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Improving the structure of a hydrological model to forecast catchment 
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aUniversité Paris-Saclay, INRAE, HYCAR Research Unit, Antony, France; bWSL Institute for Snow and Avalanche Research SLF, Davos Dorf, 
Switzerland; cInstitute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland; dClimate Change, Extremes and Natural 
Hazards in Alpine Regions Research Center CERC, Davos Dorf, Switzerland

ABSTRACT
We compared the flood forecasts issued by a model used by operational services in France 
(GRP) and by a model developed to improve the simulation of floods resulting from intense 
rainfall (GR5H_RI). We selected 10,652 flood events from 19 years of hourly data available for 
229 French catchments. The models were combined with a state-updating procedure to 
produce forecasts at 3, 6, 12 and 24 h lead times. Results indicate that the GR5H_RI model 
performs better on average than the GRP model at all lead times, particularly for forecasting 
flash floods (rise time < 12 h), which occur mainly in summer and early autumn. The use of the 
last observed streamflow to update initial conditions does not compensate for GRP’s structural 
errors in the case of fast catchment response to intense rainfall. The new structure therefore 
opens valuable operational perspectives.

RÉSUMÉ
Nous présentons une évaluation comparée des prévisions de crue d’un modèle utilisé par les 
services opérationnels en France (GRP) et des prévisions d’un modèle développé pour 
améliorer la simulation des crues résultant de fortes intensités de pluie (GR5H_RI), réalisée 
sur un large échantillon de 229 bassins versants français répartis sur le territoire métropolitain. 
Nous avons sélectionné 10 652 événements, à partir de 19 ans de données au pas de temps 
horaire, pour effectuer cette évaluation. Les modèles sont couplés à une méthode de mise à 
jour des états initiaux pour effectuer des prévisions aux horizons 3, 6, 12 et 24 h. Les résultats 
indiquent que le modèle GR5H_RI a en moyenne de meilleures performances que le modèle 
GRP aux quatre horizons, en particulier pour prévoir les crues dont les temps de montée sont 
inférieurs à 12 h et qui ont majoritairement lieu en été et au début de l’automne. L’exploitation 
du dernier débit observé ne permet pas de rattraper les erreurs structurelles du modèle GRP 
lors de réactions rapides des bassins versants à de fortes intensités de pluie. La nouvelle 
structure offre ainsi des perspectives opérationnelles intéressantes.
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Forecasting; hydrological 
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1. Introduction

In order to anticipate floods, operational forecasting 
systems exist in many countries (Pappenberger et al.,  
2016). These systems use meteorological forecasts and 
observations to predict river flows at time scales ran-
ging from a few hours to a few days (e.g. Pagano et al.,  
2014; Wu et al., 2020). This transformation is generally 
carried out using hydrological models, which are an 
important component of these forecasting systems. 
Although many improvements have been brought to 
flood forecasting systems over the last two decades 
(e.g. Jain et al., 2018; Zanchetta & Coulibaly, 2020), 
both in terms of meteorological inputs and in terms of 
development of more efficient models, the forecasts 
made by these models are still subject to considerable 
uncertainty (e.g. Berthet et al., 2020; Brunner et al.,  
2021; Troin et al., 2021).

In particular, hydrological models have lower pre-
dictive capacities in arid basins and in basins charac-
terised by dry conditions in certain seasons (e.g. 
McMillan et al., 2016; Melsen et al., 2018), especially 
when flash floods occur (e.g. Hapuarachchi et al., 2011) 
and when rainfall intensities are high (Astagneau et al.,  
2021). To improve the predictive capabilities of models 
under these conditions, numerous studies have focused 
on the diagnosis of hydrological model simulations and 
on improving the simulation of flash floods. For exam-
ple, De Boer-Euser et al. (2017) showed that some 
rainfall-runoff models face difficulties in reproducing 
hydrological signatures representing rapid summer 
dynamics in the Meuse basin. Knoben et al. (2020) 
showed that models incorporating a runoff process 
based on infiltration excess or a rapid routing compo-
nent perform better in catchments experiencing floods 
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under dry conditions. Roux et al. (2011) introduced 
a hydrological model dedicated to the simulation of 
flash floods in Mediterranean basins. Pang et al. 
(2020) tested a modification of the soil conservation 
service curve number (SCS-CN) to take into account 
rainfall intensities and slope in order to improve flood 
simulation in the Chao River catchment. To our knowl-
edge, there are no studies specifically documenting the 
failure of flood forecasting models (i.e. a hydrological 
model combined with a data assimilation method) to 
simulate floods associated with high rainfall intensities.

The GRP flood forecasting model (Viatgé et al.,  
2019) has been used in France by most of the flood 
forecasting services in the Vigicrues network for 
more than 10 years. It is based on the work of 
Tangara (2005) and Berthet (2010), and has been 
applied to many French rivers. Its structure derives 
from the GR4J model (Perrin et al., 2003), which 
had been simplified to allow efficient use of the 
observed flow. GRP is a parsimonious deterministic 
model with three free parameters, which operates at 
time steps from sub-hourly to daily. It incorporates 
a procedure for assimilating observed streamflow in 
real time to update its initial states. Outputs are 
also corrected using the previous error to update 
future forecasts. The model can forecast flows for 
lead times ranging from less than 1 h to up to 5 
days, the quality of forecasts at the various lead 
times being dependent on several factors such as 
model quality, basin dynamics, quality of rainfall 
forecasts, etc. Several limitations of the GRP model 
were identified based on end-users’ feedbacks, in 
particular a tendency to underestimate flood 
volumes and peaks, and a delay in the flood rising 
limb. For example, in June 2016, the exceptional 
flood of the Seine River and its tributaries, and also 
the tributaries of the Loire River, was underesti-
mated by the GRP model (e.g. Peredo, 2021). 
A number of aspects of the hydrological modelling 
chain may explain these difficulties, including the 
estimation of model parameters, its structure and 
the data assimilation method used.

Previous research work on the GRP model has 
sought an effective compromise in complexity 
between three elements: the structure of the model, 
the estimation of its parameters and the assimilation of 
the last observed discharge. The adopted strategy is to 
give a central place to the flow observed at the time of 
the forecast, which is used to update the level of the 
model store directly generating streamflow. The 
resulting structure is simple, with only three free para-
meters, which limits equifinality problems and 
increases the model’s robustness. The updating proce-
dures used by the GRP model have a major impact on 
the quality of its forecasts.

In this study, we seek an alternative modelling 
compromise for flood forecasting, particularly when 

catchments respond to high rainfall intensities under 
conditions of low antecedent wetness. In this situa-
tion, data assimilation is not always sufficient to 
compensate for the structural limitations of hydro-
logical models. We are therefore seeking to answer 
the following question: Does improving the structure 
of a hydrological model lead to an improvement in 
the quality of deterministic forecasts, particularly 
when catchments react rapidly to high rainfall 
intensities?

To answer this question, we compared the forecasts 
of the GRP model with those of the GR5H_RI model 
developed specifically to improve the simulation of 
floods resulting from high rainfall intensities 
(Astagneau et al., 2022). The GR5H_RI model is com-
bined with a state-updating method similar to that of 
GRP in order to produce forecasts up to 24 h ahead. 
The aim of this work is to quantify the differences 
between these two models as a function of flood type 
and forecast lead time. Comparisons were made over 
19 years of available hourly data for 229 catchments in 
mainland France, from which 10,652 flood events 
were selected.

2. Data and methods

2.1. Data

This work is based on a large database of 229 French 
catchments (Figure 1) spread across mainland France. 
Anthropogenic activities and snow have limited influ-
ence on the hydrological behaviour of these catch-
ments. Hourly time series were used over the period 
2000–2018, representing a wide range of hydrocli-
matic conditions.

We used Météo-France’s Comephore radar reanaly-
sis (Tabary et al., 2012), available at a 1 km2 resolution, 
to compile hourly time series of rainfall aggregated at 
the catchment scale. Hourly potential evapotranspira-
tion (PET) series were calculated from a disaggregation 
of daily series derived from the formula of Oudin et al. 
(2005) using SAFRAN temperatures (Vidal et al., 2010). 
Temporal disaggregation of daily PET series was car-
ried out using a parabolic distribution between 6 am 
and 7 pm. The temporal flow series were taken from an 
extraction of data from the Banque Hydro (Leleu et al.,  
2014). This extraction was carried out by Delaigue et al. 
(2020). We selected 10,652 flood events from this data-
base using an automatic selection algorithm. The 
detailed characteristics of this database are presented 
by Astagneau (2022).

2.2. Models

Precipitation and PET time series were used as inputs 
for two forecasting models (Figure 2):
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● The GRP model (Berthet, 2010; Tangara, 2005; 
Viatgé et al., 2019) has three free parameters and 
incorporates a procedure for updating the rout-
ing store using the flow observed at the time of 
forecast. The procedure for correcting forecast 

flows using the previous error at 1 h is not acti-
vated for the forecasts evaluated in this study.

● The GR5H_RI model, developed by Astagneau 
(2022), is a modified version of the GR5H model 
(Ficchì et al., 2019; Le Moine, 2008), which aims 

Figure 1. Location of the 229 catchments in mainland France. Classification into hydrological regimes as defined by Sauquet et al. (2008).

Figure 2. Schematic diagrams of the GRP model and the GR5H model integrating the rainfall intensity functions (GR5H_RI). CORR 
(effective rainfall correction coefficient; unitless), TB (unit hydrograph base time; h) and ROUT (routing store capacity; mm) are the 
free parameters of the GRP model. X1 (production store capacity; mm), X2 (exchange coefficient; mm/h), X3 (indirect branch 
routing store capacity; mm), X4 (unit hydrograph base half-time; h) and X5 (exchange threshold; unitless) are free GR5H model 
parameters. i1 (rainfall intensity coefficient; h/mm), i2 (rainfall intensity coefficient; h/mm) and KL (direct branch linear store 
emptying coefficient; unitless) are free parameters added to the GR5H model to improve the simulation of catchment response to 
intense rainfall. E, P and Q are potential evaporation, precipitation and streamflow, respectively. Other symbols are internal model 
state variables.
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to improve the simulation of catchment response 
to intense rainfall. GR5H_RI has eight free para-
meters and incorporates a procedure for updat-
ing its two routing stores (see the description of 
this procedure in section 2.3).

Two modelling functions have been introduced 
into the structure of the GR5H model in order to 
improve its performance when intense rainfall 
events occur in the dry season (Figure 3; for more 
details on these modelling functions, see Astagneau 
et al. (2022) and Peredo et al. (2022)). The first 
hypothesis aims to modify the net rainfall produc-
tion rate (provided by the production store) as 
a function of the net rainfall intensity (volume 
hypothesis). The production rate calculated by 
GR5H depends solely on the level of the produc-
tion store (high rate when the store level is high, 
i.e. when soil moisture is high, and a low rate when 
the store level is low). In the GR5H_RI model, 
when rainfall intensity is high and the level of the 
production store is low, the production rate 
increases (i.e. it becomes different from the rate 
initially calculated by GR5H). This change is con-
trolled by parameter i1. The second function aims 
to increase the partitioning of effective rainfall with 
fast dynamics when rainfall intensities are high 
(temporal distribution hypothesis). In the GR5H 
structure, 10% of the effective rainfall systematically 
passes through the direct branch of the routing 
function. In the GR5H_RI model, this fraction 

depends on the intensity of the net rainfall. This 
change is controlled by the i2 parameter. A linear 
store (parameter KL) has been added to the direct 
branch to improve the simulation of recessions 
when a large proportion of the effective rainfall 
passes through this branch.

2.3. Calibration, updating and evaluation

2.3.1. Hydrological forecasts
To test the models on past series, the models are run 
successively at each time step in the series, as if they 
were used in real time. At each forecast time t0, specific 
model states are updated on the basis of the observed 
flow. Once the initial states have been updated, the 
forecasts are run between t0 + 1 and t0 + H, where H is 
the forecast horizon. This reproduces a close to real- 
time forecast situation: all the information available up 
to the time of the forecast is used to produce a forecast 
for the future. However, in real time rainfall forecasts 
are used between t0 + 1 and t0 + H, while in this study 
we used so called “perfect” rainfall scenarios, corre-
sponding to the catchment rainfall records observed 
a posteriori. This allows us to compare the forecasting 
models independently of the uncertainties arising 
from the rainfall forecasts, and therefore with less 
uncertainty than in real time.

2.3.2. State updating
The initial conditions of the GRP model are updated 
on the basis of the last observed flow. Only the level of 

Figure 3. Simplified diagram of the rainfall intensity functions proposed by Astagneau et al. (2022).
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the routing store is updated. At each forecast time, the 
level of the routing store is adjusted to reproduce 
exactly the last observed flow (direct insertion updat-
ing method).

The GR5H_RI model has two routing branches. 
This means that the direct insertion updating proce-
dure is necessarily different from the GRP updating 
procedure. When testing the structure of the GRP 
model, Berthet (2010) evaluated a version with two 
routing branches (with a single routing store on one of 
the two branches). To update the routing store, he 
suggests to find the level whose outflow Q�R;t0 

is equal 
to Qobs;t0 � QD;t0 , with Qobs;t0 the observed flow at the 
forecast time and QD;t0 the flow coming from the 
pseudo-direct branch. However, this rule implies that 
when QD;t0 � Qobs;t0 , the routing store on the indirect 
branch empties almost completely to adjust to the 
observed flow. In this case, the update does not fully 
adjust to the observed flow so as not to obtain negative 
store level values. To limit this effect, we assume that 
the information provided by the model error at a given 
time does not allow to estimate an “observed” flow 
partitioning. We therefore prefer to use the partition-
ing initially simulated by the model.

We proposed to determine a target outflow Q�R;t0 
as 

follows: 

QR;t0 is the simulated flow that comes from the indir-
ect branch (before updating); α is the fraction of the 
simulated flow that comes from the indirect branch at 
the forecast time (before updating).

As the GR5H_RI model has a linear store on the 
pseudo-direct branch, a target outflow Q�D;t0 

can also 
be calculated: 

The equation of the outflow of the GR5H routing store 
(instantaneous function to the power of 5 of the level) is 
not analytically inversible. There is therefore no analy-
tical solution giving the level of the store whose outflow 
is equal to Q�R;t0

. To find an approximate level at each 
time t0, 1000 values between X3/1000 and X3 are tested, 
X3 being the routing store capacity in mm (see Pelletier 
(2021) for a similar procedure with the GR6J model).

The linear store of the pseudo-direct branch of 
GR5H_RI, on the other hand, is inversible. The level 
of the updated linear store L�t0 

at time t0 is calculated as 
follows: 

where KL [-] is the linear store coefficient. KL takes 
values between 0 and 1.

2.3.3. Calibration of model parameters
The model parameters are estimated from a calibration 
procedure carried out per catchment and over two 
independent sub-periods (P1: 1 January 2000– 
30 June 2009; P2: 1 July 2009–31 December 2018). As 
we wish to analyse the performance of the models 
independently of the parametric compensations 
induced by a calibration of the models with the update 
procedures activated, the two models are calibrated in 
simulation mode. This means that we take the cali-
brated parameters for each catchment and each sub- 
period independently of the initial state updating pro-
cedures. A period of 2 years preceding the start of each 
sub-period is applied to initialise the model states (the 
performance criteria are not calculated over these per-
iods). The calibration algorithm used is based on the 
exhaustive gridding discretisation (EGD) algorithm of 
Perrin et al. (2008). This algorithm is implemented in 
the airGR package (Coron et al., 2017, 2020). The two 
models were calibrated using the NSE criterion (Nash & 
Sutcliffe, 1970) as the objective function.

2.3.4. Evaluation of forecast quality
Forecasts are evaluated for a fixed lead time. In other 
words, all the forecasts made successively for each 
time step in the data series for a given lead time are 
put together to create a series of forecast flows for that 
lead time. This time series is then compared with the 
observations according to the chosen criterion. For 
this study, we use three event-based error criteria:

● All the forecasts within the flood event temporal 
window (from start to end of an event) were 
considered to calculate a bounded version of the 
NSE (Mathevet et al., 2006). For an event j at lead 
time H, this criterion is expressed as follows:

This bounded version of the NSE takes values between 
−1 and 1. Negative values of bounded NSE indicate 
that the catchment mean flow is a better predictor 
than the model in forecasting a flood event. The opti-
mal value of this criterion is 1. The use of the bounded 
version avoids a too-large impact of strongly negative 
values of NSE when calculating the average perfor-
mance on a large set of catchments and flood events.

● The root mean square error (RMSE) calculated 
on flood rises. To calculate this criterion, the 
fixed-lead time forecasts used are those that fall 
within the rising window of the observed event 
(from the start of the event to the observed peak). 
The start of the event is defined as the time at 
which the flow exceeds 20% of the maximum 
flow for the event. Then, for each event and 
each lead time, we calculate the ratio between 
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the flood rise RMSE of GRH_RI forecasts and the 
flood rise RMSE of GRP forecasts.

● The peak flow relative error criterion. It was 
adjusted to be relevant for fixed-lead-time time 
series analyses for the following reason: when the 
lag time between the observed peak flow and the 
predicted peak flow equals the lead time, it means 
that the peak flow was predicted at the forecast 
time of the observed peak flow. Therefore, it 
should not be taken into account in the calculation 
of the peak flow relative error criterion. To address 
this issue, the peak flow relative error of an event 
j at lead time H was calculated as follows:

where max QP;j;H
� �

is the maximum predicted flow 
between tmax � H=2 and tmax þH=2, where tmax is 
the time of the observed peak flow. This criterion 
was then bounded: 

In order to simplify the presentation of the results, the 
values of the criteria are presented in cross-evaluation 
(i.e. on P1 with the parameters estimated on P2 and 
vice versa) without distinguishing the temporal sub- 
periods. The results are presented for lead times of 3, 
6, 12 and 24 h. First, the 10,652 events are divided into 
two categories: events with peak flows between 
November and April (winter) and events with peak 
flows between May and October (summer). In 
a second step, the events are categorised according to 
the time to rise to the observed peak. Thirdly, the 
events are categorised according to the average inten-
sity of the associated rainfall events.

3. Results

We first look at the performance of the forecasts accord-
ing to the season of peak flood occurrence. Figure 4 
shows the distribution of event errors according to the 
bounded NSE (optimum value = 1) on flood events for 
the two models. The bounded-NSE distributions show 
higher values for the GR5H_RI model than for the GRP 
model, for all forecast horizons and for both seasons. 
The greatest differences in performance are observed for 
summer events. In winter and for the 3 h lead time, the 
differences in performance are less apparent.

Comparing the performance of GR5H_RI in terms 
of flood rise forecast as a function of the observed rise 
time (Figure 5), it can be seen that the shorter the rise 
time, the better the performance of GR5H_RI com-
pared with GRP, for all forecast horizons. These dif-
ferences increase as the lead time is reduced. Between 
65% and 70% of events with a rise time of less than 
12 h are better predicted by GR5H_RI than by GRP at 
3 and 6 h lead times. In other words, the greatest 
differences in performance are observed for rise 
times of less than 12 h and for short lead times. The 
50% quantile of the performance ratio is equal to 1 or 
even less than 1 for events with a rise time greater than 
24 h for the 6, 12 and 24 h lead times, which means 
that GR5H-RI performs at least as well as GRP in these 
situations. Conversely, at the 3 h lead time, the 50% 
quantile of the performance ratio is slightly greater 
than 1, and 53% of these events are better predicted 
by GRP. These results indicate that the rise time, and 
therefore the flood dynamics, has a strong impact on 
the differences in performance between GR5H_RI and 
GRP, even in the very short term. The error at the 
forecast time, which is taken into account through the 
assimilation process, contains less information when 
large variations in streamflow occur in a very short 

Figure 4. Distribution of the event performances (bounded NSE; cross-validation; one criterion value per event) of the GRP and 
GR5H_RI models for four lead times; 8,290 winter events and 2,362 summer events are considered here. Box plots are plotted from 
the 5% quantile to the 95% quantile.
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time. In this case, the only way to improve forecasts is 
to improve the structure of the model.

The GR5H_RI model has been developed to take 
better account of rainfall intensity compared with 
GR5H and GRP, particularly in conditions of low 
antecedent humidity. Furthermore, the GRP model is 
known to frequently underestimate flood peaks. We 
now look at the impact of the change in structure on 
the ability of GR5H_RI and GRP forecasts to simulate 
flood peaks when rainfall intensities are high 
(Figure 6). The error of both models increases with 
increasing average rainfall intensity for all four lead 
times. At 3 h lead time, there is very little difference 
between the two models. At 6, 12 and 24 h lead time, 
the error on flood peaks is on average lower for 
GR5H_RI than for GRP, particularly for the highest 
rainfall intensities.

Figure 7 shows four hydrographs forecasted by the 
GRP and GR5H_RI models at 3, 12 and 24 h lead 
times for four catchments in our dataset. The hydro-
graphs presented here are only illustrations of the 
previous analyses and do not constitute 
a representative sample of the results.

The Ardèche at Ucel (478 km2) is a tributary of the 
Rhône downstream of Lyon. Numerous flood events 
take place in this basin in early autumn. The event that 
took place in November 2014 was characterised by 

rainfall intensities of up to 20 mm/h. The GR5H_RI 
model forecasts the flood peak better than GRP for all 
three lead times. At the 3 h lead time, the peak predicted 
by GRP at a fixed lead time is shifted by 3 h, which 
means that the associated time of forecast (t0) was the 
time at which the peak was observed and the time at 
which the peak error was assimilated by the state updat-
ing procedure. Although this peak is of the same order of 
magnitude as the peak forecasted by GR5H_RI, the 
forecast is of poorer quality because the flood peak fore-
casted by GRP is offset from the observed peak by the 
same order of magnitude as the lead time considered.

The Ill at Osthouse (3296 km2) is a tributary of the 
Rhine. It is characterised by slow dynamics and peri-
ods of high water, most of which occur in winter. The 
flood of December 2010 is a typical example of this 
basin. The rainfall event associated with this flood is 
spread over 5 days. The forecasts of the two models are 
satisfactory for the three lead times, but the flood peak 
is underestimated at 12 and 24 h. The GR5H_RI 
model overestimates part of the flood rise and under-
estimates the peak more strongly than GRP does.

The Estéron at Broc (443 km2) is a Mediterranean 
coastal catchment whose high flows occur in winter 
and early autumn. It can be seen that both models 
underestimate the volume and peak of a flood that 
occurred in November 2014, particularly at 12 and 

Figure 5. Cumulative distributions of the RMSE ratio on flood rises between GR5H_RI and GRP as a function of the rise time of the 
events. The results are presented in cross-evaluation for four lead times. The division of the rise times into four groups follows the 
values of the forecast times (3, 6, 12, 24 h). “> and <” “indicate better” than and “worse than”, respectively.
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24 h. The GR5H_RI model forecasts the flood peak 
and rise better than GRP for these lead times. The 
difference is more pronounced at 24 h. At 3 h, the 
forecasts of the two models are close, but the peak and 
the rise in flood level are simulated slightly better by 
GR5H_RI. The Cèze at Tharaux (665 km2) is 
a tributary of the Rhône. High-flow periods occur in 
autumn in this catchment. The September 2015 flood 
was characterised by rainfall intensities of up to 
28 mm/h and a flood rise lasting 5 h. GR5H_RI fore-
casts the rise, volume and peak of the flood better than 
GRP for all three lead times. For this event, GRP’s 
significant underestimation of flood volume is not 
compensated for by its data assimilation procedure, 
even in the short term.

4. Conclusion and perspectives

The aim of this study was to determine whether 
improving the structure of a hydrological model 
could lead to an improvement in the quality of deter-
ministic forecasts, particularly during rapid catchment 
responses to high rainfall intensities. To meet this 
objective, we compared the forecasts of the GRP 

model, which has been used by flood forecasting ser-
vices in France for several years, with the forecasts of 
a hydrological model developed to simulate floods 
resulting from high rainfall intensities. In order to 
compare the two models fairly, we constructed 
a method for updating the initial states of GR5H_RI 
similar to that used by GRP. The two models were 
used to produce forecasts up to 24 h ahead for 229 
catchments from which 10,652 flood events were 
selected. The forecasts were evaluated using three 
event error criteria. Performance was compared as 
a function of the season of peak flood occurrence, 
event rise times and rainfall intensities.

The results showed that the GR5H_RI model, com-
bined with a method to update its two routing stores, 
performed better on average than the GRP model on 
the flood events selected for the four lead times eval-
uated. Forecasts of flood events occurring in summer 
and early autumn are particularly improved. The dif-
ferences in performance between the two models are 
highly dependent on the rise time of the events, even 
in the short term. Events associated with slower basin 
dynamics are forecasted equivalently by both models. 
Flood events associated with higher rainfall intensities 

Figure 6. Distribution of the performance of GRP and GR5H_RI on flood peaks as a function of the average rainfall intensity of the 
events (cross-evaluation). The results are presented for four lead times. The events were divided into 10 quantile classes of mean 
rainfall intensity.
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Figure 7. Examples of flood hydrographs (fixed-lead time) forecasted by the GRP model (pink line) and the GR5H_RI model (purple 
line) over four catchments for three lead times (evaluation). The black dotted line is the 95% quantile of flows over the entire 
series.
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are better forecasted by GR5H_RI. These results indi-
cate that the choice of a structure in which the assim-
ilation of the last observed discharge has a very high 
impact on the forecasts is not appropriate when major 
variations in streamflow occur in a very short time.

The new version of the forecasting model proposed 
as a result of this work (GR5H_RI) should exceed the 
overall efficiency of GRP under operational condi-
tions, and offer an applicability to a wider range of 
events and hydroclimatic contexts. However, the pro-
posed improvements make the estimation of the para-
meters and the assimilation method more complex.

The conclusions of this work depend on the updating 
method used and the way the models were parame-
terised. In particular, the choice of estimating model 
parameters in simulation could have an influence on 
very short-term performance. More generally, the results 
presented in this work mean that we need to think again 
about the trade-offs between increasing the complexity 
of the structure, performance gains and parametric 
uncertainty. If the new version of the forecasting 
model is to be incorporated into future GRP operational 
developments, it will be necessary to determine whether 
the improvement in deterministic forecasts for some of 
the events associated with rapid catchment dynamics 
justifies increasing the complexity of the structure, para-
meter estimation and updating. Work is underway to 
find a parameter estimation method that is better suited 
to the GR5H_RI intensity functions.
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