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MINI-REVIEW

BEST41 cells in the intestinal epithelium

Tania Malonga,1,2 Nathalie Vialaneix,2,3 and Martin Beaumont1
1GenPhySE, Universit�e de Toulouse, INRAE, ENVT, 31326, Castanet Tolosan, France; 2Universit�e de Toulouse, INRAE, UR
MIAT, Castanet-Tolosan, France; and 3Universit�e de Toulouse, INRAE, BioinfOmics, GenoToul Bioinformatics Facility,
Castanet-Tolosan, France

Abstract

The recent development of single-cell transcriptomics highlighted the existence of a new lineage of mature absorptive cells in
the human intestinal epithelium. This subpopulation is characterized by the specific expression of Bestrophin 4 (BEST4) and of
other marker genes including OTOP2, CA7, GUCA2A, GUCA2B, and SPIB. BEST4þ cells appear early in development and are
present in all regions of the small and large intestine at a low abundance (<5% of all epithelial cells). Location-specific gene
expression profiles in BEST4þ cells suggest their functional specialization in each gut region, as exemplified by the small intes-
tine-specific expression of the ion channel CFTR. The putative roles of BEST4þ cells include sensing and regulation of luminal
pH, tuning of guanylyl cyclase-C signaling, transport of electrolytes, hydration of mucus, and secretion of antimicrobial peptides.
However, most of these hypotheses lack functional validation, notably because BEST4þ cells are absent in mice. The presence
of BEST4þ cells in human intestinal organoids indicates that this in vitro model should be suitable to study their role. Recent
studies showed that BEST4þ cells are also present in the intestinal epithelium of macaque, pig, and zebrafish and, here, we
report their presence in rabbits, which suggests that these species could be appropriate animal models to study BEST4þ cells
during the development of diseases and their interactions with environmental factors such as diet or the microbiota. In this
review, we summarize the existing literature regarding BEST4þ cells and emphasize the description of their predicted roles in
the intestinal epithelium in health and disease.

NEW & NOTEWORTHY BEST4þ cells are a novel subtype of mature absorptive cells in the human intestinal epithelium high-
lighted by single-cell transcriptomics. The gene expression profile of BEST4þ cells suggests their role in pH regulation, electro-
lyte secretion, mucus hydration, and innate immune defense. The absence of BEST4þ cells in mice requires the use of
alternative animal models or organoids to decipher the role of this novel type of intestinal epithelial cells.

absorptive cells; bestrophin 4; intestinal epithelium; organoids; single-cell transcriptomics

INTRODUCTION

The intestinal epithelium is a monolayer of cells involved
in nutrient uptake while forming a physical and immunolog-
ical barrier against pathogens and toxins (1). This dual func-
tion of the intestinal epithelium relies on diverse types of
specialized cells that all derive from stem cells located at the
crypt base (2). Progenitors cells differentiate toward the se-
cretory lineage in the absence of Notch signaling. Then, acti-
vation of transcription factors further specifies secretory
sublineages, including enteroendocrine cells producing hor-
mones, goblet cells secreting mucus, Paneth cells releasing
antimicrobial peptides, and Tuft cells playing an important
role against parasitic infections (2, 3). Conversely, Notch acti-
vation in progenitor cells induces the differentiation of
absorptive cells. They represent 80% of epithelial cells in the
intestine and are mainly responsible for transport of
nutrients, electrolytes, and fluids (2, 3). Absorptive epithelial
cells are generally considered a homogeneous population
within each gut segment, apart from the rare population of

microfold (M) cells localized in the follicle-associated epithe-
lium and that are responsible for antigen sampling (4).

Recent discoveries revealed that the cellular composition
of the intestinal epithelium is more complex than previously
thought. For instance, a new cell lineage sharing similarities
with both Paneth and goblet cells named deep secretory
cells was identified in the colon epithelium (5). Spatial tran-
scriptomics also revealed the functional heterogeneity of
absorptive cells across the intestinal villus axis (6). The de-
velopment of single-cell RNA-sequencing (scRNA-Seq) pro-
vided an unprecedented resolution to characterize the
cellular composition of the intestinal epithelium, as illus-
trated by the description of goblet cell diversity in the
human colon (7). Moreover, scRNA-Seq highlighted a previ-
ously overlooked cellular subset of the absorptive lineage in
the intestinal epithelium specifically expressing the ion
channel Bestrophin 4 (BEST4) (8). In this review, we present
the current state of knowledge on BEST4þ cells, their local-
ization in the intestinal tract across time and species, the fac-
tors potentially involved in their specification in vivo and in
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organoids, and their potential roles in epithelial physiology
in health and disease.

BEST41 INTESTINAL EPITHELIAL CELLS
ACROSS GUT SEGMENTS, DEVELOPMENT
AND SPECIES

Identification of BEST41 Cells in the Intestinal
Epithelium

In 2013, the seminal study by Ito and colleagues used
immunohistochemistry to describe a subpopulation of
human absorptive epithelial cells that specifically express
BEST4, a calcium-sensitive ion channel transporting bi-
carbonate (HCO3

�) and chloride (Cl�) ions (8). The exis-
tence of BEST4þ cells was then confirmed a few years
later with the advent of scRNA-Seq, which allowed the cre-
ation of single-cell transcriptomic atlases of the human in-
testinal epithelium (7, 9). Epithelial cell clustering based
on transcriptomic profiles indicated that human BEST4þ

cells express a unique set of genes including BEST4,
Otopetrin 2 (OTOP2), Guanylate cyclase activator 2A
(GUCA2A), Guanylate cyclase activator 2B (GUCA2B),
Carbonic anhydrase 7 (CA7), and Spi-B transcription factor
(SPIB) (7, 9–19). The presumed role of these genes in
BEST4þ cells will be presented in the following sections.

Due to their recent discovery, diverse names were used in
scRNA-Seq studies to label this cell population, such as
“Paneth-like” cells (20) or SPIBþ cells (14) or CA7þ cells (21)
or BEST4/OTOP2 cells (B/OC) (22). The expression of SPIB by
BEST4þ cells led some authors to consider them as micro-
fold (M) cells (23) since the Spi-B transcription factor has
mainly been described for its role in the maturation of M
cells (4). A subpopulation of small intestinal epithelial cells
expressing high levels of the cystic fibrosis transmembrane
conductance regulator (CFTR) previously known as CFTR
High Expresser (CHE) cells was found later in humans to
also express the typical markers of BEST4þ cells and was
therefore renamed BCHE cells (24, 25). In this review, for
clarity, we will only use the name BEST4þ cells to refer to
the subpopulation of epithelial cells expressing the canoni-
cal markers described earlier.

BEST41 Cells across Species

Several scRNA-Seq studies showed that BEST4þ cells are
not present in the intestine of mice (21, 26–28). Indeed,
BEST4was identified as a pseudogene in themouse genome,
suggesting that the functional version of this bestrophin
paralog was lost in this species (29). Interestingly, other
genes known to be specifically expressed by intestinal
BEST4þ cells in the intestines of other species (e.g., OTOP2,
CA7, and GUCA2A) are present in the mouse genome. This
suggests that the BEST4 gene may be crucial for the estab-
lishment and functions of this subtype of mature absorptive
cells in the intestinal epithelium. In contrast with mice, a
functional BEST4 gene is present in the rat genome (29).
However, a scRNA-Seq study did not find a BEST4þ popula-
tion in the rat ileum epithelium (21). BEST4þ cells may be
present in other digestive segments since the presence of
CHE cells was demonstrated in the rat proximal small intes-
tine (30). Yet, the equivalence between CHE cells and

BEST4þ cells was only demonstrated in the human small
intestine (24) and should be confirmed in rats. However,
BEST4þ cells are not specific to the human intestinal epithe-
lium since cell populations expressing the same makers
(BEST4, GUCA2A, GUCA2B, OTOP2, and CA7) were identi-
fied in the intestine of pigs (21, 22, 31, 32) and macaques (21).
Yet, the transcriptomic profile of BEST4þ cells seemed less
conserved between species, when compared with other types
of epithelial cells (21). Our scRNA-Seq analysis of rabbit ce-
cum epithelial cells also indicated the presence of a popula-
tion of BEST4þ cells characterized by the expression of
BEST4, CA7, and OTOP2 (Fig. 1). Interestingly, a population
of enterocytes expressing BEST4 and OTOP2 were also iden-
tified in the zebrafish intestine (33). Overall, the presence of
BEST4þ cells in the intestine of vertebrates seems evolutio-
narily conserved and their absence in mice might be an
exception (Fig. 2A).

BEST41 Cells in the Developing Intestinal Epithelium

BEST4þ cells are found in the human intestinal epithelium
at embryonic, fetal, pediatric, and adult stages (7, 10–12, 19,
23, 34) (Fig. 2A). BEST4þ cells are already present in the
developing human intestine at 11 postconceptional weeks,
before the formation of crypts, which is in contrast to enter-
oendocrine cells, goblet cells, and mature enterocytes (12).
BEST4þ cells represent less than 5% of epithelial cells in the
fetal intestine and their abundance remains the same during
in utero development (11, 12), whereas the proportions of gob-
let and enteroendocrine cells tend to rise from 12 to 19 post-
conceptual weeks in humans (12). A study in piglets showed
that the abundance of BEST4þ cells (5%–10%) remained sta-
ble in the ileum across the suckling-to-weaning transition
(22), which is a major step for the postnatal maturation of the
intestinal epithelium. Altogether, these data suggest that
BEST4þ cells are established early in utero and their abun-
dance seems stable during intestinal development in human
and pigs, although this developmental pattern should be con-
firmed by additional studies and validated in other species.

Localization of BEST41 Cells in the Crypt-Villus Axis

Immunohistochemistry labeling and RNA in situ hybrid-
ization showed that human BEST4þ cells are mostly located
in villi (small intestine), on the surface epithelium and on
the crypt top (small and large intestine) (8, 9, 15) (Fig. 2B). In
pigs, BEST4þ cells are present both in the upper part of
crypts and in villi throughout the small intestine (31). The
BEST4þ cells marker CA7 was also distributed in villi of pigs
and macaque ileum (21). Interestingly, BEST4þ cells tend to
neighbor goblet cells in human and pigs (8, 10, 31), which
is consistent with a possible contribution of BEST4þ cells
to the hydration of mucus, as presented in Electrolyte
Transport and Mucus Hydration. Expression of marker
genes of epithelial cell position in the crypt-axis predicted
BEST4þ cells to be located between the middle and the
top of epithelial crypts (7, 10, 14, 17, 35). Spatial transcrip-
tomics performed on sections of human colon also local-
ized BEST4þ cells toward the top of epithelial crypts and
highlighted their colocalization with mature colonocytes
(12). All studies agree that BEST4þ cells are never seen in
the bottom of the crypts where proliferative and epithelial
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stem cells are located. Accordingly, BEST4 protein does
not colocalize with the proliferation marker Ki-67 in the
human intestinal epithelium (8), which indicates that
BEST4þ cells are postmitotic.

Regional Differences in BEST41 Cells

BEST4þ cells are found in each segment of the small and
large intestine (8, 15, 18, 19). In human adults, the abundance
of BEST4þ cells represents 5%–15% of the total epithelial
population in the jejunum, ileum, and colon while they rep-
resent less than 2% in the duodenum, appendix, and rectum
(11, 24). However, there are some variations between studies
since others found that BEST4þ cells represent only 1% to
3% of cells in human ileum (16, 21) and testing for differen-
tial abundance of BEST4þ cells according to gut location
revealed no significant changes despite the highest pro-
portions observed in the colon (18). Other studies found an
abundance lower than 5% for BEST4þ cells in the human
colon (9, 14). BEST4þ cells are also rare (<4%) in pig and
macaque ileum (21, 31). Overall, BEST4þ cells are low-
abundance cells of the intestinal epithelium but additional
studies are still required to define more precisely their fre-
quency and distribution across gut segments and species.

Location-specific gene expression profiles were observed
in BEST4þ cells (small vs. large intestine) in human adults
but not in fetal tissues (11) suggesting postnatal acquisition
of regionalized functions. The most striking difference is the
expression of CFTR by BEST4þ cells in the small intestine
but not in the colon (11, 15, 24, 25) (Fig. 2B). Other regional
differences include a higher expression of ATP-Binding
Cassette Subfamily G Member 5 (ABCG5), Neuropeptide Y
(NPY), lysozyme (LYZ), Bone Morphogenetic Protein 3
(BMP3), and metallothioneins (MTs) in small intestine
BEST4þ cells while Otopetrin 3 (OTOP3) and Secretory
Leukocyte Peptidase Inhibitor (SLPI) are examples of
genes specifically expressed by colon BEST4þ cells (11, 15,
24). These observations suggest functional specialization
of BEST4þ cells in each gut region.

Specification of BEST41 Cells

The coexpression of BEST4 and villin in human epithelial
cells was the first evidence indicating that BEST4þ cells
belong to the absorptive lineage (8). Moreover, confocal

microscopy imaging suggested that the morphology of
BEST4þ cells is not distinctive from other absorptive cells,
with an elongated and columnar shape (8). Yet, electron mi-
croscopy studies indicated that the morphology of CHE cells
in the rat intestine was slightly distinctive from other mature
enterocytes, with less densely packed microvilli and charac-
terized by the accumulation of apical vesicles (25, 36).
Further studies would be required to determine if these ul-
trastructural features of CHE cells are also observed in the
analogous BEST4þ cells in the intestinal epithelium.
Trajectory inference analysis based on scRNA-Seq data from
the human small and large intestine epithelium also sug-
gests that BEST4þ cells constitute a terminal state that
branches from absorptive progenitors and that is distinct
from mature enterocytes or colonocytes (9, 14, 17, 35). The
branching of BEST4þ cells from absorptive progenitors is
marked by a reduced gene expression of the transcription
factor estrogen-related receptor a (ESRRA) when compared
with other mature absorptive cells (35) (Fig. 2C). In contrast,
one study suggested that small intestine BEST4þ cells may
arise from secretory progenitors but this conclusion may be
qualified by the relatively small number of cells analyzed to
infer temporal lineage trajectories (15).

BEST4þ cells specifically express the Notch 2 receptor
(NOTCH2), suggesting that Notch signaling could be
involved in their specification to the absorptive lineage (7,
9, 14, 15, 17). Accordingly, the upregulation of BEST4
expression associated with in vitro differentiation of Caco-
2 cells requires Notch signaling (8). The transcription fac-
tors HES4 and SPIB expressed by BEST4þ cells could also
play an important role in their differentiation (7, 9, 14, 15,
17). Thus, available data indicate that BEST4þ cells consti-
tute a mature subpopulation within the absorptive lineage
in the intestinal epithelium but the molecular signals and
transcription factors driving their specification remain to
be validated experimentally.

BEST41 Cells in Intestinal Organoids

In vitro models are required to study the specification and
the still largely unknown functions of BEST4þ cells in the
intestinal epithelium. BEST4þ cells can be found in human
organoids derived from fetal and adult epithelial crypts (10,
34, 37). The proportion of BEST4þ cells in organoids derived

Figure 1. Single-cell RNA-sequencing reveals the presence of BEST4þ cells in the rabbit caecum epithelium. Epithelial cells from the cecum of a 27-day-
old male rabbit were isolated and processed for single-cell RNA-sequencing using Chromium Next GEM Single Cell 30 Reagent Kits v3.1 (10xGenomics).
Data processed with the Cell Ranger software (10x Genomics) are available at https://doi.org/10.57745/0NUYZR. Seurat pipeline analysis scripts and
results are also available in the same repository. Single-cell transcriptome profiles are shown by uniform manifold approximation and projection (UMAP)
visualizations colored according to the gene expression level of the epithelial marker EPCAM (Epithelial Cell Adhesion Molecule) and of BEST4þ cells
canonical makers: BEST4 (Bestrophin 4), CA7 (Carbonic Anhydrase 7), andOTOP2 (Otopetrin 2).
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from the fetal intestine was higher when WNT3A was
included in the culture medium in comparison with a
growth medium lacking this Wnt ligand (10). Another study
showed that replacing epidermal growth factor (EGF) in the
culture mediumwith epiregulin (EREG), another EGF family
member, was necessary to observe BEST4þ cells in human
intestinal organoids derived from fetal epithelial crypts (34).
A rare population of cells expressing BEST4, CA7, SPIB,
GUCA2A, and GUCA2B (labeled as M cells) was also present
in human intestinal organoids derived from embryonic stem
cells and transplanted into the kidney capsule of mice for 8
wk (23). Utilization of available intestinal organoids from
other species such as pigs, rabbits, and rats (38–40) could
also be useful to study BEST4þ epithelial cells but their
capacity to retain this rare population remains to be vali-
dated. The possibility to study BEST4þ cells in vitro by using
intestinal organoids that are amenable to genetic modifica-
tions opens numerous perspectives for functional studies
and to decipher the molecular events driving their specifica-
tion. However, a limitation of commonly used tissue-derived
organoids is the absence of nonepithelial cells, such as mes-
enchymal cells, immune cells, or neurons, which prevents

the use of this model to assess the interactions between
BEST4þ cells and these specific cell types.

POTENTIAL FUNCTIONS OF BEST41 CELLS
IN THE INTESTINAL EPITHELIUM

Due to their recent discovery, the functions of BEST4þ

cells remain largely unknown. Current hypotheses are
mainly based on ontology analyses of genes expressed spe-
cifically by BEST4þ cells and on potential cell-cell interac-
tions inferred from ligand-receptor expression in scRNA-Seq
data. It is important to note that functional validations are
currently lacking for most of the potential functions of
BEST4þ cells.

Electrolyte Transport and Mucus Hydration

Genes expressed by BEST4þ cells suggest their important
role in transepithelial transport of electrolytes and fluid
secretion (7, 9, 21) (Fig. 3). Bestrophins constitute a family
of four paralogs (BEST1, BEST2, BEST3, and BEST4) cod-
ing calcium-activated chloride channels expressed at the

Figure 2. BEST4þ cells in the intestinal epithelium. A: BEST4þ cells are present in the human intestinal epithelium, appear early in development and
can be found in organoids. BEST4þ cells were described in the intestinal epithelium of monkey, pig, rabbit, zebrafish, but not in mice. B: BEST4þ cells
express bestrophin 4 (BEST4), otopetrin 2 (OTOP2), and carbonic anhydrase 7 (CA7) in all segments of the small and large intestine while cystic fibrosis
transmembrane conductance regulator (CFTR) is expressed specifically in the small intestine. BEST4þ cells are mostly found in villi in the small intestine
and at the upper part of crypts in the large intestine. BEST4þ cells are often located near goblet cells, which is consistent with the potential role of
BEST4þ cells in mucus hydration. C: BEST4þ cells are a sublineage of mature absorptive cells. Factors potentially involved in the specification of
BEST4þ cells from absorptive progenitors include estrogen-related receptor a (ESRRA), Spi-B Transcription Factor (SPIB), Hes Family BHLH
Transcription Factor 4 (HES4), and Notch Receptor 2 (NOTCH2). EEC, enteroendocrine cell. Figure created with Biorender.com.
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basolateral membrane of epithelial cells (41). Bestrophins
have a broad tissue distribution and are expressed in the epi-
thelium of multiple organs including the retina, lung, colon,
pancreas, kidney, and testis (42). Bestrophins mediate the
flow of chloride and other monovalent anions (e.g., HCO3

�)
across cell membranes, thereby influencing fluid secretion
and cell volume (41–43). BEST1 is the most studied paralog
since numerous mutations in this gene are involved in
human retinal degenerative disorders linked to abnormal
fluid and electrolyte transport (41). Mouse BEST2 is involved
in bicarbonate transport by colon goblet cells (44). Although
there has been limited attention given to the specific func-
tions of the BEST4 paralog, it can be presumed that BEST4
expressed at the basolateral membrane of BEST4þ cells may
import bicarbonate and chloride into the cytosol (8, 45). CA7
could also contribute to the production of bicarbonate in
BEST4þ cells by catalyzing hydration of CO2 (46). At the

apical membrane of small intestine BEST4þ cells, CFTR can
secrete bicarbonate and chloride into the intestinal lumen,
thereby creating an osmotic gradient driving fluid secretion
(25). Other ion channels might play this role in large intes-
tine BEST4þ cells that do not express CFTR (15). Secretion of
bicarbonate by BEST4þ cells could then contribute to the
formation of the mucus layer by binding calcium in mucin
granules and by hydrating mucus (47). This potential role of
BEST4þ cells in the formation of mucus is consistent with
their frequent proximity with goblet cells in the intestinal
epithelium (8, 10, 31).

Response to Luminal pH and Regulation of cGMP Tone

Secretion of bicarbonate mediated by BEST4þ cells could
contribute to regulating the luminal pH, which has a key role in
digestive processes and prevention of pathogen growth while
providing an appropriate environment for the commensal

Figure 3. Potential functions of BEST4þ cells in the small intestine. The predicted function of BEST4þ cells presented in this figure were inferred from
their gene expression profile and remain to be validated experimentally. Bicarbonate (HCO3

�) and chloride (Cl�) can be transported by the Bestrophin 4
(BEST4) ion channel expressed at the basolateral side of BEST4þ cells. Carbonic anhydrase 7 (CA7) can also contribute to produce HCO3

� in BEST4þ

cells by hydration of CO2. HCO3
� and Cl� can be secreted in the lumen by the ion channel cystic fibrosis transmembrane conductance regulator

(CFTR), which is highly expressed by BEST4þ cells in the small intestine. Ion secretion by BEST4þ cells could lead to water secretion, hydration of mu-
cus, and regulation of luminal pH. In turn, BEST4þ cells can respond to changes in luminal pH by importing protons though Otopetrin 2 (OTOP2), which
is able to regulate intracellular pH in BEST4þ cells. Ion transport by BEST4þ cells could also be tuned by activation of the vasoactive intestinal peptide
receptor (VIPR1) or by Guanylate cyclase-C receptor (GC-C receptor) signaling. Indeed, BEST4þ cells can release guanylin (GUCA2A) and uroguanylin
(GUCA2B) into the lumen and activate the GC-C receptor, which is expressed by most epithelial cell types. Subsequently, activation of cGMP signaling
regulates electrolyte secretion, cellular junctions, and innate immunity. In BEST4þ cells, an autocrine-loop involving pH sensing and GC-C/c-GMP signal-
ing could be involved in the regulation of ion secretion and production of antimicrobial peptides (AMP) targeting the gut microbiota. Finally, BEST4þ

cells could regulate nociception, satiety, and energy balance through the secretion of guanylin and uroguanylin at the basolateral side. CNS, central
nervous system; SCFA, short-chain fatty acids. Figure created with Biorender.com.
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microbiota (25). Interestingly, in vitro experiments showed that
sorted BEST4þ epithelial cells are able to conduct protons into
their cytosol when extracellular pH decreases (7). The ability of
BEST4þ cells to sense and respond to pH changes could be
mediated by the proton-conducting pH-sensitive ion channel
OTOP2 (48). This potential regulation of pH by BEST4þ cells
could modulate the guanylate cyclase-C receptor (GC-C)/cyclic
guanosinemonophosphate (cGMP) signaling pathway, which is
pH-sensitive (49), and which ligands (uroguanylin and guany-
lin, coded by GUCA2A and GUCA2B) are highly expressed by
BEST4þ cells. Binding of these paracrine/autocrine hormones
to the apical GC-C receptor (GUCY2C), which is expressed by
most intestinal epithelial cell types including BEST4þ cells (15),
increases the production of cGMP (49). cGMP is a secondary
messenger that regulates transepithelial fluid movements
through the activation of ion channels such as CFTR. This could
trigger an autocrine loop in BEST4þ cells leading to electrolytes
and fluid secretion (24). The potential modulation of intestinal
cGMP tone by BEST4þ cells may be key for intestinal homeo-
stasis since the cGMP signaling pathway regulates cellular
proliferation, epithelial barrier function, inflammation, and
visceral nociception (49).

Neuroendocrine Regulations

The neuropeptides Vasoactive Intestinal Peptide (VIP) and
NPY could regulate the secretory functions of BEST4þ cells
(50). Indeed, receptor-ligand analysis based on scRNA-Seq
data predicted that VIP secreted by inhibitorymotor neurons
could modulate secretory functions of BEST4þ cells that
express the VIP receptor VIPR1 (9, 12). The expression ofNPY
by small intestine BEST4þ cells might also regulate their se-
cretory function (50) and mediate a crosstalk with enteroen-
docrine cells that express the NPY receptor (NPY1R) (15).
BEST4þ cells could also modulate satiety and energy bal-
ance through the secretion of uroguanylin, which can be
transported into the central nervous system via the blood-
stream where it binds to the GC-C receptor in the hypothala-
mus (51). Moreover, regulation of intestinal motility by
BEST4þ cells was also predicted based on their expression
of NPY, Adrenoceptor a 2A (ADRA2A), and Cholinergic
Receptor Muscarinic 3 (CHRM3) (9, 15).

Epithelial Defenses

BEST4þ cells may play an important role in the antimicro-
bial defenses of the intestinal epithelium. Indeed, BEST4þ

cells express antimicrobial peptides including lysozyme
(LYZ), serine protease 3 (PRSS3), defensin a 5 (DEFA5), and
phospholipase A2 group IIA (PLA2G2A), LY6/PLAURDomain
Containing 8 (LYPD8), Deleted In Malignant Brain Tumors 1
(DMBT1), WAP Four-Disulfide Core Domain 2 (WFDC2), and
Secretory Leukocyte Peptidase Inhibitor (SLPI) (7, 9, 15). The
expression of antimicrobial peptides by human BEST4þ cells
is regionalized since LYZ andDMBT1 aremainly expressed in
the small intestinewhileLYPD8,WFDC2, andSLPIaremainly
expressed in the large intestine (15, 19). The antimicrobial
peptides expressed by BEST4þ cells are also produced by
other epithelial cell types (notablyPanethandTuft cells), sug-
gesting overlaps in their antimicrobial activities (15, 19).

In addition, BEST4þ cells highly express genes from the
metallothionein (MT) family including MT1E, MT1G, MT1H,
MT1M, MT1X, andMT2A (7, 9, 15, 23, 35, 52, 53). The key role

of MT in metal-ion homeostasis and in the regulation of
immune and oxidative responses in the intestine (54) could
provide BEST4þ cells an essential role in the epithelial bar-
rier function. BEST4þ cells may also interact with immune
cells through the expression of genes coding for cytokines
(e.g., CCL23, CCL15, and IL18) (9). Similarly to other epithe-
lial cells, BEST4þ cells are able to mount a type I interferon
response upon viral infection, as demonstrated in human in-
testinal organoids infected by Human astrovirus 1 (37).
Therefore, BEST4þ cells could play an essential role in the
preservation of epithelial integrity.

BEST41 Intestinal Epithelial Cells in Inflammatory
Bowel Diseases

A few studies suggested that BEST4þ cell homeostasis
could be disrupted in inflammatory bowel diseases (IBD),
including ulcerative colitis (UC) and Crohn’s disease (CD). A
scRNA-Seq study reported a slightly reduced abundance of
BEST4þ cells in inflamed colon biopsies from patients with
UC when compared with healthy controls (9). However, this
depletion of BEST4þ cells in UC was not seen in other stud-
ies using scRNA-Seq (7) or immunochemistry (8). The two
scRNA-Seq studies similarly found that the expression level
of MTs was reduced in colon BEST4þ cells from patients
with UC (7, 9). Other genes differentially expressed in colon
BEST4þ cells between healthy patients and patients with UC
coded for antimicrobial peptides and cytokines but were not
shared between the two studies (7, 9). In CD, a study found
that the proportion of BEST4þ cells was reduced in the il-
eum of treatment naïve or established patients (16). In con-
trast, another study found a higher proportion of mature
BEST4þ cells (i.e., expressing OTOP2) in the colon epithe-
lium of patients with CD (14). In pediatric CD, the abundance
of BEST4þ cells in the ileum was similar to healthy controls
(10). Overall, some evidence suggest that homeostasis of
BEST4þ cells might be altered in IBD but additional studies
are clearly required to confirm these findings since contra-
dictory results were obtained, as illustrated by a comparative
analysis (53).

PERSPECTIVES TO UNRAVEL THE
PHYSIOLOGY OF BEST41 CELLS IN THE
INTESTINAL EPITHELIUM

The recent discovery of BEST4þ cells in the intestinal epi-
thelium highlighted a previously neglected heterogeneity in
the absorptive lineage. The potential functions of BEST4þ

cells (cGMP signaling, pH regulation, electrolyte and fluid
transport, and antimicrobial defenses) suggest that theymay
be central in epithelial homeostasis and that they could be
potentially involved in multiple diseases including IBD, vis-
ceral pain, diarrheal diseases, cystic fibrosis, and obesity (7,
25, 49). However, the absence of BEST4þ cells in the mouse
intestine has hampered the functional studies required to
explore the pathways driving their differentiation and their
role in health and disease. The presence of BEST4þ cells in
human intestinal organoids represents a major opportunity
to study the specification of this novel sublineage of absorp-
tive epithelial cells by modulating key signaling pathways
(e.g., Notch, Wnt) or by invalidating transcription factors
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potentially involved in the differentiation of BEST4þ cells
(e.g., SPIB, HES4, and ESRRA). Invalidation of genes specifi-
cally expressed by BEST4þ cells (e.g., BEST4, OTOP2) in
human intestinal organoids would also be instrumental in
understanding their role in secretory, absorptive, and barrier
function of the intestinal epithelium. Studies in animalmod-
els (e.g., rabbit, pig, zebrafish) are also required to decipher
the interaction of BEST4þ cells with nonepithelial cell types
(e.g., immune cells, neurons), their role in diseases, and the
mechanisms involved in their pre- and postnatal develop-
ment in interaction with environmental factors such as
nutrition or the gut microbiota (e.g., by using germ-free ani-
mals). For instance, it can be hypothesized that BEST4þ

cells could sense and respond to modulations of luminal pH
associated with the bacterial production of short-chain fatty
acids. Overall, a greater understanding of the role of BEST4þ

intestinal epithelial cells in health and diseases is expected
in the coming years thanks to additional single-cell examina-
tion of the intestinal epithelium in humans and in animal
models combined with in vitro reductionist experiments in
organoids.
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