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Abstract 9 

Pesticides remain the most efficient way to control pest and disease pressure in vineyards and obtain satisfactory 10 

yields in terms of quality and quantity. However, because of the harmful effects of pesticides on human health and 11 

the environment, winegrowers have had to change their practices. To reduce pesticide use, winegrowers have a 12 

range of levers at their disposal that are implemented at different spatial and temporal scales and with different 13 

intensities of change. Beyond simply reducing pesticide use, these changes can also impact farms’ economic and 14 

social performances notably because vine is a perennial crop with inertia in the impacts of changes operated. In 15 

this work, we assessed the covariation between various performances with time. We used the Agrosyst database, 16 

which compiles data on the performances of French vineyard cropping systems engaged in a pesticide reduction 17 

process for the past 10 years, implementing a reduction of 34%. Based on existing knowledge on transition 18 

processes and pesticide reduction in vineyards, we used partial least squares path modelling (PLS-PM) to assess 19 

the dynamic trade-offs between different performances during the pesticide use reduction process. We verified the 20 

model we built (GoF = 0.44) and found no significant correlation between pesticide reduction, economic 21 

performances (operating costs and fuel consumption), technical performance (mechanical work time) or 22 

productivity (yield). Interestingly, we did not observe any effect from reducing fungicides on yield. We only 23 

noticed a significant correlation between the initial weed control strategy and the change in weed control strategy 24 

(β = 0.18). Furthermore, stopping herbicide use did not affect mechanical work time or costs. Our results are 25 

encouraging in terms of maintaining both agronomic and economic performances when reducing pesticides in 26 

vineyards. 27 

Keywords: Dynamic; Pesticide use reduction; TFI, Treatment frequency index; Trade-off; Vineyard; Yield 28 
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1. Introduction 30 

The negative effects of pesticides on the environment and human health is a public concern (Aulagnier and 31 

Goulet, 2017). To make agriculture more sustainable, reducing pesticide use is therefore a major priority. The 32 

agricultural industry must transition to low-input systems. Debates on pesticide use are all the more true for the 33 

wine sector, given that it is one of the most input-intensive agricultural sectors (Urruty et al., 2016) since grapevine 34 

(Vitis vinifera) crops face significant pest and disease pressure. In 2019, for example, the average treatment 35 

frequency index (TFI, Pingault et al., 2008) for French vineyards was 12.4, with fungicide treatments accounting 36 

for 81% of this TFI (Simonovici and Caray, 2021). By way of comparison, the average TFI for wheat (a major 37 

annual crop in France) was 4.9 in 2017 (Agreste, 2020). To date, pesticides are still the most efficient solution to 38 

obtain satisfactory yields in terms of quality and quantity (Fermaud et al., 2016), but winegrowers must change 39 

their practices to become less dependent on these products and reduce their negative environmental impacts. 40 

 41 

To reduce pesticide use, winegrowers can choose from among several technical levers that have variable 42 

impacts on the farming system organisation (e.g. increased working time, more complex work). Hill and 43 

MacRae (1996) classified the intensity of implemented changes through a framework known as ESR (efficiency, 44 

substitution and redesign). The first step in reducing pesticide use is to increase input efficiency (E), i.e. reducing 45 

the total pesticide dose while achieving the same level of production (Hill and MacRae 1996). This can be achieved 46 

by optimising the dose and frequency of treatments (Fouillet et al., 2022). The second step is substitution (S), 47 

where chemical products are replaced with non-chemical pest control solutions or chemical treatment with a lower 48 

environmental impact. The last step, redesign (R), corresponds to more complex changes at the farming system 49 

level. For each of these three steps, a range of levers exists but none of them alone suffices to sustainably reduce 50 

pesticide use. Thus, because each of these technical levers is only partially effective, they must be combined to 51 

achieve a meaningful reduction in pesticide use (Jeuffroy et al., 2022). 52 

 53 

Since technical levers are implemented at different spatial scales and intensities, they have different impacts 54 

in terms of the environment, agronomy, farm organisation and working time. For example, on an operational 55 

level, doses can be adapted for each treatment intervention to consider vine sensitivity and fungicidal pressure. 56 

Farmers can also choose to use copper or sulfur-based products in place of synthetic products on a single plot, 57 

several plots or the whole farm. This is a tactical decision that can potentially impact vineyard performances. In 58 

fact, copper and sulfur-based products are more leachable than synthetic products. Their use implies more 59 
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interventions per season and an increase in working time (Merot et al., 2019). From a more strategic angle, 60 

replacing herbicides with mechanical weeding requires financial and time investments. New equipment is needed 61 

for tilling, inter-weeding and mowing activities (Merot and Wery, 2017). The consequences of such changes are 62 

therefore technical but also organisational and economic. 63 

 64 

To sustainably reduce their pesticide use, winegrowers need to change their practices while maintaining an 65 

economically viable agricultural production throughout the transition process. During the pesticide reduction 66 

process, winegrowers must revise their objectives, which can no longer be focused on yield maximisation (Jacquet 67 

et al., 2022). Multiple, conflicting environmental and economic objectives mean that compromises must be sought 68 

(Klapwijk et al., 2014). Indeed, competition between activities can occur at the farming system level (Delecourt 69 

et al., 2019). For example, increased working time and costs along with decreased productivity have been observed 70 

after winegrowers implemented mechanical weeding to replace chemical weeding (Jacquet et al., 2019). 71 

To understand the pesticide reduction process and better support winegrowers during their transition, 72 

knowledge is needed on the covariations between the agronomic, economic, social and environmental 73 

performances. To acquire such knowledge, researchers often design and assess the performances of low-input 74 

cropping systems (Meynard et al., 2012), such as in the case of experimental plots designed with low pesticide use 75 

within the experimental DEPHY network (Métral et al., 2018; Thiollet-Scholtus et al., 2019). The performances 76 

of the newly designed systems are then assessed using tools and indicators (e.g. multi-criteria evaluation) and the 77 

impacts of the new technical strategies on environmental, economic, technical and agronomic performances are 78 

quantified (Métral et al., 2018; Thiollet-Scholtus et al., 2019). While the design and assessment of experimental 79 

trials with low pesticide inputs produce important results, real production situations must also be considered within 80 

a large set of production contexts, which can differ from experimental conditions (Jacquet et al., 2022). 81 

Over the past two decades, numerous studies have proposed methods for multi-criteria evaluation of farming 82 

system sustainability (Soulé et al., 2021). Two main types of methods can be distinguished: conventional methods 83 

focusing on farming system assessment and production in the field (Repar et al., 2017), and life cycle assessments 84 

(LCAs), which focus on the products and cover activities both in and outside the field (such as input manufacturing 85 

and waste disposal). Both types of methods target high-yield farming systems to determine whether new technical 86 

strategies are efficient (Aouadi et al., 2019). Moreover, to our knowledge, these methods do not propose a dynamic 87 

view of farming systems during their transition towards systems using reduced amounts of pesticides nor do they 88 

consider the potential trade-offs between agronomic, socio-economic and environmental performances over time 89 
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(Dardonville et al., 2021; Hodbod et al., 2016; Soulé et al., 2021). Thus, several authors have pointed out the need 90 

to develop methods that integrate the dynamics of trade-offs. 91 

To contribute to this issue, this paper aims to characterise the effect of the dynamics of pesticide reduction 92 

on productivity and socio-economic performances of farming systems over the long term (10 years). We 93 

used partial least squares path modelling that included dynamic indicators of these performances to explore the 94 

potential trade-offs between agronomical, sociotechnical and economic performances over time. We hypothesised 95 

that, during the transition process to reduce pesticide use, we would observe a decrease in yield and an increase in 96 

manual labour and mechanical working time. The work was performed at the production system scale to take into 97 

account the economic and labour evaluation. 98 

2. Materials and Methods 99 

2.1.  DEPHY network and Agrosyst database 100 

In France, the DEPHY network (Demonstration, Experimentation and Production of references on low-pesticide-101 

input systems) was created in 2010 to demonstrate the capacity of farmers to reduce their pesticide use within their 102 

cropping systems. Farmers voluntarily participated in the network. A total of 280 cropping systems (i.e. several 103 

plots that are grown with the same management strategy) were enlisted between 2010 and 2012 and another 270 104 

vineyards joined in 2016. Vineyards were located across the 12 main French winegrowing regions (Alsace, 105 

Bordeaux, Bouches-du-Rhône, Bugey-Savoie, Burgundy, Champagne, Charente, Côtes-du-Rhône, Gaillac, 106 

Languedoc, Loire-Valley and Provence). Winegrowers were divided into groups managed by network advisors. 107 

These advisors guided farmers during their progress towards pesticide reduction. Data describing cropping system 108 

practices and performances, collected every year by the network advisors by survey, were gathered in the Agrosyst 109 

database. This database provides information on pesticide use and agronomic indicators such as yield at the field 110 

scale, with data available for each year starting from the year farmers joined the network. The Agrosyst team also 111 

calculated various performance indicators (e.g. equipment use time, operating costs). In total and considering 112 

missing data, we studied 161 cropping systems for which we had at least 6 years of complete data for the studied 113 

variables.  114 

2.2. Knowledge gained previously about the DEPHY network and potential covariations for 115 

performances 116 

The 161 selected cropping systems were already studied in a previous study (Fouillet et al., 2023, 2022). Previous 117 

studies have shown an average pesticide reduction of 33% over 10 years within the DEPHY network based on TFI 118 
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analysis (Fouillet et al., 2022). Various TFI trajectories were observed and classified into three types (Fouillet et 119 

al., 2023) which mainly differed by their TFI levels when farmers joined the DEPHY network (initial TFI). 120 

Analysis of the trajectories showed that the higher the initial TFI, the greater the TFI reduction between 2010 and 121 

2019. The TFI reduction was mainly explained by reduced fungicide use and, to a lesser extent, reduced herbicide 122 

use during the 10-year study timeframe (Fouillet et al., 2022). Three key approaches to reducing fungicide use 123 

were identified: reducing doses, decreasing the number of treatments, and partially or totally substituting copper- 124 

and sulfur-based products and biocontrol for synthetic products. We assumed that reducing doses and the number 125 

of treatments would directly reduce production costs. Fewer treatments would also presumably impact the 126 

mechanical work and all related impacts (fuel consumption, mechanical costs, labour). Conversely, the use of 127 

biocontrol and copper-based products could require an increased number of treatments. Because copper and sulfur 128 

are more leachable and not systemic, their use requires more frequent interventions (every 8 days on average 129 

instead of every 14 days for synthetic products) and more frequent interventions before and after rain (Merot et 130 

al., 2019). If the treatments are not applied at the right time, berry damage and yield loss can occur (Merot et al., 131 

2020). The herbicide TFI reduction was associated with the cessation of herbicide use on part or all of the vineyard 132 

(some inter-rows, all inter-rows, under the rows) (Fouillet et al., 2022). Chemical weeding could also be replaced 133 

by mechanical weeding or mowing. Substituting mechanical techniques for chemical weeding involved the 134 

acquisition of new equipment (e.g. undervine weeder, cover crop, mower) and more frequent interventions. As a 135 

result, this change could increase fuel consumption, production costs and labour. Furthermore, an unsuitable weed 136 

management strategy could lead to increased water and nitrogen competition and lower yields (Celette and Gary, 137 

2013; Merot et al., 2022). 138 

2.3. Individual performance analysis 139 

2.3.1. Performance variables 140 

Eight variables were selected to analyse farm performances to assess disease and weed control strategy, mechanical 141 

work intensity, costs and productivity.  The Agrosyst team calculated them based on the Agrosyst database. These 142 

variables were used to characterise the changes in vineyards’ disease and weed control strategy, productivity, 143 

labour and costs over the 10 years of the study. 144 

- Disease and weed control strategy at field scale 145 

Treatment frequency index: The level of pesticide use was estimated by calculating the TFI. The TFI is the main 146 

indicator used within the DEPHY network to assess changes in pesticide use. We calculated the TFI based on the 147 
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recommended dose established for each product for any targeted pest or disease. The TFI was calculated with the 148 

applied dose expressed as a fraction of the dose recommended to control specific targeted pests or diseases and 149 

according to the proportion of sprayed area (Eq(1), Fouillet et al., 2022; Pingault et al., 2008). 150 

𝑇𝐹𝐼 = ∑
Dose_sprayed𝑝

Dose_recommended𝑝

×

𝑃

Area_sprayed𝑃

Area_total𝑃

 151 

Eq(1): Calculation of TFI (Pingault et al., 2008) for a given year at the cropping system scale. The TFI equals 152 

the sum of the TFIs per treatment, where one treatment equals one product P sprayed and one date of 153 

application. The dose sprayed per product corresponds to Dose_sprayed; the recommended dose for a product P 154 

for the targeted pest is Dose_recommended; Area_sprayed represents the surface area where the product was 155 

applied and Area_total is the total surface area of the field where the treatment was sprayed. 156 

We differentiated three partial TFIs: fungicide TFI (TFIf), insecticide and acaricide TFI (TFIi) and herbicide TFI 157 

(TFIh). 158 

- Mechanical work intensity 159 

Mechanical working time (hour ha-1): This indicator is calculated for each mechanical operation, taking into 160 

account the time spent using the equipment and the number of people required to carry out the operation.  161 

Mechanical working time was calculated for the season (from the previous harvest to the harvest of the current 162 

season). 163 

Fuel consumption (L ha-1): Fuel consumption is the amount of fuel used for all the interventions using a 164 

combination of tools. It was calculated for each intervention based on references from the Bureau Commun du 165 

Machinisme Agricole (BCMA). This professional organisation creates decision support tools (mutual aid scale) 166 

and publishes documents to support agricultural equipment advisor networks, agricultural technicians and users. 167 

The calculated fuel consumption accounts for part of the tractor labour costs. 168 

- Costs 169 

Inputs costs (€ ha-1): This indicator corresponds to the expenses related to the purchase of inputs such as seeds and 170 

plants, mineral and organic fertilisers, seed and plant treatments, irrigation and plant protection products, and 171 

biological control products. To calculate these operational expenses, we used the prices of the inputs as indicated 172 

by the users. When information on input prices was unavailable, the Agrosyst team used the default prices from 173 

an Agrosyst reference framework for the relevant cropping season. 174 
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Tractor labour costs (€ ha-1): The tractor labour cost was calculated from the time of use of the equipment, based 175 

on a cost of 18 euro per one hour of work performed by a tractor operator (according to the Agroequipement Office 176 

from the national Chamber of Agriculture). This value was determined by the Agrosyst team and do not vary over 177 

time.  178 

- Productivity 179 

Yield (hL ha-1): Reported yield was collected each year and expressed in hL of harvested grape juice per ha-1. 180 

Yield values were declared by winegrowers at the field scale. 181 

2.3.2. Statistical analysis 182 

Statistical analyses were performed using R software v. 3.6.2 (R Core Team, 2019) with the lme4 package (Bates 183 

et al., 2015). The general change in each performance over time was assessed using linear mixed-effects models 184 

(Eq(2)). The winegrowing regions were integrated as a fixed effect to collect the slope and intercept coefficients, 185 

while the cropping systems followed over the studied period were integrated as a random effect. 186 

mod1= lmer(X ~ Year * Winegrowing Region + (1+Year | cropping system)) 187 

Eq(2): Linear models used to visualise the change in a variable X over the 10-year study timeframe, taking into 188 

account the winegrowing region effect, a categorical variable (Winegrowing Region). The cropping system effect 189 

over time was integrated as a random effect. The equation was formulated using the R software lme4 package 190 

language (Bates et al., 2015). 191 

A t-test was performed to determine whether there was a significant difference in the variables between the 192 

initial point (when the farm entered the DEPHY network) and the final point (2019). 193 

2.4. Covariation analysis of the performance variables 194 

2.4.1. Variables to describe the performance dynamics 195 

To analyse the covariations between performances during the pesticide reduction process, we were not interested 196 

in the individual raw variables presented above but rather in their initial value upon entry to the network as well 197 

as their change in time. To assess the change in variables over time, we used dynamic indicators inspired by Martin 198 

et al. (2017) and Fouillet et al.(2023). We extracted the slope of the linear model of each raw variable as a function 199 

of time to reveal the overall change between the initial and final values (increase, decrease or stable) (see Fig.1.). 200 

The value at the initial point was extracted for a set of variables listed below in Table 1. The new variables 201 
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corresponding to the slopes of linear regressions (figure 1, mod2) were named Evo_<variable name>. The new 202 

variables corresponding to the initial point values were named Ini_<variable name>. We calculated 9 variables in 203 

all to depict the performance dynamics (see Table 1).  204 

  205 

 206 

Fig. 1. Indicators used to characterise the dynamic of the selected performances. The model linear model 207 

used with X the studied variable, β1 the estimated slope, β0 the estimated intercept and ε the residual   208 

2.4.2. Covariation analysis: partial least squares path modelling (PLS-PM) method 209 

Method definition 210 

Partial least squares path modelling (PLS-PM) is a method used to explore the multiple relationships between 211 

various variables and to quantify the respective weights associated with these relationships (Tenenhaus et al., 212 

2005). To date, PLS-PM has been mainly applied in the fields of social sciences and ecology. More recently, this 213 

method was also applied to agronomic studies (Quinio et al., 2017). Path models are built using unobservable 214 

variables, called construct variables or latent variables (LVs), and observable variables, also known as manifest 215 

variables (MVs). An LV is described using one or more MVs. PLS-PM is comprised of two sub-models: an inner 216 

model and an outer model (Sanchez, 2013). The inner model is the structural model that takes into account the 217 

relationships between LVs. The outer model, which corresponds to the measurement model, describes the 218 

relationships between the LV and a set of MVs. The group of MVs associated with an LV is defined as a block. 219 
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MVs must be positively correlated to their LV (Vinzi et al., 2010). The correlation between LV and their MVs 220 

was estimated by using the loading (λ) (Sanchez, 2013). The strength and direction of the relationships between 221 

LVs and MVs was estimated with the path coefficient (β) obtained from regression. A negative β value indicated 222 

a negative correlation, whereas a positive β value indicated a positive correlation. β was only considered when λ 223 

indicated a significant correlation. 224 

Model construction 225 

We built our path model in a reflexive way, meaning we assumed that MVs were caused by their respective LVs 226 

(Baxter, 2009). Partial least squares path modelling (PLS-PM) was used to model the relationships between the 9 227 

manifest variables presented above and depict the change in performance. These variables comprised the set of 228 

MVs in the model. The latent variables and the associated manifest variables are summarised in Table 1. 229 

We used our path model to test the hypothesis that reducing pesticide use impacted the other studied performances 230 

of the farming system. The hypotheses used to construct the model were based on existing knowledge on pesticide 231 

reduction processes in vineyard systems (see Table 2 for a detailed description of these hypotheses). The 232 

hypotheses used in the model also took into account existing knowledge on the transition pathway towards 233 

pesticide use reduction (Chantre and Cardona, 2014; Martin et al., 2017; Merot et al., 2019a). 234 

We chose to focus on the change in fungicide and herbicide use within the DEPHY network as these are the two 235 

types of pesticides for which Fouillet et al. (2022) observed a significant decrease in use. Furthermore, insecticide 236 

products only represent a small part of the total TFI (14%, Simonovici and Caray, 2021) and most insecticide 237 

treatments are mandatory treatments against Scaphoideus titanus, the leafhopper vector of Flavescence dorée. 238 

Fouillet et al. (2022) showed no significant decrease in the use of insecticide products within the DEPHY network 239 

over 10 years. 240 

We began building the model by setting up two latent variables representing the initial state of disease control 241 

(cryptogamic diseases) and the initial state of weed control. This is because, during a pesticide reduction process, 242 

the initial states of control indicate the potential for improvement that winegrowers may reach in terms of pesticide 243 

use reduction (Fouillet et al., 2023; Merot et al., 2019b; Ross et al., 2008). Since regional effects have a strong 244 

influence on pest and disease pressure (Fouillet et al., 2022; Mailly et al., 2017; Simonovici, 2019), we normalised 245 

the TFIf by using data provided by the French Ministry of Agriculture (Simonovici and Caray, 2021). TFIh was 246 

not normalised as it represents a small part of the TFI (4.8% in 2019, Fouillet et al., (2022) and consequently even 247 

if there is a regional effect, it is limited on the TFI variation.  (Mailly et al., 2017).  248 
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Model quality assessment 249 

We assessed the quality of the constructed path model using a two-step process (Sanchez, 2013). First, we verified 250 

the homogeneity and unidimensionality of the blocks and then the cross-loadings. The unidimensionality of each 251 

block was verified since all MVs were positively correlated with their respective LVs (Sanchez, 2013). Blocks 252 

were homogenous, meaning that we would be measuring the same unique underlying concept in each block (Vinzi 253 

et al., 2010). 254 

 255 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



11 
 

Table 1. Description of the latent variables and the associated manifest variables used in the PLS-PM model 256 

 257 

 258 

 259 

 260 

 261 

 262 

 263 

 264 

 265 

 266 

Table  2. Hypotheses used to construct the PLS-PM model based on the existing knowledge on pesticide reduction processes in vineyard systems 267 

Latent variable  Manifest variable Manifest variable calculation  Unit of the converted 

variable 

Initial disease control strategy Ini_TFIf Normalised TFIf at the initial point 
Ø 

Initial weed control strategy Ini_TFIh TFIH at the initial point of the TFIh 
Ø 

Change in disease control strategy Evo_TFIh Extracted slope of the TFIf  from Initial Point to 

2019.  Ø 

Change in weed control strategy Evo_TFIh Extracted slope of the TFIh  from Initial Point to 

2019. 
Ø 

Change in productivity Evo_Yield Extracted slope of the yield  from Initial Point to 

2019. 

hL ha-1 

Change in mechanical work intensity  Evo_FuelConsumption Extracted slope of the change in fuel 

consumption   from Initial Point to 2019. 

L ha-1 

Evo_MechanicalWork Extracted slope of the change in mechanical 

work  from Initial Point to 2019. 

hour ha-1 

Change in costs Evo_TractorCost Extracted slope of the change in tractor labour 

cost  from Initial Point to 2019. 

€ ha-1 

Evo_OperatingCost Extracted slope of the change in operating cost  

from Initial Point to 2019. 

€ ha-1 
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Hypothesis 

number 

Relationships between latent 

variables (LVs) 

Hypothesis References 

(1) Initial disease control  strategy  

Change in disease control strategy 

The initial disease control strategy is related to the potential pesticide reduction. It is easier to 

significantly decrease pesticide use when the initial disease control strategy mainly relies on the use of 

systemic products rather than other products (copper/sulfur or biocontrol) 

 

Fouillet et al. (2022) 

(2) Initial disease control strategy  

Change in productivity 

Productivity is highly dependent on disease control. Powdery and downy mildew can cause considerable 

yield losses in the absence of pesticide use or a suitable plant protection strategy.  

Depending on the initial disease control strategy, the change in productivity when pesticide use is 

reduced will vary:  

- With high disease pressure and a strong initial disease control strategy, productivity is 

expected to decline; 

- With high disease pressure and a minimal initial disease control strategy, productivity is 

expected to remain stable; 

- With low disease pressure and regardless of the initial disease control strategy, productivity is 

expected to remain stable. 

 

Fermaud et al. (2016) ; 

Merot and Smits 

(2020);  

Leroy et al. (2013) 

(3) Change in disease control strategy 

 Change in productivity  

A better disease control strategy limits damages and substantial yield losses. When changing a disease 

control strategy, yields have been observed to fall after a decrease in pesticide use before returning to 

the initial level. 

 

 Merot and Smits 

(2020) 

 

(4) Change in disease control strategy 

 Change in mechanical work 

intensity  

Disease control strategies depend on the type of products used, the dose per treatment and the frequency 

of applications.  

- If the dose per treatment is decreased without changes in the type of product used, no impact 

on mechanical work intensity is expected; 

- If the frequency of applications decreases without changes in the type of product used, the 

number of interventions is reduced and less mechanical work is expected; 

- A change in the type of products used has implications on the number of interventions and 

consequently on the mechanical work intensity. In particular, replacing synthetic pesticides with 

more leachable copper-based, sulfur-based or biocontrol products increases the frequency of 

treatments needed, especially in oceanic and northern winegrowing regions. 

Merot et al. (2019b); 

Rouault et al. (2016) 

(5) Change in disease control strategy 

 Change in costs  

A change in disease control strategy can impact costs.  

- If the dose per treatment is decreased, costs are expected to fall;  

- If the frequency of applications decreases without changes in the type of product used, the 

number of interventions is reduced and costs are expected to fall; 

- A change in the type of products used has implications for the number of interventions and 

consequently for costs. As noted in hypothesis 4, replacing synthetic products with copper, 

sulfur or biocontrol products whose frequency of application is more dependent on rainfall can 

lead to an increase in the number of treatments, especially in oceanic and northern winegrowing 

Leroy et al. (2013); 

Merot et al. (2019b) 
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 268 

regions. An increase in the number of treatments increases costs (fuel consumption, mechanical 

costs). Biocontrol products are also more expensive than synthetic products. 

 

(6) Initial weed control strategy  

Change in weed control  strategy 

The initial weed control strategy is related to the potential of herbicide use reduction. It is easier to 

significantly decrease herbicide use when the initial weed control strategy is highly dependent on the use 

of systemic products. In fact, the available levers to reduce herbicide use are limited to three options: 

- Replacing synthetic herbicides with biocontrol herbicides; 

- Replacing herbicides with mechanical weeding;  

- Replacing herbicides with cover crops mown. 

The implemented strategy can combine these options for the entire the plot or in the inter-rows. 

 

Delpuech and Metay, 

(2018); Fouillet et al., 

(2022) 

(7) Initial weed control strategy  

Change in productivity 

The initial weed control strategy can impact the change in productivity. In fact, considering the major 

changes required to reduce herbicide use – namely changes in knowledge, equipment, and management 

and decision rules – there is a significant risk associated with leaving weeds to grow in spring after the 

changes are implemented. If vineyards are farmed without water and nitrogen restrictions, yields may 

fall before returning to their initial levels. 

 

Jacquet et al. (2019) 

Merot and Smits (2020) 

Ripoche et al. (2011) 

 

(8) Change in weed control strategy  

Change in productivity 

Weed control strategies limit competition and substantial yield losses. As mentioned in hypothesis 7, 

when implementing levers to reduce herbicide use, allowing weeds to grow in spring, a critical stage for 

grapevine, comes with a significant risk. Competition for nitrogen and water from weeds can cause yields 

to decline before they return to initial levels. 

Jacquet et al. (2019);  

Merot et al. (2022) 

Delpuech & Metay 

(2018), Celette & Gary 

(2013) 

 

(9) Change in weed control strategy  

Change in mechanical work 

intensity 

The change in weed control strategy related to the reduction of herbicides is expected to lead to an 

increase in mechanical work intensity because mechanical tillage is the most common alternative for 

herbicide reduction. 

 

Jacquet et al. (2019) 

Merot et al. (2019) 

(10) Change in weed control strategy  

Change in costs 

The three potential options to reduce herbicide use cited in hypothesis 7 are all more expensive to 

implement than relying solely on synthetic herbicides. For example, an increase in the number of 

interventions will be more costly than herbicide interventions since the time required for mechanical 

weeding is higher than applying herbicides. Reducing expenses related to synthetic herbicides does not 

offset the increase in costs related to mechanical work intensity. 

 

Jacquet et al. (2019) 

Merot et al. (2019) 

(11) Change in mechanical work 

intensity  Change in costs 

An increase in mechanical workload can lead to the hiring of new employees and therefore to an increase 

in costs. 

 

Merot et al. (2019) 
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We checked the loadings, i.e. the correlation between a latent variable and its manifest variables (Vinzi et al., 269 

2010). We verified that the shared variance between an MV and its LVs was larger than with other blocks using 270 

cross loadings. Finally, the cross loadings were checked to ensure that the loadings (λ) between the MVs and their 271 

respective LVs were higher than their loadings with the other LVs implemented in the model. 272 

Model validation 273 

The model robustness was validated using the goodness of fit (GoF) index and a bootstrapping procedure (1000 274 

times). A GoF threshold value of 0.4 was considered acceptable to verify the model (see Grace et al., 2016; Puech 275 

et al., 2015; Quinio et al., 2017). The PLS-PM was performed with R software v. 3.6.2 (R Core Team, 2019) using 276 

the plspm package (Sanchez et al., 2015). 277 

3. Results 278 

3.1. Change in environmental, economic and technical performances over the 10-year study timeframe 279 

Both fungicide and herbicide uses were significantly reduced over the 10-year study period according to the linear 280 

model ( p<0.05, Fig. 2, supplementary data 1). Concerning fungicide use, the TFIf decreased from 10.6±4.9 to 281 

7±5.4 between the initial year and 2019, corresponding to a 34% mean reduction with a high inter- and intra-282 

annual variability As for herbicide use, the TFIh decreased from 1.2±1.5 to 0.5±0.9 between the initial year and 283 

2019, corresponding to a 58% mean reduction. In all, 27% of the cropping systems used herbicides in 2019, 284 

compared to 43% at the initial point. 285 

  286 

 287 
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 288 

Fig. 2. Change in pesticide use over the 10 years of the study. (A.) Change in TFIf. and (B.) change in TFIh.. 289 

Outliers are not represented. Whiskers display the 5th and 95th percentiles. Horizontal bars indicate the first 290 

quartile, median and third quartile.  291 

The linear model showed a significant decrease in operational costs (p value<0.01, Fig. 3D). The operational costs 292 

decreased from 648.2±402.7 € ha-1 to 349.9±707 € ha-1 between the initial year and 2019, corresponding to a 46% 293 

mean reduction. 294 

No significant change in the mechanical working time, fuel consumption or tractor labour costs was observed over 295 

the study period. The mechanical working time ranged between 26.6±17.3 and 21.6±28 hour ha-1 between the 296 

initial point and 2019 (Fig. 3A). The fuel consumption varied between 247±132 L ha-1 and 286±288 L ha-1 between 297 

the initial point and 2019 (Fig. 3B). The tractor labour cost varied between 427.2±311.8 € ha-1 and 298 

347.3±445.8 € ha-1 between the initial point and 2019 (Fig. 3C). The yield varied from 63.4±22.3 hL ha-1 and 299 

65.7±23.9 hL ha-1 (Fig. 4). 300 

  301 
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 302 

Fig. 3. Change in the economic and working time performances over the 10 years of the study. (A.) Change in 303 

mechanical working time (hour ha-1). (B.) Change in the fuel consumption (L ha-1). (C.) Change in the tractor 304 

labour cost (€ ha-1). (D.) Change in the operational cost (€ ha-1).  305 
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 313 

Fig. 4. Change in the yield (hL/ha) from the initial point to 2019. 314 

 315 

3.2. Path model: covariation of environmental, economic and technical performances over the 10-year 316 

study period 317 

The path model (Fig. 5) was verified since blocks were unidimensional and by cross-loading validation (see 318 

supplementary data2). Furthermore, the goodness of fit was acceptable (GoF = 0.44). The bootstrap procedure 319 

indicated that only 2 of the 11 path coefficients (β) were significant (Fig. 5): i) the link between initial herbicide 320 

use and the change in herbicide use and ii) the link between the change in work intensity and the change in costs. 321 

Among the variables describing plant health control strategies, we only observed a low positive effect of the initial 322 

weed control strategy on the change in weed control (β = 0.18, pvalue = 0.025). The impact of the initial disease 323 

control strategy on the change in disease strategy was negative but non-significant (β = –0.52, pvalue>0.05). No 324 

significant impact of the weed control strategy or disease control strategy was observed on productivity. The initial 325 

weed control strategy and the change in weed control strategy had a non-significant negative impact on 326 

productivity (β = −0.06 and β = −0.07, pvalue<0.01). Our hypothesis of a yield reduction due to a decrease in or 327 

cessation of herbicide use was not validated. The same finding was observed for the initial disease control strategy 328 
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and the change in disease control strategy, as the impacts of both on productivity was non-significant. Therefore, 329 

our hypothesis of a yield decrease due to a fungicide reduction was not verified. 330 

A strong and positive relationship between the change in work intensity and the change in the costs was observed 331 

(β = 0.94, p value<0.05). Our hypothesis of a mechanical work increase due to a change in weed control strategy 332 

was not validated since the correlation, although positive, was found to be non-significant (β = 0.14, p value>0.05). 333 

The same finding was observed for the change in disease control strategy with regard to the change in mechanical 334 

work intensity. There were non-significant correlations between the change in costs and changes in the disease 335 

control strategy (β = 0.04, p value>0.05) and in the weed control strategy (β = −0.03, p value>0.05).336 
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 337 

 338 

Fig. 5. The complete path model with latent variables (LVs, grey ovals) and manifest variables (MVs, blue rectangles). Path coefficients (β) were computed from regressions; they represent the 339 

strength and direction (orange arrow, dotted line = negative; blue arrow, full line = positive) of relationships between the LVs. Loading (λ) represents the correlation between an MV and its 340 

respective LV. Asterisks indicate that the path coefficients (β) were significantly different from 0 based on 95% percentile confidence intervals calculated using 1000 bootstrap samples. 341 

Meanings of the variables are detailed in Table 1 and the numbers in parentheses correspond to the model construction hypotheses described in Table 2.  342 
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4. Discussion 344 

4.1. This article aimed to characterise the covariations between the performances of different vineyard 345 

cropping systems as winegrowers were transitioning to lower pesticide use. We used the French 346 

national Agrosyst database, which provides comprehensive information over a long time period (10 347 

years). We built and verified a statistical method (PLS-PM), considering the dynamic of the pesticide 348 

reduction process, and showed that pesticide use reduction was not significantly related to the evolution 349 

of productivity (yield), economic (operating costs and fuel consumption) and technical performances, 350 

technical performance (mechanical work time). Change in performances over time 351 

Analysis of the individual performances indicated that nearly all of them remained stable over the 10-year study 352 

timeframe, despite a 34% decrease in TFIf and 58% decrease in TFIh, with only the input costs experiencing a 46% 353 

decrease. All the other performances – mechanical work time, tractor labour costs, fuel consumption and yield – 354 

showed no significant change over time. 355 

Performances result from multiple processes. Thus, the lack of change observed here can be partly explained by 356 

the context and characteristics of grapevine production systems. First, the vineyard crop management sequence 357 

requires numerous manual and mechanical interventions that must be carried out every year, regardless of the 358 

pesticide use strategy (e.g. pruning, harvesting). This elucidates why there is minimal variation in the proportion 359 

of work  time (both manual and mechanical) and operational costs across  different years for each vineyard 360 

recorded in the database.Even if pesticide use was reduced, harvest costs or winter pruning costs do not vary every 361 

year. This regular share of performances can make it difficult to identify an impact due to pesticide reduction for 362 

each individual vineyard. Second, regarding changes in yield, in most vineyards, yield is regulated by protected 363 

designation of origin (PDO) and protected geographical indication (PDI) schemes (Stranieri and Tedeschi, 2019). 364 

Winegrowers voluntarily control the productive potential in their vineyards during winter pruning to meet PDO 365 

and PDI requirements. Lastly, a high variability between individual vineyards in the database was observed for 366 

each performance each year. Part of this variability can be traced back to the regional effect and its impact on pest 367 

and disease pressure, as well as to the specific features of each winegrowing region (in particular yield objectives) 368 

(Fouillet et al., 2022; Mailly et al., 2017). For example, some practices, such as the type of pruning or the width 369 

between the rows – just like the yield restrictions mentioned above – are imposed by the specifications of the 370 

geographical indication schemes. 371 

4.2. Lowering TFI is not related to reductions in yield, costs or mechanical work 372 
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4.2.1. Changes in yield and pesticide reduction 373 

We observed that the 34% mean pesticide reduction was not related to an evolution in productivity. In particular, 374 

we did not observe any impact of the fungicide reduction on yield, regardless of the initial yield when entering the 375 

network. We can therefore assume that fungal diseases have been sufficiently controlled despite lower fungicide 376 

use regardless of the level of initial fungicide use. This finding is a validation of a winegrower’s choice to undertake 377 

the transition to reduce pesticide use. Data analysis was performed at the national scale (see supplementary data 378 

3). To investigate further, it could be interesting to consider local yield objectives because yields in vineyard 379 

systems are highly variable at inter- and intra-region scales (Fouillet et al., 2022; Mailly et al., 2017; Merot et al., 380 

2022). With the yield objective, another indicator such as the yield achievement ratio (ratio between the reported 381 

yield and the target yield, which was unavailable in the Agrosyst database; Merot et al. (2022)) could have been 382 

used to explicitly integrate the production target and avoid the strong winegrowing region effect. 383 

4.2.2. Costs, change in work time and pesticide reduction 384 

Interestingly, no impact of the pesticide reduction was observed on economic (costs) or sociotechnical (work time) 385 

performances. This result invalidates our hypothesis of an increase in costs due to substituting mechanical weeding 386 

for herbicide inputs, such as what was observed by Jacquet et al. (2021) in vineyards. Similarly, Lechenet et al. 387 

(2014, 2017), using the Agrosyst database on arable crops, showed that farmers could reduce their pesticide use 388 

by an average of 42% without negatively impacting their profitability or productivity (Lechenet et al., 2017, 2014). 389 

The 2017 study by Lechenet et al. was based on a single datapoint per farm (when farmers entered the network) 390 

and used a regression model to assess the effect of TFI on productivity and profitability. In our study, which was 391 

based on a longer time scale (10 years), we integrated the slope as an evolution of indicators. Indeed, since pesticide 392 

use is mainly reduced due to gains in efficiency (e.g. dose reduction) and substitution (e.g. use of biocontrol 393 

products) (Aulagnier and Goulet, 2017; Fouillet et al., 2022), it does not involve any change in equipment or 394 

number of operations (Román et al., 2022). Studies showed that only a few farmers redesigned their farming 395 

systems within the DEPHY network (Aulagnier and Goulet, 2017), therefore avoiding levers such as preventive 396 

treatments, or even the more involved process of converting to organic farming, both of which are known to 397 

significantly impact the way the vineyard is managed (increase in work time and changes in equipment, etc.). 398 

Moreover, some technical operations that are expensive in terms of costs and work time, such as pruning or 399 

harvesting, are not affected by reduced pesticide use and can mask the impact of other changes in practices (e.g. 400 

change from herbicide use to mechanical weeding) (Strub et al., 2021). In their study on the impact of conversion 401 
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to organic farming in terms of the technical and economic performances of vineyard systems, Merot et al. (2019) 402 

separated grape-growing and harvesting costs because switching from mechanical to manual harvesting (or vice 403 

versa) significantly impacts production costs. Analysing grape-growing and harvesting costs separately would 404 

make it possible to better identify the impact of technical changes when reducing pesticide use. 405 

The economic performance was assessed using production cost while most studies assess economic performance 406 

through net or gross margins (Delord et al., 2015). Net margin is calculated as total fixed revenue minus input 407 

costs, mechanisation costs and labour costs (Aouadi et al., 2019). In the Agrosyst database, economic data such as 408 

gross and net margins were not available for vineyard systems. . We used other economic indicators and integrated 409 

more social indicators by considering the work involved (mechanical and manual work time) (Sgroi and 410 

Sciancalepore, 2022). Furthermore, total revenues in viticulture systems are highly variable due to the diversity of 411 

marketing strategies and the high yield variability on a spatial and temporal scale (Aouadi et al., 2019).. 412 

4.3.  Methodology used to study the covariation between performances 413 

4.3.1. Characterising temporal variations of practices and performances 414 

The Agrosyst database provided a large quantity of information on vineyards and their economic, sociotechnical 415 

and economic performances over 10 years at the French national scale. Change can be seen as a multistep process 416 

that includes periods of learning and experimentation (Catalogna, 2018; Chantre and Cardona, 2014), and studying 417 

the dynamics of these changes is necessary to take into account the fact that farmers implement and adapt their 418 

practices over a long time. Yet, there are still methodological issues to address when assessing these cropping 419 

system performances to integrate their dynamics. In this study, we adapted the PLS-PM method by integrating 420 

dynamic indicators to characterise the change in performances. The dynamic was considered by extracting slopes 421 

from linear models. The small number of methods integrating dynamics with mathematical indicators raises the 422 

question of how to consider temporal evolutions. We chose to describe the evolution by integrating the slope and 423 

the initial point in the PLS-PM model. Dardonville et al. (2022) describe the dynamics of agricultural performances 424 

with four different criteria over 8 years: the level of performance calculated with the mean, the stability or 425 

variability calculated with the standard deviation or the coefficient of variation, the trend calculated with the slope 426 

coefficient of a mixed linear regression; and finally, the resistance calculated by subtracting the average 427 

performance before and after the break (high and rapid evolution). 428 

4.3.2. Possible sensitivity indicator to pesticide reduction 429 
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In our model, the environmental impact of pesticide use was assessed using the TFI, which is the main indicator 430 

used within the French ECOPHYTO plan to assess pesticide use in farming systems (Guichard et al., 2017). 431 

Pesticide use can also be assessed with other indicators such as the number of unit doses (NUD) or the quantity of 432 

active ingredients (QAI). More recent indicators include the toxicity risk indicator (IRT, Mghirbi et al., 2015) or 433 

the pesticide load (Kudsk et al., 2018), which both take into account the ecotoxicity of the sprayed products. All 434 

of the above indicators, including TFI, can highlight changes in plant protection strategies. However, none of these 435 

indicators can assess the changes in practices that lead to this reduction, such as prophylactic measures or cover 436 

crops (Jacquet et al., 2022) or change in spraying equipment (Michael et al., 2021). 437 

We assumed that a model that takes into account finer variables (e.g. risk to the operator depending on product 438 

toxicity, working conditions and safety issues) could identify potential trade-offs, especially in terms of health, 439 

labour and costs. Delecourt et al. (2019) and Duval et al. (2021) highlighted a change in work organization during 440 

agroecological transitions, in terms of working time and human resources (workforce and skills), work 441 

organisation (competition between activities at the farming system scale) and work safety. Overall, indicators of 442 

working conditions, such as greater meaningfulness of the work performed (Duval et al., 2021) or the satisfaction 443 

of livestock farmers (Perrin and Martin, 2021), improved when farms were converting to organic farming.These 444 

findings on work-related variables highlight the need to better account for socio-economic indicators such as net 445 

margin or number of workers. Yet, such socio-economic data are difficult to obtain from existing databases, and 446 

acquiring it requires in-depth surveys 447 

Furthermore, the implementation of new practices depends on the farmer’s attitude towards and perception of risk 448 

(e.g. yield loss acceptability). Bonke et al. (2021) showed that some farmers were willing to accept potential yield 449 

losses and forego profits by diversifying their crops depending on the farm’s economic strategy. One of the 450 

limitations of big data analysis is gaining access to these more specific variables as used in multi-criteria evaluation 451 

that are not avalaible in the AGROSYST database. For example, DEPXiPM-grapevine (Gary et al., 2015) is a 452 

multi-criteria model for assessing the sustainability of vineyard systems. The description of environmental 453 

durability is exhaustive and the socio-economic evaluation is based on expert knowledge. 454 

Conclusion 455 

This study aimed to characterise the covariation between the different performances of vineyard cropping systems, 456 

involved in a pesticide reduction process over 10 years. The study focused on vineyard, a perennial crop with a 457 

high change inertia. First, the evolution of pesticides use (fungicide and herbicide), economic and technical 458 
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performances were characterized. Over the ten years, a reduction of pesticide (fungicide and herbicide) and 459 

operational cost was observed while the other performances remained stable. e built and verified a model to study 460 

the correlations between performances and changes in practices, which is necessary when studying change 461 

processes. We did not identify any relation between  initial pesticide use (fungicide and herbicide) on agronomic 462 

and sociotechnical performances. 463 

The DEPHY network seems to offer relevant support to help winegrowers reduce their pesticide use given that no 464 

covariation between performances was observed during the pesticide reduction process. The observed reduction 465 

in TFI had no impact on changes in yield nor work intensity or costs. We suggest that a similar model should be 466 

adapted for the vineyard cropping system with indicators to give greater weight to socio-economic indicators, such 467 

as work organisation or farmers’ objectives and satisfaction during the pesticide reduction process, all of these 468 

being key elements of a successful transition to low-input systems. 469 
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