions was noticed in all cases with
poxvirus infection.
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Figure 3. Histopathological lesions of the trachea and lungs in a confirmed LPAI H9N2 infection
in a houbara bustard with coinfection with E. coli associated to Staphylococcus Aureus: (a) Trachea.
Fibrino-heterophilic material accumulated in the tracheal lumen (double-headed arrow); note the
intralesional dense bacterial colonies (black arrow), (b) Trachea. Congestion of blood vessels with
lympho-plasmocytic and heterophilic infiltration in the lamina propria (white arrow), (c,d) Lung.
Severe congestion in the bronchial mucosa associated with lymphocytic and heterophilic infiltration
(white arrow) and accumulation of cellular and fibrino-necrotic material in the bronchial lumen
(double-headed arrow).

3.2. H9N2 Identification and Phylogenetic Analysis
3.2.1. H9 Detection by Real Time RT-PCR

A total of 30/93 (32.26%) samples were positive for H9N2, comprising 23/69 houbara
bustards, 4/13 partridges, 2/3 quails, and 1/4 pheasants, with Cts ranging from 22.3 to
38.3 (Table A1). The age of the affected birds varied from 15 days to 105 weeks irrespective
of their H9N2 vaccination status. As for the house sparrows, 3/10 (30%) tested positive for
LPAI H9N2 virus.

3.2.2. Virus Isolation and the Partial HA Gene Amplification

All the samples found to be positive for LPAIV H9N2 using real-time RT-PCR
(n = 30) were subjected to conventional RT-PCR. Isolation in SPF eggs was attempted
for ten samples with a lower viral load (Ct values greater than 35) in order to obtain a
maximum viral load detectable by conventional RT-PCR and for HA gene sequencing
purposes. Conventional RT-PCR analysis revealed that HA PCR products could be ob-
tained only for two isolates derived from partridges. The nucleotides sequences of both
characterized H9N2 isolates were submitted to the GenBank database under accession
numbers OR293335 and OR293336.

3.2.3. BLAST Search and Phylogenetic Analyses

The nucleotide and amino acid sequences of the Moroccan strains were highly similar
and presented a 97.33% nucleotide sequence identity with A/chicken/Algeria/17BBD/2017
and A/chicken/Morocco/SF4/2016, H9N2 viruses detected in broiler chickens in Algeria
and Morocco in 2017 and 2016, respectively. Both Moroccan isolates had the RSSR*GLF
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motif at the HA cleavage site, which is a characteristic and signature of the low pathogenic
H9N2 viruses. Based on the HA phylogenetic tree, both Moroccan partridge isolates were
closely related to viruses previously isolated in Morocco in 2017 and 2022 with a bootstrap
value of 98 (Figure 4) and classified in the same cluster as viruses isolated from Algeria
(2017), Burkina Faso (2017), Nigeria (2019), and Togo (2020). They all belonged to the G1
lineage or Lineage A, based on the recent classification [21]. All the viruses were closely
related to each other.
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from neighboring areas. The length of the HA gene sequences used in the phylogeny is 500 pb.

3.3. Differential Bacteriological and Molecular Diagnosis

Coinfection with E. coli was noticed in 60% (18/30) of the cases. In addition, Staphylococcus
Aureus, Pseudomans Aeruginosa and Enterococcus sp. were also recurring complicating
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bacterial pathogens with a distribution of 13.33% (4/30) for each. As for fungal coinfecting
agents, five bustards (16.67%) were positive for Candida Albicans, and two other cases
(6.67%) had a confection with Aspergillus Fumigatus, one of which was a quail and the other
a partridge (Table 1). Conversely, all the samples tested negative for other viral pathogens
including NDV, ILT, AMPV, and Chlamydia psittaci. However, one pheasant tested positive
for MG associated with H9N2, three bustards tested positive for both H9N2 and avian
coronavirus, and two tested positive for coronavirus only.

Table 1. Results of the molecular, bacterial, and parasitological screening of house sparrows sampled
from the premises of diseased houbara bustards.

House Sparrows
Sample Number

H9N2 PCR
Results (Ct)

Other Viral
Pathogens

Parasitic
Pathogens

Bacterial
Pathogens *

1 37.5 N Tetrameres sp.
Eimeria sp.

E. coli
Klebsiella sp.

Staphylococcus Aureus
Enterococcus sp.

2 38.6 Avian coronavirus Tetrameres sp.
3 N Avian coronavirus Eimeria sp.
4 N N Tetrameres sp.
5 37.5 Avian coronavirus N
6 N Avian coronavirus Eimeria sp.
7 N Avian coronavirus Eimeria sp.
8 N Avian coronavirus N
9 N Avian coronavirus Eimeria sp.
10 N Avian coronavirus N

N: Negative; *: pooled organs were taken for bacteriology.

As for the house sparrows, a total of 8/10 (80%) tested positive for avian coronavirus,
yet they all tested negative for Mycoplasma sp. and Trichomonas sp. Furthermore, the
sparrows tested positive for E. coli, Klebsiella sp., Staphylococcus Aureus, and Enterococcus
sp. A scraping of the mucosal surface of the intestines revealed the presence of Eimeria sp.,
although the species could not be identified. Additionally, Tetrameres sp. was present in the
proventriculi of three birds (Table 1).

4. Discussion

We report in this article the detection of the LPAI avian influenza subtype H9N2 in
diseased houbara bustards and gamebirds in Morocco including pheasants, quails, and
partridges. During the study period, the most affected species were houbara bustards,
with 23 positives among 69 tested birds (33.33%), followed by partridges, then quails,
and lastly pheasants, with 4/13 (30.7%), 2/3 (66.67%) and 1/ 4 (25%) positives for each
species, respectively.

Houbara bustards are susceptible to infection by avian influenza viruses; in fact, both
highly pathogenic and low pathogenic avian influenza were previously reported in dis-
eased Asian bustards in the United Arab Emirates and Saudi Arabia [22,23]. In addition,
Wernery et al. [24] demonstrated the susceptibility of these species through an experimen-
tal infection using an LPAI H9N2 strain in two houbara bustards, following which the
authors reported clinical signs and pathological lesions similar to those observed in field
outbreaks of H9N2 infection in chickens and turkeys. Moreover, a recent serological survey
of antibodies against H9, H7, and H5 avian influenza viruses in falcons and other wild bird
species including houbara bustards and white-bellied bustards revealed a seroprevalence
of 12.1% (16/132) and 15% (3/20) positives for antibodies against H9 in these birds, re-
spectively. Conversely, other avian influenza subtypes were negative, which demonstrates
the wide distribution and circulation of AIV H9 viruses among wild birds of the UAE,
including bustards [25].

On the other hand, several studies on LPAIV H9N2 in gamebirds have confirmed the
susceptibility of these species to the virus [26,27], contrary to its pathogenicity, which is
not fully substantiated, notably in quails and pheasants [13]. In fact, some reports indicate
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an asymptomatic carriage [13,27,28] both in field and experimental settings, while others
describe symptomatic infection with respiratory clinical signs and a drop in egg production
of up to 30% specifically in quails [13,29–31]. Owing to their important epidemiological role
as intermediate hosts in avian influenza virus transmission and adaptation to mammals,
these species have been the focus of extensive studies on AIV replication [32]. Indeed,
it was proven that these species, along with partridges, possess both α-2,3 and α-2,6
receptors in the respiratory and intestinal tracts, which makes them a potential source
of avian influenza viruses with pandemic potential [32,33]. In addition, studies have
proven pathogenicity to be different among these species; indeed, Humberd et al. [14]
demonstrated the low susceptibility of ring-necked pheasants to avian influenza viruses,
and the authors suggested the capacity of pheasants to serve as reservoirs considering the
long period of viral shedding (up to 14 days post-infection) in an asymptomatic fashion.
Moreover, Świętoń et al. [28] reported the wide heterogeneity of avian influenza viruses
in the oropharynx of an experimentally infected bobwhite quail, along with high viral
shedding and an asymptomatic course of infection, which further demonstrates the role of
quails as an intermediate host for the adaptation of AIV to domestic poultry. These studies
correlate with our findings, since over a 3-year period we have received only three cases
of quails and four others from flocks of pheasants with respiratory signs involving H9N2
suspicion. Still, our study was based on clinical cases submitted for diagnosis; therefore,
due to sampling bias, the interpretation of these findings may be biased as well. On the
other hand, studies of the seroprevalence along with molecular detection of the virus
on filed samples can give a better idea of the prevalence of LPAIV H9N2 in Moroccan
gamebirds. Similarly, the cases that we report herein exhibited a seasonal pattern, since the
submitted cases were concentrated between May and June. Although similar findings were
reported by Kent et al. [22], the seasonal distribution and the prevalence of H9N2 infection
cannot be confirmed unless studied with the help of appropriate statistical methods on
appropriately selected field samples.

As for partridges, the pathogenicity of the virus was confirmed in Chukar partridges
(Alectoris chukar) and red-legged partridges (Alectoris rufa) [13,31,34–38], causing severe res-
piratory signs with low to zero mortality rates. As for Barbara partridges (Alectoris barbary),
there are currently no data on the infection. Our study represents the first report of a
field outbreak in these species worldwide. Still, the evaluation of the susceptibility and
pathogenesis of LPAI H9N2 in Moroccan Barbary partridges is advisable in order to un-
derstand the pathobiology of the virus in these species, since striking species–specific
differences in susceptibility and in the pathogenicity of the virus were previously reported
by Jöstl et al. [25].

We report in these natural outbreaks of H9N2 in bustards and gamebirds severe
respiratory distress with elevated mortality rates. These findings correlate with [24], who
conducted an experimental infection with LPAIV H9N2 in houbara bustards and reported
severe respiratory clinical signs with dyspnea, lethargy, and anorexia followed by death.
On the pathological level, the authors reported similar findings to those we found in
the outbreaks, except for pancreatitis, which we found only in bustards with a systemic
poxvirus infection confirmed by histopathology. Although the authors reported these
lesions in the experimental infection using the H9N2 virus alone, it is most likely that the
virus was associated to other bacterial pathogens, since the virus alone cannot induce these
lesions, which was confirmed in specific pathogen-free chickens (Gallus Gallus) [39–41]. In
the outbreaks that we report, in 83.33% (25/30) of the cases, LPAI was associated with
bacterial agents. Furthermore, in 36,67% (11/30) of cases, one complicating agent was
identified, often E. coli, and in 43.3% of cases (13/30), the virus was associated with multiple
other bacterial, fungal, and viral respiratory pathogens as follows: 30% (9/30) with double
coinfections, 13.33% (4/30) with triple coinfections, and 3.33% (1/30) with quadruple
coinfections. In addition, clinical signs, mortality rates, and pathological lesions were
more severe in the outbreaks involving multiple coinfecting agents. Similar findings were
reported by [42] in a survey of broiler flocks in Pakistan. The synergetic effect of LPAI
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H9N2 with other pathogens, namely, Mycoplasma Gallisepticum, has been demonstrated,
first by their close association in severe clinical field outbreaks in broilers [39,41,43], and
in experimental settings [40,44]. Coinfection with avian coronavirus is another cause of
the exacerbation of LPAIV H9N2 infection in chickens [45–48]. However, the presence of
an avian coronavirus in the houbara bustards in our study is probably of no pathological
significance, although its pathogenesis in these species cannot be excluded [49]. The only
reports of the presence of coronaviruses in bustards were deltacoronaviruses detected
sporadically in the molecular surveillance of diseases, with no pathological or clinical
impact on birds [50–52]. The presence of the virus in these species in association with their
predators, mainly falcons, was linked to the food chain [50]. As for our findings, the virus
is likely transmitted to bustards from house sparrows.

As for the origin of LPAIV H9N2, in the case of the rearing units located in the regions
of Tangier, Rabat, and Casablanca, which house mainly gamebirds (cases 4, 17, 22, and
29 in Table A1), there is a considerable risk of virus transmission from the poultry farms
present in these regions, since they are considered hotspots of avian infectious diseases
due to the high poultry farm density in the area (Mouahid, M., personal communication,
2023). Gamebirds, on the other hand, can harbor the virus and spread it reciprocally to
other intensive poultry farms [34], which further enhances viral load and persistence in
these regions. As for other regions located in southern Morocco, the virus origin remains
unclear. The first theory, which involves transmission by waterfowl (Anseriformes order)
and shorebirds (Charadriiformes order), which are considered a reservoir of AIV [53,54],
cannot be confirmed, since birds of these orders are not common in the said regions.
Furthermore, [11] reported a prevalence of only 1.86% (18/976 samples) amongst wild
birds, mostly Charadriiformes. For Anserifomes, however, the PCR for H9N2 was negative for
all the sampled specimens; similarly, [25] reported negative antibody titers against all the
tested subtypes (H9, H7, and H5) in mallards in the UAE, which corroborates the results
of El Mellouli et al. (2022) [11]. Additionally, the environmental conditions of the regions,
including high temperatures and ultraviolet indexes and low humidity, do not support AIV
survival and persistence [25,55]. This means that the transmission of the virus to houbara
bustards might have involved birds from other taxa [55]. In fact, we found 30% (3/10)
positive specimens derived from house sparrows and it is possible that the outbreaks were
caused by contact with these birds. Notwithstanding, the opposite scenario cannot be ruled
out, which means contamination of house sparrows from diseased houbara bustards, since
aviaries can offer an ideal opportunity for viral transmission in both directions through
repeated contacts between birds of both species [55].

In our study, among 30 positive samples obtained by real time RT-PCR, only two
AIV could be sequenced. The difficulty of amplifying the AIV genome in wild birds has
already been reported by several studies. Kim and coauthors [56] noticed differences in
molecular test results including RT-PCR, conventional RT-PCR, and virus isolation. In
fact, they tested 11,145 fecal samples of wild birds and reported 50 positives using virus
isolation; among these, only 52% tested positive using RT-PCR. These discrepancies are
explained by differences in primer sequences and a lack of validation in wild bird species,
which lead to lower sensitivity [57,58]. In addition, the specificity of the RT-PCR can also
be lower for specimens originating from wild birds [59].

During this study, the sequencing of viruses derived from partridges showed a
97.33% nucleotide identity with the strains isolated previously in broilers in Morocco
in 2017 and 2022 [10]. On the HA phylogeny, the AIV sequences from the partridges were
close to those from Morocco (2022), Algeria (2017), Burkina Faso (2017), and Togo (2020).
This similarity can be explained by the common border between the two countries and
by the history of commercial exchanges within western African countries. In 2016, the
first identification of LPAI H9N2 viruses in Morocco was reported. In addition, Moroccan
isolates showed over 99% similarity and formed a distinct cluster with isolates of pheasants
and whit-bellied bustards from the UAE in 2011. and a distinct cluster was formed with
isolates of pheasants and white-bellied bustards from the UAE in 2011 [7].
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5. Conclusions

In conclusion, LPAIV H9N2 is circulating in houbara bustards and gamebirds (quails,
partridges, and pheasants) in Morocco, and house sparrows could be a possible source of
infection. Further studies need to be carried out in order to understand the transmission
dynamics between these species and other wild and reared birds, including falcons, since
houbara bustards are used as their primary quarry. In addition, we think that studies
on the assessment of vaccination as a means of virus spread control in these species is
advisable. We also recommend further active surveillance of AIV and avian coronaviruses
in these species since they can constitute a prominent risk factor for the perpetuation of
the circulation of the virus and the enhancement of mutations leading to the emergence of
new genotypes.
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Appendix A

Table A1. Case history of LPAI H9N2 confirmed outbreaks in gamebirds and in Houbara bustards of Morocco.

Cases Bird
Species

Bird
Population

Age
(d/w)

H9 Vaccinationsta-
tus (V/NV)

RT-PCR
H9 (Ct) Clinical Signs Mortality

Rate (%) Pathological Lesions Coinfecting Agents

1 Quail ND ND NV 38.34 Mild rales None conjoncitivitis Negative

2 Pheasant ND ND NV 37.47 Rales, Head swelling None Fibrinous sinusitis;
catarrhal enteritis

Mycoplasma
Gallisepticum

3 Houbarabustard ND 8 w NV 33.97
Coughing, tracheal

rales, respiratory
distress, anorexia,

NA

Purulent arthritis; Airsacculitis;
fibrinous pericarditis; hepatomegaly;

splenomegaly; catarrhal enteritis;
kidney congestion and

hypertrophy; congested lungs

E.Coli
Enterococcussp

4 Partridge 23,000 3 w V 32.72 Tracheal rales,
diarrhea, lethargy 0.33%

Fibrinous sinusitis; fibrinous
tracheitis; airsacculitis; kidney

hypertrophy; catarrhal enteritis
E.Coli

5 Houbarabustard ND 200 d NV 36.69
Coughing, sneezing,

tracheal rales,
dyspnea, diarrhea

NA

Purulent sinusitis; fibrinous
tracheitis; fibrinous airsacculitis

and perihepatitis; enteritis;
ulcerative stomatitis

E.Coli
Staphylococcus Aureus

Pseudomonas sp
Candida Alibcans

6 Houbarabustard ND 33 d NV 25.89
Coughing, sneezing,

tracheal rales,
dyspnea, diarrhea

NA
Intrabronchial fibrin cast;

airsacculitis; fibrinous pericarditis
and perihepatitis; catarrhal enteritis

Avian Coronavirus
E.Coli

Enterococcussp

7 Houbarabustard ND 25 d NV 37.69

Coughing, sneezing,
tracheal rales,

dyspnea,
diarrhea, lethargy

NA
airsacculitis; fibrinous pericarditis

and perihepatitis; catarrhal enteritis;
kidney hypertrophy and congestion

E.Coli
Pseudomonas
Aerogenosa

Enterococcussp

8 Houbarabustard ND 17 d V 26.79
Coughing, sneezing,

tracheal rales,
dyspnea, diarrhea

NA

Congestive lungs; airsacculitis;
fibrinous pericarditis and

perihepatitis; catarrhal enteritis;
kidney hypertrophy and congestion

E.Coli
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Table A1. Cont.

Cases Bird
Species

Bird
Population

Age
(d/w)

H9 Vaccinationsta-
tus (V/NV)

RT-PCR
H9 (Ct) Clinical Signs Mortality

Rate (%) Pathological Lesions Coinfecting Agents

9 Houbarabustard ND 36 d V 23.54

Coughing, sneezing,
tracheal rales,

dyspnea,
diarrhea, lethargy

NA
Intrabronchial fibrin cast; fibrinous

airsacculitis; catarrhal enteritis
Congestive liver

Avian coronavirus
E.coli

Pseudomonas
Aeroginosa

10 Houbarabustard ND 63 d V 22.32 Coughing, sneezing,
tracheal rales NA

Congestive lungs; fibrinous
airsacculitis; catarrhal enteritis

congestive liver

Avian coronavirus
E.Coli

11 Houbarabustard ND 26 d V 34.7 Tracheal rales,
coughing NA tracheal congestion; lung congestion;

liver congestion; thickened air sacs Negative

12 Houbarabustard ND 33 d V 26.27 Tracheal rales,
coughing NA Tracheal congestion; lung congestion;

liver congestion; thickened air sacs Negative

13 Houbarabustard ND 43 d V 30.31 Tracheal rales,
coughing NA Tracheal congestion; lung congestion;

liver congestion; thickened air sacs Negative

14 Houbarabustard ND 71 d V 33.1 Tracheal rales,
coughing NA Tracheal congestion; lung congestion;

liver congestion; thickened air sacs Negative

15 Houbarabustard ND 76 d V 36.94
Coughing, sneezing,

tracheal rales,
dyspnea

NA
Fibrrinous sinusitis; lung congestion;

fibrinous pericarditis;
fibrinous airsacculitis

E.Coli
Enterococcussp.

16 Houbarabustard ND 55 d V 36.36 Coughing, sneezing,
tracheal rales NA Lung congestion; fibrinous

pericarditis; fibrinous airsacculitis E.Coli

17 * Partridge 9365 32 w V 26.19 * Tracheal rales,
diarrhea, cachexia 0.5%

Fibrinous sinusitis and congestive
tracheitis; Intrabronchial fibrin cast;

fibrinous pericarditis and
perihepatitis; splenomegaly

E.Coli

18 Houbarabustard ND 201 d V 35.17 Dyspnea, diarrhea,
anorexia, lethargy NA

Exsudative tracheitis with
intrabronchial fibrin cast;

airsacculitis; perihepatitis with
hepatomegaly; splenomegaly;
catarrhal enteritis; ulcerative

oesophagitis, pancreas hypertrophy

Poxvirus
MycoplasmaGalliseptcium

Candida Albicans
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Table A1. Cont.

Cases Bird
Species

Bird
Population

Age
(d/w)

H9 Vaccinationsta-
tus (V/NV)

RT-PCR
H9 (Ct) Clinical Signs Mortality

Rate (%) Pathological Lesions Coinfecting Agents

19 Houbarabustard ND 237 d V 38.32 Diarrhea, anorexia,
diarrhea, lethargy NA

Purulent arthritis; aisacculitis;
hepatomegaly with perihepatitis;
ulcerative esophagitis; catarrhal
enteritis; pancreas hypertrophy

Poxvirus
E.Coli

Staphylococcus sp
Candida Albicans

20 Houbarabustard ND 235 d V 36.27 Diarrhea, anorexia NA

Exsudative tracheitis; fibrinous
pericarditis and perihepatitis with
hepatomegaly; catarrhal enteritis;
pancreas hypertrophy; ulcerative

oesophagitis and stomatitis,
pancreas hypertrophy

Poxvirus
Staphylococcus Aureus

Candida Albicans

21 Houbarabustard ND 220 d V 37.34 Diarrhea, anorexia NA

Airsacculitis; fibrinous pericarditis
and perihepatitis with

hepatomegaly; catarrhal enteritis;
kidneys hypertrophy and

congestion; pancreas hypertrophy

Candida Albicans

22 * Partridge 4000 105 w V 35.23

Head swelling,
tracheal rales,

dyspnea, paralysis,
overcrowding, diarrhea

0.5%

Fibrinous sinusitis; fibrinous otitis
media and interna; intrabronchial

fibrin cast; catarrhal enteritis; kidney
hypertrophy and congestion

E.Coli serotype O2K1
Aspergillus Fumigatus

23 Houbarabustard ND 35 w V 30.54
Coughing, tracheal

rales, dyspnea,
diarrhea, anorexia

NA

Intrabronchial fibrin cast;
airsacculitis; fibrinous pericarditis

and perihepatitis; enteritis;
kidney hypertrophy; ulcerative

stomatitis and stomatitis,
pancreas hypertrophy

Poxvirus
E.Coli
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Table A1. Cont.

Cases Bird
Species

Bird
Population

Age
(d/w)

H9 Vaccinationsta-
tus (V/NV)

RT-PCR
H9 (Ct) Clinical Signs Mortality

Rate (%) Pathological Lesions Coinfecting Agents

24 Houbarabustard ND 35 w V 27.16

Coughing, sneezing,
tracheal rales,

dyspnea,
diarrhea, anorexia

NA

Intrabronchial fibrin cast;
airsacculitis; fibrinous pericarditis

and perihepatitis; enteritis;
kidney hypertrophy and congestion;

ulcerative stomatitis,
pancreas hypertrophy

Poxvirus
Klebsiellasp

25 Houbarabustard 2500 15 d V 32.1
Coughing, sneezing,

tracheal rales,
dyspnea, diarrhea

NA

Fibrinous sinusitis; intrabronchial
fibrin cast; airsacculitis; fibrinous

pericarditis; liver congestion;
enteritis; kidney hypertrophy

and congestion

E.Coli
Enterococcussp

26 Houbarabustard ND 26 d V 33.26
Coughing,

tracheal rales,
dyspnea, diarrhea

NA

Fibrinous sinusitis; intrabronchial
fibrin cast; fibrinous airsacculitis;

enteritis; kidney congestion
and hypertrophy

E.Coli

27 Houbarabustard ND 38 d V 31.45
Coughing,

tracheal rales,
dyspnea, diarrhea

NA
Intrabronchial fibrin cast; liver

congestion; enteritis; kidney
congestion hypertrophy

E.Coli

28 Houbarabustard ND 23 d V 37.19
Coughing,

tracheal rales,
dyspnea, diarrhea

NA

Fibrinous sinusitis; intrabronchial
fibrin cast; airsacculitis; pericarditis;

enteritis; kidney hypertrophy
and congestion

E.coli

29 Partridge 18,600 2 w V 33.21 Dyspnea, rales,
diarrhea, lethargy 0.3%

Fibrinous sinusitis; lung congestion
with nodules; fibrinous pericarditis;

kidney congestion; enteirits

E. Coli
Aspergillus Fumigatus

30 Quail ND ND V 33.6 Respiratory distress <0.01%
Lung congestion; airsacculitis; liver

congestion; kidney congestion
and hypertrophy

Mycoplasma
Galliseptcium

Aspergillus Fumigatus

ND = No Data; *: sequenced H9N2 isolates. V= vaccinated at 1 day-old using an inactivated vaccine via intra-muscular route; NV = not vaccinated; NA: Not applicable, mortality rates
in bustards cannot be calculated since each bird is examined separately.
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