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1  |  INTRODUC TION

Loss of biodiversity has an impact on ecosystem functioning world-
wide, but we lack an in-depth understanding of how this loss may 
influence ecosystem functions (EFs), such as primary productivity 
or soil and water processes, in the long term (Ramus et al., 2022). 
Many studies investigating the relationship between biodiversity 

and ecosystem functioning (BEF) have focused on the level at which 
biodiversity loss is critical to maintain a certain level of EF (Furey & 
Tilman, 2021; van der Plas, 2019). For example, it has been demon-
strated that, in order to maintain EFs such as carbon sequestration 
or soil functioning to a high level of performance, species decline 
within an ecosystem must not exceed 20% (Newbold et al., 2016). If 
this critical threshold is exceeded, manual interventions are required 
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Abstract
1.	 Biodiversity loss has a large impact on many ecosystem functions (EFs). It is urgent 

to quantify the effect of biodiversity loss on EFs, and much efforts are needed 
to determine quantitatively the relationship between biodiversity and ecosystem 
functions (BEF).

2.	 In this review, we first summarised the mechanistic models commonly applied in 
current BEF studies, and proposed a new BEF model based on species interaction 
networks. The ‘network attenuation model’, which is built up by an unsaturated 
network, quantifies BEF. Then, the implication of network attenuation model for 
the scale dependence of BEF has been studied. Finally, the network attenuation 
model has been tested using data from the BIODEPTH project.

3.	 We found that fitting models with the network attenuation model provided bet-
ter results than other common fitting methods. The model fitting results revealed 
the scale dependence in BEF relationships, and demonstrated nonlinear changes 
in the BEF-slope with the spatial scale.

4.	 We conclude that the network attenuation model can be used as an alterna-
tive approach to estimate BEF, and the information from this model can provide 
meaningful guidance for the allocation of resources for conservation efforts 
worldwide. More efforts will be necessary assess the effect of biodiversity on 
various EFs as the importance of interactions among species and species richness 
may also vary over time.
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to sustain an efficient EF level. However, how does biodiversity di-
rectly or indirectly affect EF? How species interact and how these 
interactions contribute to maintain EF? To further clarify these 
questions, it is necessary to quantify the effect of biodiversity on 
different EFs while decreasing the uncertainty of effects of biodi-
versity loss on EFs (Oliver, 2016).

The quantification of the correlation between biodiversity and 
EF has a long history, with the establishment of various correlation 
models. Generally, studies support a positive correlation between 
biodiversity and EF (Cappelli et  al.,  2022; Daam et  al.,  2019), and 
model evaluations indicate that log-linear, linear and other type of 
relationships accounted for 53%, 39% and 8% of biodiversity-EF 
correlations, respectively (Srivastava & Vellend, 2005). Other stud-
ies have also suggested that the BEF can be expressed using the 
Michaelis–Menten equation (Cardinale et al., 2012):

where S refers to the biodiversity measure and K refers to the value 
of S when EF = ½ EFmax, which is the max value of EF. Due to differ-
ences among climate, soil types and vegetation, the Michaelis–Menten 
equation is not universal for all ecosystems (Mora et  al.,  2014). In 
order to take into account environmental impacts, BEF simulations 
have been performed based on natural gradients or along gradients 
of environmental stress. For example, Baert et al.  (2018) proposed a 
BEF unimodal relationship that is dependent on environmental stress 
variations, with the effects of biodiversity on EFs being maximised at 
medium levels of environmental stress.

These correlation models make a great effort in clarifying BEF. 
For instance, Gheysari et al. (2015) showed that most relationships 
between bacterial diversity and EFs were exponential and/or lin-
ear, which suggests that a loss of even a small number of bacterial 
species can have a strong negative impact on overall ecosystem 
functioning. However, statistical models do not allow to assess the 
mechanisms behind BEF, especially because the direct or indirect 
effects of biodiversity on EF are not well identified and understood 
(Newbold et al., 2016). So, much effort is still needed to determine 
quantitatively EF. To better clarify this issue, we first summarised 
the mechanistic models currently applied in most BEF researches, 
and then proposed a new BEF model, the ‘network attenuation 
model’, which was named based on network analysis and the curve 
shape of the model. We then tested this model using data from nat-
ural ecosystem and compared it to most of classical approaches.

2  |  MECHANISM AND QUANTIFIC ATION 
OF BEF

Several researches have shown that the effects of biodiversity on 
EF may consist of many different factors (Daam et al., 2019; Huang 
et al., 2022; Mora et al., 2014). Loreau and Hector  (2001) divided 
these effects into two groups: complementarity effect and selection 
effect. The former arises from niche differentiation or facilitation 

between species whereas the latter effect arises from natural selec-
tion, such as interspecific competition, which can favour dominant 
species with particular functional traits within a community (Yang 
et al., 2022). Moreover, a community with higher plant species diver-
sity can have a higher chance of containing a dominant species, and 
thus can achieve a higher EF (Loreau, 2001). However, it is not clear 
whether the functional consequences of biodiversity come from 
niche complementarity or selection effect?

Based on a large subtropical forest BEF experiment in China, 
Huang et  al.  (2022) analysed the relationship between biodiver-
sity and plant biomass. The results showed that tree species diver-
sity may promote productivity mainly by niche complementarity. 
Similarly, Erickson et al. (2015) showed that niche complementar-
ity increased in communities with a higher species richness. The 
results from these researches highlight that the relationship be-
tween biomass and niche complementarity is more likely than that 
with the selection effect. In another study carried out by Hodapp 
et al. (2016), the authors emphasised that both niche complemen-
tarity effect and selection effect depended on environmental 
heterogeneity (e.g. soil properties), with an increasing niche com-
plementarity as heterogeneity increases in the environment. In ad-
dition, Cadotte (2017) demonstrated that selection effect was the 
main factor in explaining diversity effects in a community charac-
terised by a high species richness and a low diversity of functional 
traits, while niche complementarity was the main factor explaining 
biodiversity effects in a community with a high diversity of func-
tional traits. These results suggest that niche complementarity and 
selection effect can be explained by species functional traits, with 
selection effect playing only a minor role in explaining EFs. For ex-
ample, if selection effect determines EF, a dominant species with a 
particular fitness trait is supposed to be the main driver of the EF. 
But other species can also have this fitness trait and contribute to 
explain EF. In comparison, niche complementarity effect depends 
strongly on species composition (Cadotte,  2017). Although this 
theoretical framework has considerably improved our understand-
ing of BEF, studies in the literature have not reached a consensus 
yet.

Based on a theoretical analysis of BEF, Loreau (1998) proposed 
a model research that is considered as the most influential work for 
current studies that quantify the impact of biodiversity on EF. In this 
model, the four parameters (DT, Di, D, Dmax) used to quantify the ef-
fects of diversity on EFs are first defined. Mi and Oi refer to the yield 
of species i under individual and mixed cultivation conditions in a 
cultivation test, respectively, and pi and Ei denote the plant propor-
tion and expected yield of species i under mixed cultivation condi-
tions, respectively. Then Ei can be expressed as

and the overall yield variation induced by species interactions (DT) can 
be calculated as

(1)EF = EFmax

(
K

S + K

)
,

(2)Ei = Mi × pi ,

(3)DT =

∑
Oi −

∑
Ei∑

Ei
.
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Moreover, under mixed conditions, the yield variation of species 
i induced by other species (Di) can be calculated as

In the sample area, the average yield variation of different spe-
cies induced by species interactions (D) can be calculated as

These equations regard species interactions as the effects of 
biodiversity and yield (Loreau & Hector, 2001):

where ΔYj refers to the net effect of biodiversity on biomass in mixed 
sample area j, ΔRYi,j, refers to the arithmetic mean of ΔRYi,j of all spe-
cies in mixed sample area j; ΔRYi,j refers to the difference between the 
practical and expected relative yields of species i in mixed sample area 
j, Nj refers to the quantity of the species in mixed sample area j, and Mi 
refers to the average biomass of species i under individual cultivation 
conditions. More specifically, ΔYj is defined as the difference between 
observed and expected biomass for all species in mixed sample area j. 
The expected biomass of a species in mixed sample area j is expressed 
as the product of the plant proportion of the species in mixed sample 
area j and its biomass under individual cultivation conditions (Mi). The 
first term on the right-hand side of the equation refers to the biomass 
change caused by the niche complementarity effect and

where Yi,j refers to the observed biomass of species i in mixed sam-
ple area j, and pi,j refers to the proportion of species i in sample area 
j. The second term on the right-hand side of the equation refers to 
the biomass variation in the sample area caused by natural selection. 
Furthermore, cov (ΔRYi,j, Mi) refers to the covariance of ΔRYi,j and Mi 
for all species in sample area j. The equation adopts the probability the-
ory identity where by the weighted average is equal to the arithmetic 
mean plus covariance. In addition, NjΔRYi,j is equal to D (Loreau, 1998) 
and can be expressed as the niche complementarity effect. If biomass 
Mi is taken as a variable, then ΔRYi,j is the species weight, and the co-
variance is employed to measure the consistency between these two 
variables. Variations in species weights can refer to the survival of spe-
cies induced by natural selection in the sample area. Specifically, the 
survival can be quantified using the covariance of the weight and initial 
biomass. Species weights with a positive covariance and high yield ex-
hibit an increase in value, while species weights with a negative covari-
ance and low yield exhibit a decrease in value.

However, some scholars disagree with the work of Loreau (1998). 
For example, Pillai and Gouhier (2019) claim that the division of the 
net biodiversity effect into selection and complementarity effects 
is inappropriate, as it is based on a low-level hypothesis, and cannot 
explain the non-linear correlation between species abundance and 

EF. Because non-linear relationships is common in nature, this may 
lead to the over-estimation of the net effect of biodiversity (Pillai & 
Gouhier, 2019).

To further understand the underlying mechanisms, numer-
ous models have been proposed recently. For example, Lefcheck 
et al. (2021) applied a decomposition approach inspired by the ‘Price 
equation’, which is a tool that quantifies how trait frequency changes 
over time as a result of natural selection and gene transmission, to 
a global dataset of reef fish community biomass. The results indi-
cated that species identity and richness both contribute to BEF. 
Furthermore, Brophy et  al.  (2017) applied diversity-interactions 
models in order to simulate the effects of species richness, species 
evenness, species interactions and specific species effects on EFs. 
This study demonstrated that the effects of the multiple facets of 
diversity described above can be effectively evaluated based on di-
versity-interactions models. Therefore, there is an increasing neces-
sity to develop new quantification methods that assess EFs based 
on species interaction networks in order to better understand and 
evaluate BEF relationships.

3  |  FROM BIODIVERSIT Y TO SPECIES 
INTER AC TION NET WORK

Species interactions can be a much better indicator of EF than a sim-
ple list of taxa and related biodiversity indicator variables (Chang 
et  al.,  2022; Valiente-Banuet et  al.,  2015). Recently, the number 
of publications proposing new estimators of species richness and 
diversity has considerably increased, and new and innovative ap-
proaches such as remote sensing technology have been proposed 
to obtain such estimates (Chao et al., 2019; Skidmore et al., 2021; 
Williams et al., 2021). Yet, sampling species or taxa-specific biodiver-
sity variable represent only a single component of biodiversity, and 
interactions among species are another fundamental component of 
biodiversity, which supports the existence, but in some cases also 
the extinction of species (Jordano, 2016). For example, the loss of 
interactions among species often represents a dramatic decrease in 
EFs (Valiente-Banuet et al., 2015). The loss of ecological interactions 
is often accompanied, or even preceded, by species disappearance 
(Jordano, 2016). Interactions among species are thus a key compo-
nent of biodiversity, and biodiversity itself is the result of complex 
biotic interactions that are structured in species networks. In some 
case, it has also been found that EFs can change with changing the 
species interaction network (Nie et al., 2023), and this without any 
change in the species richness (Morrien et al., 2017). This result em-
phasises that assessing species interactions should be central when 
identifying and quantifying EFs (Poisot et al., 2013).

Species interaction networks, in which species are represented 
as nodes and interactions as links, can be used as tools to examine 
how changes in biodiversity can affect species interactions and BEF 
(Morrison & Dirzo, 2020). The observed networks vary in properties 
such as the number of individuals in the network, the proportion 
of possible relationships that occurs, and the average frequency of 

(4)Di =
Oi − Ei

Ei
.

(5)D =

∑
piDi .

(6)ΔYj = Nj ∙ ΔRYi,j ∙Mi + Nj ∙ cov
(
ΔRYi,j ,Mi

)
,

(7)ΔRYi,j =
Yi,j

Mi

− pi,j ,
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interactions (Ushio et al., 2022). Networks form the structural back-
bone of communities and can be parsed into two components: the 
topological network structure and the ecological network structure. 
Topological structure deals with the mathematical quantification of 
the network (i.e. how many species there are and how interactions 
are distributed among them), while ecological structure focuses on 
the identities of species and interaction partners within the network. 
Both components reveal complementary insights into the processes 
structuring networks and the response of networks to environmen-
tal disturbance (CaraDonna et al., 2017; Delmas et al., 2019).

Different topological network structure have been found in 
‘antagonistic’ or ‘mutualistic’ networks (Morrison & Dirzo,  2020). 
Antagonistic networks are typically modular. It means that species 
are tightly linked with fewer interactions across modules (Cagnolo 
et al., 2011). Modularity in antagonistic networks can arise from evo-
lutionary constraints on interactions (Lewinsohn et  al.,  2006). For 
example, the co-evolutionary ‘arms race’ between herbivores and 
plant hosts can result in greater reciprocal specialisation between 
partners (Cagnolo et al., 2011). Mutualistic networks tend towards 
a nested structure that implies interaction asymmetry, and species 
with few interaction partners interact with subsets of species in this 
structure (Bascompte et al., 2003).

4  |  NET WORK AT TENUATION MODEL: A 
NE W PREDIC TION MODEL FOR BEF

In general, species interactions can be illustrated with bipartite 
graphs, with two or more distinct groups of interacting partners 
(Bascompte & Jordano, 2007). The matrix entries illustrate the val-
ues of the pairwise interactions visualised in the ∆ matrix, and can 
be 0 or 1, for presence-absence of a given pairwise interaction, or 
take a quantitative weight wji to represent the interaction inten-
sity or unidirectional effect of species j on species i (Bascompte & 
Jordano,  2007). If the unidirectional effect is neglected, and the 
value of pairwise interactions between every two species of an eco-
system is equal, the relationship between the number of species in-
teractions (SI) and species richness (n) can be expressed as:

However, in real-world, SI cannot increase unlimitedly with n. The 
reason is due to the forbidden links, which are defined as non-occur-
rences of pairwise interactions that can be accounted for by biolog-
ical constraints (Jordano,  2016). In other words, independently of 
whether we sample full communities or subset communities, some 
of the interactions found in the empty adjacency matrix ∆ do not 
occur in natural conditions (Jordano, 2016). Forbidden links are thus 
represented as structural zeroes in the interaction matrix. Although 
we still have very little information about the frequency of forbid-
den links in natural communities (Maruyama et al., 2014; Valiente-
Banuet et al., 2015), what we do know is that forbidden links can 

slow SI to a maximum in a natural community as n increases, because 
of the attribution of forbidden links. In order to integrate this infor-
mation into the relationship between SI and n, we used the form of 
the following equation:

where y is the dependent variable and x is the independent variable. y 
is going to get closer to the maximum ymax with the increase of x, and 
the speed depends on the parameter Q. In this formula, y cannot in-
crease indefinitely as x increases because it is constrained by ymax and 
Q. We replace y with SI, replace x with 0.5n2–0.5n, and then merge the 
Equations (9) and (10) as follow:

where SImax is the maximum of SI in an ecosystem, Q is a parameter re-
lated to forbidden links, and the value of Q can determine the shape of 
SI with increasing species richness. According to the above discussion, 
species interactions are at the core of ecosystem functions (EFs). More 
specifically, a given EF can be expressed by a given species interaction 
(SI) within an ecosystem. In this context, everything can be expressed as 
an interaction. For example, seeds are the results of sexual interaction. 
Seed germination and seedling growth are the results of the interaction 
between organisms and environmental factors such as soil, air and water. 
For an ecosystem, net primary productivity (NPP), an important EF, is 
first determined by the interaction between species within the commu-
nity and abiotic environment. Second, species diversity can also affect 
NPP through niche complementarity, the facilitation between species, 
and interspecific competition. Such mechanisms can be thought of as in-
terspecies interactions. Thus, in a relatively stable abiotic environment, 
changes in NPP are primarily influenced by species interactions. A rela-
tively stable abiotic environment denotes a limited spatial variability and 
strong temporal stability of the environment factors. In such an envi-
ronment, NPP can be expressed as a variable component resulting from 
the interaction of species and a constant component resulting from the 
interaction of species with abiotic environmental factors:

α is a coefficient related to the dimension of EF which is NPP in this 
example. EF0 is a constant, which is the initial value of EF for a given 
ecosystem, and the value of EF0 is related to the interaction be-
tween species and their abiotic environment in the ecosystem. Then, 
Equations (10) and (11) can be merged, and a new prediction model for 
predicting EF can be achieved as follows:

with EFmax being the maximum of a EF in a given ecosystem. Figure 1 
describes the curve form of formula (12). In addition to NPP, we suggest 

(8)SI0 = 0.5n2 − 0.5n,

(9)y = ymax

(
1 −

1
x

Q
+ 1

)
,

(10)SI = SImax

⎛
⎜⎜⎝
1 −

1
n2 − n

2Q
+ 1

⎞
⎟⎟⎠
,

(11)EF = � SI+EF0.

(12)EF =
�
EFmax − EF0

�⎛⎜⎜⎝
1 −

1
n2 − n

2Q
+ 1

⎞
⎟⎟⎠
+ EF0,
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that other types of EF, such as soil and water processes, can also be es-
timated through species interactions based on this method. In particu-
lar, a given EF can be expressed by a given SI within an ecosystem, and 
different EFs can be expressed by different SIs within a given ecosys-
tem. Although further experiments are required to prove this hypothe-
sis, we initially built the model based on it and subsequently tested the 
predictive applicability of the model. While it is unclear which relation-
ships and species should be considered to express a given EF (e.g. NPP 
or soil and water processes) in the proposed model, we can achieve the 
optimal fitting of a given EF and species richness within an ecosystem 
by correcting the parameter Q according to actual data.

In summary, based on the hypothesis that a given EF can be ex-
pressed by a given SI within an ecosystem, a network attenuation 
model was built to fit the relationship between the EF and spe-
cies richness. The shape of the fitted curve is principally affected 
by forbidden links among species, which can be measured by the 
parameter Q. So, the model can indirectly quantify the effects of 
biodiversity on ecosystem function by measuring the intensity of 
interactions between species. Overall, a positive relationship is ob-
served between the value of Q and the number of forbidden links 
in an ecosystem. For example, when the value of species richness is 
fixed, the number of forbidden links gradually increases with Q, SI 
decreases, and EF decreases accordingly (Figure 1). Thus, for a small 
actual sampling gradient of the species richness, the slope of the 
BEF is likely to decrease as Q increases. The larger the Q value, the 
flatter the BEF relationship curve.

5  |  A SSUMPTIONS/PRECONDITIONS FOR 
USING NET WORK AT TENUATION MODEL

From the description above, we stipulated three assumptions/pre-
conditions regarding the network attenuation model. Assumption 1: 
Compared with inter-species interactions, intra-species interactions 
had negligible effects on EF, and the measurement of BEF can be 
simply transferred to the quantification of the relationship between 

species richness and inter-species interaction. We acknowledge, 
however, the necessity to assess the role of intra-specific diversity 
in future assessment of interaction networks, notably because intra-
specific diversity can explain up to 25% of overall community varia-
tion in some cases (Fridley & Grime, 2010). Thus, it will be necessary 
to incorporate this information into the network attenuation model 
in an improved version; Assumption 2: Network attenuation model 
is established to simulate natural phenomena in its original version. 
Because human activity can affect directly EFs in managed ecosys-
tem (Yu et al., 2023), the model in its current version is not recom-
mended for disturbed areas; Assumption 3: Within a space and time 
scale of BEF research, abiotic environmental conditions are rela-
tively homogeneous, and the interaction between an organisms and 
its environment is considered as relatively constant. It is important 
to note that this assumption is not an absolute requirement. It means 
that this model is more effective under the condition of relatively 
homogeneous environment at small spatiotemporal scales than het-
erogeneous environments at relatively large spatiotemporal scales. 
The relevant theory involves the scale dependence of BEF, and the 
derivative process can be shown in the next section.

Under these three hypotheses, increasing species richness 
will increase EF until a plateau (Figure 1). However, it is import-
ant to note that different types of curve for the relationship 
between species richness and EF, such as humped back or expo-
nential relationships, can also be found in some cases (Albrecht 
et al., 2021; Luo et al., 2022), especially in scenarios that do not 
follow the assumptions described above. For example, in order to 
keep a relatively homogeneous and constant abiotic environmen-
tal conditions, Assumption 3 limits the scope of space and time 
of our model. But, if the conditions of space limitation are not 
met, spatial heterogeneity of the environment becomes more im-
portant to quantify BEF (Lefcheck et al., 2021; Wu et al., 2022). 
Furthermore, because BEF can vary across various ecosystems 
(Albrecht et al., 2021; Hu et al., 2021; Schiettekatte et al., 2022), 
the conclusions may differ in a heterogeneous environment. For 
example, it can be hard to quantify BEF within a landscape con-
taining both forest and grassland (Figure  2). On the other hand, 
if the conditions of time limitation are not met, temporal stability 
of the environment can be disrupted, and the abiotic environment 
can markedly change with time. Because EF can be defined by the 
interactions between organisms and their abiotic environment, it 
is particularly difficult to quantify BEF in a changing environment. 
Therefore, it is reasonable to assume that different types of curve 
can be found over seasons and across years.

Moreover, it is important to note two limitations of the network 
attenuation model, which are important to consider when interpret-
ing the results. First, one of the fundamental challenges of com-
plexity is that most systems can be viewed in a variety of different, 
but equally correct, ways (Cumming,  2016). For example, ecologi-
cal communities can be described by their populations of species, 
the nutrients that they contain, their processes or by their trophic 
interactions. Choosing one of these analytical lenses involves mak-
ing choices about the scale(s) and level(s) of analysis, as well as the 

F I G U R E  1  The curve of network attenuation model.
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phenomena of interests. Because differences in EFs come from dif-
ferent species interaction structure, there are different relationships 
between EFs and species richness, even within the same ecosystem. 
So, in principle, the network attenuation model represents the mea-
sure between one EF of interest and species richness at one given 
point in time.

Second, it is important to note that in practice, most surveyed 
networks to date have been subsets of much larger networks 
(Jordano, 2016). This is also true for protein interaction, gene reg-
ulation and metabolic networks, where only a subset of the mo-
lecular entities in a cell are targeted (Stumpf et al., 2005). Despite 
recent attempts to document ‘whole ecosystem meta-networks’ 
(Pocock et  al.,  2012), it is likely that most ecological interaction 
networks illustrate only a portion of all ecosystem compartments 
(Jordano, 2016). Due to their high temporal and spatial turnover as 
well as high complexity of association patterns, getting a complete 
overview of ecological interactions is challenging and requires large 
sampling effort. Therefore, to build a reliable relationship between 
species richness and EF with the network attenuation model, we can 
only rely on our underlying assumptions about ecosystem structure 
and take into account species that have a great effect on EF.

In conclusion, perfectly accurate relationship between species 
richness and EF, measured by network attenuation model, would be 
unrealistic. But, it is possible to make a nearly accurate relationship.

6  |  E VALUATING THE BEF SC ALE 
DEPENDENCE BA SED ON THE NET WORK 
AT TENUATION MODEL

The scale dependence in BEF relationships has been reported in nu-
merous studies (Keitt & Fischer, 2006; Sullivan et al., 2017). From 
the point of view of interaction, the BEF scale dependence can be 
described under two scenarios. Scenario 1 assumes that the envi-
ronmental factors are almost homogeneous and do not vary with 
scale, representing an ideal state. In scenario 2, the heterogeneity 
of environmental factors is considered, which is more likely to occur 
in practice. In the following, we will analyse the changes in the net-
work attenuation model parameters and BEF-slope under different 
scenarios.

In scenario 1, the variable EF0 in the network attenuation model 
is related to the interaction between species and their abiotic envi-
ronment when the environmental factors are almost homogeneous. 
Therefore, EF0 is only affected by the variation of species as the scale 
changes. In contrast, EF0 under scenario 2 can be affected by both 
the species and environment variation. Consequently, variations in 
EF0 are more gentle in scenario 1 than scenario 2 under a changing 
scale. In addition, the species population size is limited and cannot 
increase indefinitely with the scale. Thus, as the scale increases, dif-
ferent species are more likely to become more spaced apart, and 
species interactions will become weaker. This is attributed to an in-
creasing energy requirement for the movement of species. Based on 
this, in scenario 1, the forbidden links among species increase with 
the scale, and the value of Q in the network attenuation model is 
enhanced accordingly due its positive relationship with the former.

Unlike scenario 1, because of the strong influence of environ-
mental heterogeneity on species, EF0 (or the interaction between 
environmental factors and species) is likely to vary irregularly with 
the changing scale in scenario 2. Therefore, as the scale increases, 
EF0 may be affected by both species and environmental variation, 
resulting in a greater magnitude of change in scenario 2 compared to 
scenario 1. However, similar to scenario 1, the forbidden links among 
species and the value of Q are also likely to increase with the scale 
in scenario 2.

In summary, parameter Q in the network attenuation model is 
likely to increase with the scale in both scenarios 1 and 2. However, the 
change in magnitude of EF0 in scenario 2 may exceed that of scenario 
1. As EFmax can be defined as the sum of EF0 and αSImax (Formula 11), 
the change in magnitude of EFmax in scenario 2 can also exceed that 
of scenario 1. As a consequence, based on the network attenuation 

TA B L E  1  The changing trends of parameters in network attenuation model with increasing of spatial scale for different scenarios.

Scale Q EF0 EFmax BEF-slope

Scenario 1 ↗ ↗* Drastic changes are less likely Drastic changes are less likely ↘*

Scenario 2 ↗ ↗* Drastic changes are more likely Drastic changes are more likely ↘

Note: Scenario 1 is an ideal conditions for model operation. In this scenario the heterogeneity of environmental factors is little considered. Scenario 
2 is likely to meet in practice. In this scenario, the heterogeneity of environmental factors is considered. The direction of the arrow indicates the 
changing trends of model parameters with scale. An asterisk indicates a significant trend.

F I G U R E  2  Quantification of relationship between biodiversity 
and ecosystem functioning in a composite landscape.
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F I G U R E  3  Fitting the relationship between species richness and above-ground biomass by network attenuation model, with the data 
from BIODEPTH.
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model and from from the perspective of interactions, as the spatial 
scale increases, it is more likely to observe a marked decrease in the 
positive BEF-slope in an almost perfectly homogeneous environment 
(scenario 1) compared to a heterogeneous environment (scenario 2). 
This is attributed to the more significant variation of parameters EF0 
and EFmax under scenario 2 than scenario 1 (Figure 1; Table 1).

We can determine two key conclusions following the above 
analysis. First, for the case of a limited species richness sampling 
gradient, we are more likely to observe a decrease in the positive 
BEF-slope as the spatial scale increases. Second, the lower the en-
vironmental heterogeneity, the more significant the positive BEF 
relationship is with increasing the scale. In particular, a low spatial 
heterogeneity of an environment often corresponds to a smaller 
spatial scale, and thus the BEF is more likely to exhibit a significant 
positive relationship compared to larger scale environments. More 
specifically, species richness can have a great impact on EF at a 
small scale, yet at a larger scale, environmental factors are more 
likely to influence EF. Previous literature has supported this con-
clusion. For example, by analysing the species turnover in space 
and time, Gonzalez et al. (2020) demonstrated nonlinear changes 
in the BEF-slope with the spatial scale. Furthermore, Chisholm 
et al. (2013) performed a study on the relationship between spe-
cies richness and forest productivity under a spatial extent rang-
ing from 8 to 50 ha and revealed that the relationship between 
species richness and productivity changed with scale. The authors 
found a more significant positive relationship between species 
richness and productivity at the smaller scale, while environmen-
tal factors explained the variation in productivity at the larger 
scale (Chisholm et al., 2013).

7  |  A MODEL APPLIC ATION E X AMPLE 
BA SED ON BIODEPTH DATA

The BIODEPTH project contains 15 ecosystem-process variables 
measured at eight different European grassland field sites over 
3 years (Hector et al., 2010). By using the data from this project, 
we evidenced that the network attenuation model is a robust fit-
ting method when estimating the relationship between species 

richness and EF, and can provide a better estimation than linear 
models, logarithmic models or the Michaelis–Menten equation 
(Figure 3; Table 2).

In general, the change in the fitting quality of network attenua-
tion model for these eight field sites is similar with the other three 
models. For example, the fitting results for the field site in Greece 
by these four models have shown generally poor fitting quality (R2 
is from 0.0135 to 0.0152) (Table 2), whereas, the fitting results for 
the field site in UK (Sheffield) have shown commonly good fitting 
quality (R2 is from 0.3526 to 0.4613) (Table 2). It is suggested that, 
similar to other models, the fitting quality of network attenuation 
model can be greatly affected by environmental heterogeneity. 
However, because there is an inflection point in the curve of net-
work attenuation model, it can provide a better estimation of BEF 
in some case, such as in the field site of Ireland (Figure 3).

8  |  CONCLUSIONS

In this work, we proposed to use the network attenuation model as 
an alternative method to estimate BEF. This model can indirectly 
quantify the effects of biodiversity on EF by measuring the intensity 
of interactions between species. By using this model under some 
conditions (see Assumption 1–3 in Section 5), we demonstrated that 
the network attenuation model was a better fitting method for BEF 
than many other common methods. This result highlights that in-
teractions among species are effective to assess BEF. We conclude 
that the information from network attenuation models can provide 
meaningful guidance for conservation efforts worldwide, and more 
efforts will be necessary to assess the effect of biodiversity on vari-
ous EFs as the importance of interactions among species and spe-
cies richness may also vary over time.

AUTHOR CONTRIBUTIONS
Jian Hou and Nicolas Fanin conceived the ideas and designed 
methodology. Jian Hou and Zizhao Ni collected and analysed 
the data. Jian Hou led the writing of the manuscript. All authors 
contributed critically to the drafts and gave final approval for 
publication.

Network 
attenuation model

Linear 
model

Logarithmic 
model

Michaelis–
Menten equation

Germany 0.2859 0.2826 0.2262 0.2466

Portugal 0.127 0.1206 0.1169 0.1228

Switzerland 0.1475 0.1118 0.1537 0.1493

Greece 0.014 0.0135 0.0152 0.0152

Ireland 0.3103 0.0698 0.1665 0.1444

Sweden 0.1 0.094 0.0669 0.0762

UK (Sheffield) 0.4613 0.3526 0.4414 0.426

UK (Silwood) 0.1286 0.0525 0.0823 0.0779

R2 average value 0.196825 0.137175 0.1586375 0.1573

TA B L E  2  The fitting results (R2) for 
BIODEPTH by using network attenuation 
model, linear model, logarithmic model, 
and Michaelis–Menten equation.
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